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MODULUS OF APPROXIMATE CONTINUITY FOR R(X)
JAMES LI-MING WANG

1. Introduction.

Let X be a compact subset of the plane C. We denote by R,(X) the
algebra consisting of the (restrictions to X of) rational functions having
no pole on X, and by R(X) the uniform closure of Ry(X). We say that ¢
is an admissible function if (a) ¢ is a positive, non-decreasing function
defined on (0,) and (b) the associated function y, defined by y(r)=
r/p(r), is also non-decreasing, with y(0+)=0.

Throughout this paper, £ will denote the Riemann sphere, ||-|| will
denote the supremum norm over the appropriate set,

Az, r) = {y: |ly—=|=r},
4,@) = {y: 2~V < |y —z| <277},

and m will denote the 2-dimensional Lebesgue measure.
Fix x € C. We say that a set £ <C has full area density at x if

lim,  ,m(End(z,r))/m(4A(z,r)) = 1.

Let F be a function defined on X, x € X. We say that F admits ¢ as
modulus of approximate continuity at x if

[F(y)—F(z)| = ¢(ly—=|)

for all y in a set having full area density at x; here ¢ is a positive func-
tion on (0, ).

In [3], we proved the following theorem: Let ¢ be an admissible func-
tion. Suppose there exists a (complex Borel) measure x4 on X representing
z for R(X) (i.e. {fdu=f(x) for all fe R(X)) such that u({x})=0 and
{@(]z—2|)~1d|u| < co. Then the unit ball of R(X) admits ep as a modulus
of approximate continuity at x for every ¢> 0.

The converse is well-known to be true when ¢=1. One might conjec-
ture that the converse is true, in general. The main result of this paper is
to disprove this conjecture. In section 2, we present a special class of
compact sets in the plane. In section 3, we give a necessary condition
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for the existence of such representing measures in terms of analytic
capacity which was first observed by O’Farrell [2]. We also examine the
relations among modulus of approximate continuity, representing meas-
ure, and analytic capacity.

2. Construction.

DErinITION. Let 13; be the closed unit disk, and let D, be the open
disk with center a, and radius p,. We say that X is a set of type (L) if

(a) X=D,\U?D,, 0e X and

(b) a,=%2"", 0,20, D, <4, where 4,=A4,(0).

REMARK. Suppose X is a compact set of type (L) with 3 (p,/a,) < .
Let Xy=D,\UYD,; then 0 lies in the interior of X for each N, and

1 d
10 = 5§ LE =y tor pe Xy,

271 X N 2

by Cauchy’s integral formula. Since N Xy =X, each f € Ry(X) belongs to
Ry(Xy) for N sufficiently large. Now

o — tapell < (27)72 va‘{ﬂ SBD,. |2|]"'dz for M >N,
and
(27)7 §op, 2171d2 < n(@n—0a)" S f0naa7t.

Hence {uy} converges in norm to a measure u, which represents 0 for
R(X) and has no point mass at 0.
Moreover, if ¢ is an admissible function and Y,a, 1¢(a,) < o, then

Sz tdlul < (2)7 35 (op,, l2I 7 (l2]) 7 |dz]
S (1) + 27 nl@n = 00) T 9(@n —0n)
S (1) 43 37 0yl 9(@,)! < o,
since (@, —p,) 2 §a, > 1a,.

Lemma 2.1. Suppose X 18 a compact set of type (L) with 3p,/a, = .
Then there is no measure u representing 0 for R(X) with p({0})=0.

Proor. Let f,=(3T0n/a,)2 37 0,/(@, —2), then f,, € R(X) for each m.
Suppose y € AynX. Then
lfm(y)' = (Z Qn/an)’_](zfl-z inlan - yl +3 +z%+2 Qn/lan"’y[)
§ (z,ln Qn/a’n)_l(3 Zn<N-—1 Qn/a’n + 3 + 2N+2 2n>N+l Qﬂ)
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if m=N-1, and
Ifm@)] S QX 0n/an) ™3 Tnsm 0nlas)
if m < N —1. Since g, < }a, <2-", we have 3, y.,10, <2 @D, 50
@) = 34537 enfay)™ < C
for all m, and for m=N -1,

3 zn<N——1 Qn/an + 5
Znsm lean

a8 m — oo, Thus f, converges boundedly to 0 on X\ {0}. But f,(0)=1
for all m, the lemma, is proved.

Ifm@)l = -0

Lemma 2.2. Let ¢ be an admissible function with ¢(0+)=0. Suppose X
18 a compact set of type (L) with 3o,a,  p(a,)t=oc. Then there is no
‘measure p representing 0 for R(X) such that §p(|2|)~2d|u| < co.

Proor. We can assume Yp,/a,=C <oo; otherwise we are done by
Lemma 2.1. Let

= 271" Qﬂ(p(a‘n)_l (a’n_z)_l ’
then f,, € R(X) for each m. Suppose y € AynX. Then

fm@) £ 3V 2 0u0(@,) a, —y|~1+ 3N pla,)?
+ 2%z 0n@la,) ta, —y|
S 32‘n<N—1 Qn n <P(an)‘1+zN+1 ‘P(an) +zn>N+1 an’( n) 12N+2

Now

Dn<N-10n0n 10(0n) ™" S (Dnan—1 0nfan)Plan-2)t < Clollyl) .
Also,

'Zn>N+1 en(P(an)_l 2N+2 = zn>N+l (Qn/a'n)w(a’n) 2N+2
S (Znsn+10nfan)p(an2)2V*2 < 4C[g(ly]) -

Finally, we have ¥ *1p(a,)~15 7/p(ly|) since

o(lyl) = plan-1), oly) = 2p(ay) and  @(ly]) = 4play.,) -
Thus, |f,(y)] £7(C+1)/¢(ly|) for each m, all y € X\ {0}. But
fm(0) = Z;n Qna’n-lq’(an)_l > as m-—> oo,

the lemma is proved.
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Maix THEOREM. Let ¢ be an admissible function with @(0+)=0. Then
there is a compact set X and x € X, such that the unit ball of R(X) admits
ep as modulus of approximate continuity at x for every ¢>0, while there
18 mo measure p representing x for R(X) with {@(|z—2|)~1d|u| < co.

Proor. We can choose an increasing sequence {N,} such that
() plan,,,) < ip(an,)
(i) Plany,) > 35, play)
We set gy, =k ay p(ay,) and g,=0 if n ¢ {N,}. We form X=D,\UD,

as above; then X is a compact set of type (L). Immediately we obtain

> enlt, = X klpay,) £ 3 play,) < 2¢(a,) ,

Zn Qnan_l¢(an)_l = zk k1= o ’

hence there is no measure u representing 0 for R(X) with { ¢(|z|)1d|u| < oo
by Lemma 2.2. .

,On the other hand, we observe that tor every fe R(X), ye AynX,
(X =interior of X), N21,

and

1
2m

- fdz 1 ¢ Jfdz
sp( M Lsn( £
2Dy ?—Y 7T 9Dy %
< (20) 2yl I 35 Senlel 2 12— y1=2 dz]
S Y1 IFI2 + 25 0n(@n — 0n)'da(y) ]
where d,(y) denotes the distance between y and D, . We may assume
@n/a, < % for each n. Then for n< N,

If(y)—f0)] =

dn(y) 2 (%—Qn)—2“N P 1%2—7!__2—N 2 1162_” = :'llﬁan ’
and for n> N,

du(y) 2 27V~ (g, +g,) 2 2V _fi2n 2 J2-OD = fa .

Let
E=VU,{yed,: d,)zd,},

where d,,=[p, 2, ¢(a,)a, . Then for yeA_NninE',
n Qn n (p n n

If @) —=f0)] = 2[y]-IFI[1+ 27° 0nn ™" du(y) ]

S 20y If I +12 Jpcw 0n@n 2 +onay 2yt
+24 zn>N9n“n-1aN_1]

960(ly)IIf llw(an) + Zn<n 0ndn~2p(an) +onplay)tdy?
+ zn>N Qnan—lq)(a’lv)_l] .

IA
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We note that E has full area density at 0 for (d, +0,)/a, - 0 a8 n - c.
To prove our Main Theorem, it suffices to show that:

(@) Zpn0ndn*=0(y(an)™)
(b) enxplay)dy~t=0(1)
(©) Zn>nn/2n=0(p(ay)).
Clearly (b) is satisfied. If N,,<N<N,,,,,

Dn<N 0n8y 72 = D0, k-1y(ay,)?
= JRZ1 kM p(an,) T+ 37 k- play,)
= Rl (ay,)t+p7t 22:':;} y(ay,) +my(ay,)?
< '/’(azv,,)-1 +pylay,)t+myp(ay, )t
= (W(“Nm)w(aNp)_l +p+m)y(ay,)?
= o(y(ay)™)
by choosing sufficiently large p first, so (a) checks. Also

Zn>N 0nlOn S Dhemir knl‘P(aw,,)

S (m+1)7 30, elay,)

< (m+1)7' 3% pan,,,,)27* = 2(m+1)gp(ay,,,,) = o(play)),
o (c) holds.

3. Analytic capacity.
If U <Cis a bounded open set, we define the analytic capacity of U by

Y(U) = sup{|f'(c0) : fe REN\U)|fllz,uv=1, fleo) =0},

where f'(c0)=lim,_, zf(2).
We remark that, if U is an open disk with radius g, then y(U)=p.

THEOREM 3.1. Let ¢ be an admissible function and p a non-negative
integer. Suppose
z 2(1’“)”(,1)(2—”)—1)/(14”(9:) \X) =

Then there is no measure u representing x for R(X) such that

pfe)) = 0 and  §lz—2lPp(lz—a))tdlu| < oo.
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Proor. We may assume 2®+Dng(2-7)-1y(4 (z)\X)=<1 for each n,
because if x is a measure representing z for R(X), then u is a measure
representing x for R(Y) for all compact ¥ > X,

We choose N, = M, <N, M,<... so that

1= z%; 2"’“’"¢(2‘”)‘1y(A,,(x)\X) <2,

For each n, we choose f, € R(XU(Z\ An(x))) such that ||f,]| £ 1, f,(c0) =0
and f,'(c0) > 3p(4,(x) \ X). We set

95(z) = @llz—2|)(z—2)p+1 3T 2@ +Img(2-n)-1f, (z) ,

then a familiar type of argument for Melnikov’s theorem (cf. [1, p. 206])
shows that {g;} is uniformly bounded on each compact subset of C. Let

by = gp(lz—x|)Hz—=z)g; and F; = (z—z)"®+Vh,.

We see that &; and F; are holomorphic in C\ 4(z, 2‘N’) and X'\ A(z, 2~%9),
respectively,
Fy(o0) = ZN] 20+ p(2-m)=1f,"(c0)

which lies in [4,2] and {#,}, {F;} are uniformly bounded on each compact
subset of C and C\ {z}, respectively. Moreover, {¥,} is uniformly bounded
on each compact subset of X\ {x} by the maximum modulus principle.
By passing to a subsequence, we have lim; , F;co)=f for some
B € [4,2], and k; - h, F; > F uniformly on each compact subset of C\ {z}
and X\ {z}, respectively; whence F =(z—z)~®+Vh on C\ {z}. Since A is
bounded near z, lim,_, ./(z)=0 and

F(Z) = F(m) = limj—boon(oo) = .B ’

2>

(z—2z)~P+Dh = lim,

lim Z2—>00

2->00

we get that % is entire and
h(z) = B(z—=)P*1+ 37 Bilz— =)
where f; is a constant for each I. Thus,
g5 = o(lz—z|)(z—2)" by
- p(lz—x|)z—2)th = Bo(lz—=|)(z—2)" + 3} figp(lz—=|)(z— )
boundedly on each bounded subset of C\ {z}, so
§ g;do - § Bo(|z—=|)(z—2)Pdo+ 3F B, § p(lz—2|)(z—2)-'do

for every compactly supported measure o, with o({z}) =0, by the bounded
convergence theorem.
Suppose u is a measure representing z for R(X) such that u({z})=0 and

§ |2 — 2|2 g(|z—|)dlu] < oo.
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Then there is a measure u,,, which is a linear combination of the measures
(z—a)Iu, 0<j < p, so that {fdu,=(p!)~"YP(x) for all fe Ry(X) (see [3]).
Therefore we get a contradiction by taking o=g(|z—z|)"1u,.

REMARK. If p=1, then this theorem is only part of Melnikov’s theo-
rem: ¥ 2"y(4,(x) \ X)=oo if and only if there is no measure u represent-
ing x for R(X) such that u({x})=0 (see [1]).

REMARK. For a compact set X of type (L), (4,(0)\X)=p,. Also
a,=4%2"", and ¢(a,) < (2" = 2¢(a,). Hence

2, 200271 y(A4,(0)\ X) = oo
if and only if
Z On Oy~ P p(ay)™! = o,

and thus there is a measure u representing 0 for R(X) such that u({0})=0
and {¢(|z|)~1d|u| < o if and only if

> 279(2-")1p(4,(0)\ X) < co.

Let @ be an admissible function with ¢(0+)=0. The construction in
section 2 also demonstrates that there is a compact set X and z e X,
such that the unit ball of R(X) admits ep as modulus of approximate
continuity at x for every &> 0, while

Y 272~ Ly(Au @)\ X) = oo

However, it is still unknown whether the following conjectures are true:

CoNJECTURE 1. Suppose 3 2"p(2-")1y(A4,(2)\ X) <co. Then the unit
ball of R(X) admits ep as modulus of approximate continuity at x for every
e>0.

CONJECTURE 2. Suppose 3 2%p(2-")1y(A4,(x)\ X) < co. Then there is a
measure u representing x for R(X) with {¢(lz—2|)~1d|u| < co.
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