MODULUS OF APPROXIMATE CONTINUITY FOR R(X)

JAMES LI-MING WANG

1. Introduction.

Let X be a compact subset of the plane C. We denote by $R_0(X)$ the algebra consisting of the (restrictions to X of) rational functions having no pole on X, and by R(X) the uniform closure of $R_0(X)$. We say that φ is an admissible function if (a) φ is a positive, non-decreasing function defined on $(0,\infty)$ and (b) the associated function ψ , defined by $\psi(r) = r/\varphi(r)$, is also non-decreasing, with $\psi(0^+) = 0$.

Throughout this paper, Σ will denote the Riemann sphere, $\|\cdot\|$ will denote the supremum norm over the appropriate set,

$$\Delta(x,r) = \{y: |y-x| \le r\},$$

$$A_n(x) = \{y: 2^{-(n+1)} < |y-x| < 2^{-n}\},$$

and m will denote the 2-dimensional Lebesgue measure.

Fix $x \in C$. We say that a set $E \subseteq C$ has full area density at x if

$$\lim_{r\to 0} m(E\cap \Delta(x,r))/m(\Delta(x,r)) = 1.$$

Let F be a function defined on X, $x \in X$. We say that F admits φ as modulus of approximate continuity at x if

$$|F(y)-F(x)| \leq \varphi(|y-x|)$$

for all y in a set having full area density at x; here φ is a positive function on $(0, \infty)$.

In [3], we proved the following theorem: Let φ be an admissible function. Suppose there exists a (complex Borel) measure μ on X representing x for R(X) (i.e. $\int f d\mu = f(x)$ for all $f \in R(X)$) such that $\mu(\{x\}) = 0$ and $\int \varphi(|z-x|)^{-1} d|\mu| < \infty$. Then the unit ball of R(X) admits $\varepsilon \varphi$ as a modulus of approximate continuity at x for every $\varepsilon > 0$.

The converse is well-known to be true when $\varphi \equiv 1$. One might conjecture that the converse is true, in general. The main result of this paper is to disprove this conjecture. In section 2, we present a special class of compact sets in the plane. In section 3, we give a necessary condition

Received January 28, 1974.

for the existence of such representing measures in terms of analytic capacity which was first observed by O'Farrell [2]. We also examine the relations among modulus of approximate continuity, representing measure, and analytic capacity.

2. Construction.

DEFINITION. Let $\overline{D_0}$ be the closed unit disk, and let D_n be the open disk with center a_n and radius ϱ_n . We say that X is a set of type (L) if

(a)
$$X = \overline{D_0} \setminus \bigcup_{1}^{\infty} D_n$$
, $0 \in X$ and

(b)
$$a_n = \frac{3}{4}2^{-n}$$
, $\varrho_n \ge 0$, $\overline{D_n} \subset A_n$ where $A_n = A_n(0)$.

REMARK. Suppose X is a compact set of type (L) with $\sum (\varrho_n/a_n) < \infty$. Let $X_N = \overline{D_0} \setminus \bigcup_{1}^N D_n$; then 0 lies in the interior of X_N for each N, and

$$f(0) = \frac{1}{2\pi i} \int_{\partial X_N} \frac{f dz}{z} = \int f d\mu_N \quad \text{ for } f \in R_0(X_N) ,$$

by Cauchy's integral formula. Since $\bigcap X_N = X$, each $f \in R_0(X)$ belongs to $R_0(X_N)$ for N sufficiently large. Now

$$\|\mu_N - \mu_M\| \le (2\pi)^{-1} \sum_{N=1}^M \int_{\partial D_n} |z|^{-1} dz$$
 for $M > N$,

and

$$(2\pi)^{-1} \int_{\partial D_n} |z|^{-1} dz \leq \varrho_n (a_n - \varrho_n)^{-1} \leq \frac{3}{2} \varrho_n a_n^{-1}.$$

Hence $\{\mu_N\}$ converges in norm to a measure μ , which represents 0 for R(X) and has no point mass at 0.

Moreover, if φ is an admissible function and $\sum \varrho_n a_n^{-1} \varphi(a_n)^{-1} < \infty$, then

$$\begin{split} \int \varphi(|z|)^{-1} d|\mu| &< (2\pi)^{-1} \sum_0^\infty \int_{\partial D_n} |z|^{-1} \varphi(|z|)^{-1} |dz| \\ & \leq \varphi(1)^{-1} + \sum_1^\infty \varrho_n (a_n - \varrho_n)^{-1} \varphi(a_n - \varrho_n)^{-1} \\ & \leq \varphi(1)^{-1} + 3 \sum_1^\infty \varrho_n a_n^{-1} \varphi(a_n)^{-1} < \infty \;, \end{split}$$

since $(a_n - \varrho_n) \ge \frac{2}{3}a_n > \frac{1}{2}a_n$.

Lemma 2.1. Suppose X is a compact set of type (L) with $\sum \varrho_n | a_n = \infty$. Then there is no measure μ representing 0 for R(X) with $\mu(\{0\}) = 0$.

PROOF. Let $f_m = (\sum_{1}^m \varrho_n/a_n)^{-1} \sum_{1}^m \varrho_n/(a_n-z)$, then $f_m \in R(X)$ for each m. Suppose $y \in \overline{A}_N \cap X$. Then

$$\begin{array}{l} |f_m(y)| \, \leqq \, (\sum \varrho_n/a_n)^{-1} (\sum_1^{N-2} \varrho_n/|a_n-y| + 3 + \sum_{N+2}^{\infty} \varrho_n/|a_n-y|) \\ \\ \leqq \, (\sum_1^m \varrho_n/a_n)^{-1} (3 \, \sum_{n < N-1} \varrho_n/a_n + 3 + 2^{N+2} \, \sum_{n > N+1} \varrho_n) \end{array}$$

if $m \ge N-1$, and

$$|f_m(y)| \le (\sum_{1}^{m} \varrho_n/a_n)^{-1} (3 \sum_{n \le m} \varrho_n/a_n)$$

if m < N-1. Since $\varrho_n \le \frac{1}{3}a_n < 2^{-n}$, we have $\sum_{n>N+1}\varrho_n < 2^{-(N+1)}$, so

$$|f_m(y)| \le 3 + 5(\sum_{1}^{m} \varrho_n/a_n)^{-1} < C$$

for all m, and for $m \ge N - 1$,

$$|f_m(y)| \le \frac{3\sum_{n < N-1} \varrho_n/a_n + 5}{\sum_{n < m} \varrho_m/a_n} \to 0$$

as $m \to \infty$. Thus f_m converges boundedly to 0 on $X \setminus \{0\}$. But $f_m(0) = 1$ for all m, the lemma is proved.

LEMMA 2.2. Let φ be an admissible function with $\varphi(0^+) = 0$. Suppose X is a compact set of type (L) with $\sum \varrho_n a_n^{-1} \varphi(a_n)^{-1} = \infty$. Then there is no measure μ representing 0 for R(X) such that $\int \varphi(|z|)^{-1} d|\mu| < \infty$.

Proof. We can assume $\sum \varrho_n/a_n = C < \infty$; otherwise we are done by Lemma 2.1. Let

$$f_m = \sum_1^m \varrho_n \varphi(a_n)^{-1} (a_n - z)^{-1}$$
,

then $f_m \in R(X)$ for each m. Suppose $y \in \overline{A_N} \cap X$. Then

$$|f_m(y)| \ \leqq \ \sum_1^{N-2} \varrho_n \varphi(a_n)^{-1} |a_n - y|^{-1} + \sum_{N-1}^{N+1} \varphi(a_n)^{-1}$$

$$+\sum_{N+2}^{\infty} \varrho_n \varphi(a_n)^{-1} |a_n - y|^{-1}$$

$$\hspace{0.5cm} \leqq 3 \sum_{n < N-1} \varrho_n a_n^{-1} \varphi(a_n)^{-1} + \sum_{N-1}^{N+1} \varphi(a_n)^{-1} + \sum_{n > N+1} \varrho_n \varphi(a_n)^{-1} 2^{N+2} \, .$$

Now

Now
$$\sum_{n< N-1} \varrho_n a_n^{-1} \varphi(a_n)^{-1} \leq (\sum_{n< N-1} \varrho_n/a_n) \varphi(a_{N-2})^{-1} \leq C/\varphi(|y|).$$
 Also,

$$\begin{split} \sum_{n>N+1} \varrho_n \varphi(a_n)^{-1} \, 2^{N+2} &= \, \sum_{n>N+1} \left(\varrho_n / a_n \right) \! \psi(a_n) \, 2^{N+2} \\ &\leq \, \left(\sum_{n>N+1} \varrho_n / a_n \right) \! \psi(a_{N+2}) 2^{N+2} \, \leq \, 4C / \varphi(|y|) \; . \end{split}$$

Finally, we have $\sum_{N=1}^{N+1} \varphi(a_n)^{-1} \leq 7/\varphi(|y|)$ since

$$\varphi(|y|) \leq \varphi(a_{N-1}), \quad \varphi(|y|) \leq 2\varphi(a_N) \quad \text{and} \quad \varphi(|y|) \leq 4\varphi(a_{N+1}).$$

Thus, $|f_m(y)| \le 7(C+1)/\varphi(|y|)$ for each m, all $y \in X \setminus \{0\}$. But

$$f_m(0) = \sum_{1}^m \varrho_n a_n^{-1} \varphi(a_n)^{-1} \to \infty$$
 as $m \to \infty$,

the lemma is proved.

MAIN THEOREM. Let φ be an admissible function with $\varphi(0^+)=0$. Then there is a compact set X and $x \in X$, such that the unit ball of R(X) admits $\varepsilon \varphi$ as modulus of approximate continuity at x for every $\varepsilon > 0$, while there is no measure μ representing x for R(X) with $\int \varphi(|z-x|)^{-1} d|\mu| < \infty$.

PROOF. We can choose an increasing sequence $\{N_k\}$ such that

(i)
$$\varphi(a_{N_{k+1}}) < \frac{1}{2}\varphi(a_{N_k})$$

(ii)
$$\psi(a_{N_{k+1}})^{-1} > \sum_{j=1}^{k} \psi(a_{N_j})^{-1}$$
.

We set $\varrho_{N_k} = k^{-1}a_{N_k}\varphi(a_{N_k})$ and $\varrho_n = 0$ if $n \notin \{N_k\}$. We form $X = \overline{D_0} \setminus \bigcup D_n$ as above; then X is a compact set of type (L). Immediately we obtain

$$\textstyle \sum \varrho_{\it n}/a_{\it n} \,=\, \sum k^{-1} \varphi(a_{N_{\it k}}) \,\leq\, \sum \varphi(a_{N_{\it k}}) \,<\, 2 \varphi(a_1) \;, \label{eq:lambda}$$

and

$$\textstyle \sum_n \varrho_n a_n^{-1} \varphi(a_n)^{-1} \, = \, \sum_k \, k^{-1} \, = \, \infty \, \, ,$$

hence there is no measure μ representing 0 for R(X) with $\int \varphi(|z|)^{-1} d|\mu| < \infty$ by Lemma 2.2.

On the other hand, we observe that for every $f \in R(X)$, $y \in \overline{A_N} \cap \mathring{X}$, $(\mathring{X} = \text{interior of } X), N \ge 1$,

$$\begin{split} |f(y) - f(0)| &= \left| \frac{1}{2\pi i} \sum_{0}^{\infty} \int_{\partial D_{n}} \frac{f dz}{z - y} - \frac{1}{2\pi i} \sum_{0}^{\infty} \int_{\partial D_{n}} \frac{f dz}{z} \right| \\ &\leq (2\pi)^{-1} |y| \cdot ||f|| \sum_{0}^{\infty} \int_{\partial D_{n}} |z|^{-1} |z - y|^{-1} |dz| \\ &\leq |y| \cdot ||f|| [2 + \sum_{1}^{\infty} \varrho_{n} (a_{n} - \varrho_{n})^{-1} d_{n}(y)^{-1}] \end{split}$$

where $d_n(y)$ denotes the distance between y and D_n . We may assume $\varrho_n/a_n < \frac{1}{4}$ for each n. Then for n < N,

$$d_n(y) \, \geq \, (a_n - \varrho_n) - 2^{-N} \, \geq \, \tfrac{9}{16} 2^{-n} - 2^{-N} \, \geq \, \tfrac{1}{16} 2^{-n} \, = \, \tfrac{1}{12} a_n \, \, ,$$

and for n > N,

Let

$$\begin{aligned} d_n(y) \, &\geq \, 2^{-(N+1)} - (a_n + \varrho_n) \, \geq \, 2^{-(N+1)} - \tfrac{15}{16} 2^{-n} \, \geq \, \tfrac{1}{16} 2^{-(N+1)} \, = \, \tfrac{1}{24} a_N \, . \\ E \, &= \, \bigcup_n \, \{ y \in A_n \, : \, d_n(y) \geq d_n \} \, , \end{aligned}$$

where $d_n = [\varrho_n a_n^{-1} \varphi(a_n)^{-1}]^{\frac{1}{2}} a_n$. Then for $y \in \overline{A_N} \cap \mathring{X} \cap E$,

$$\begin{split} |f(y)-f(0)| & \leq 2|y|\cdot \|f\|[1+\sum_{1}^{\infty}\varrho_{n}a_{n}^{-1}d_{n}(y)^{-1}] \\ & \leq 2|y|\cdot \|f\|[1+12\sum_{n< N}\varrho_{n}a_{n}^{-2}+\varrho_{N}a_{N}^{-1}d_{N}^{-1} \\ & \qquad \qquad +24\sum_{n>N}\varrho_{n}a_{n}^{-1}a_{N}^{-1}] \\ & \leq 96\varphi(|y|)\|f\|[\psi(a_{N})+\sum_{n< N}\varrho_{n}a_{n}^{-2}\psi(a_{N})+\varrho_{N}\varphi(a_{N})^{-1}d_{N}^{-1} \\ & \qquad \qquad +\sum_{n>N}\varrho_{n}a_{n}^{-1}\varphi(a_{N})^{-1}] \;. \end{split}$$

We note that E has full area density at 0 for $(d_n + \varrho_n)/a_n \to 0$ as $n \to \infty$. To prove our Main Theorem, it suffices to show that:

(a)
$$\sum_{n < N} \varrho_n a_n^{-2} = o(\psi(a_N)^{-1})$$

(b)
$$\varrho_N \varphi(a_N)^{-1} d_N^{-1} = o(1)$$

(c)
$$\sum_{n>N} \varrho_n / a_n = o(\varphi(a_N)).$$

Clearly (b) is satisfied. If $N_m \leq N < N_{m+1}$,

$$\begin{split} \sum_{n < N} \varrho_n a_n^{-2} & \leq \sum_{k=1}^m k^{-1} \psi(a_{N_k})^{-1} \\ & = \sum_{k=1}^{p-1} k^{-1} \psi(a_{N_k})^{-1} + \sum_{p}^m k^{-1} \psi(a_{N_k})^{-1} \\ & \leq \sum_{k=1}^{p-1} \psi(a_{N_k})^{-1} + p^{-1} \sum_{k=p}^{m-1} \psi(a_{N_k})^{-1} + m^{-1} \psi(a_{N_m})^{-1} \\ & < \psi(a_{N_p})^{-1} + p^{-1} \psi(a_{N_m})^{-1} + m^{-1} \psi(a_{N_m})^{-1} \\ & \leq \left(\psi(a_{N_m}) \psi(a_{N_p})^{-1} + p^{-1} + m^{-1}\right) \psi(a_{N_m})^{-1} \\ & = o(\psi(a_N)^{-1}) \end{split}$$

by choosing sufficiently large p first, so (a) checks. Also

$$\begin{split} \sum_{n>N} \varrho_n / a_n & \leq \sum_{k=m+1}^\infty k^{-1} \varphi(a_{N_k}) \\ & \leq (m+1)^{-1} \sum_{m+1}^\infty \varphi(a_{N_k}) \\ & < (m+1)^{-1} \sum_{k=0}^\infty \varphi(a_{N_{m+1}}) 2^{-k} = 2(m+1)^{-1} \varphi(a_{N_{m+1}}) = o\big(\varphi(a_N)\big) \text{,} \end{split}$$
 so (c) holds.

3. Analytic capacity.

If $U \subset C$ is a bounded open set, we define the analytic capacity of U by

$$\gamma(U) = \sup\{|f'(\infty)| : f \in R(\Sigma \setminus U), ||f||_{\Sigma \setminus U} \le 1, f(\infty) = 0\},$$

where $f'(\infty) = \lim_{z \to \infty} z f(z)$.

We remark that, if U is an open disk with radius ρ , then $\gamma(U) = \rho$.

Theorem 3.1. Let φ be an admissible function and p a non-negative integer. Suppose

$$\sum 2^{(p+1)n} \varphi(2^{-n})^{-1} \gamma \big(A_n(x) \smallsetminus X\big) \, = \, \infty \, \, .$$

Then there is no measure μ representing x for R(X) such that

$$\mu(\{x\}) = 0$$
 and $\int |z-x|^{-p} \varphi(|z-x|)^{-1} d|\mu| < \infty$.

PROOF. We may assume $2^{(p+1)n}\varphi(2^{-n})^{-1}\gamma(A_n(x)\setminus X)\leq 1$ for each n, because if μ is a measure representing x for R(X), then μ is a measure representing x for R(Y) for all compact $Y\supset X$.

We choose $N_1 \leq M_1 < N_2 \leq M_2 < \dots$ so that

$$1 \le \sum_{N_i}^{M_i} 2^{(p+1)n} \varphi(2^{-n})^{-1} \gamma (A_n(x) \setminus X) \le 2.$$

For each n, we choose $f_n \in R(X \cup (\Sigma \setminus A_n(x)))$ such that $||f_n|| \le 1$, $f_n(\infty) = 0$ and $f_n'(\infty) > \frac{1}{2}\gamma(A_n(x) \setminus X)$. We set

$$g_{\it j}(z) \, = \, \varphi(|z-x|)(z-x)^{p+1} \, \sum_{N,j}^{M_{\it j}} \, 2^{(p+1)n} \, \varphi(2^{-n})^{-1} f_{\it n}(z)$$
 ,

then a familiar type of argument for Melnikov's theorem (cf. [1, p. 206]) shows that $\{g_i\}$ is uniformly bounded on each compact subset of C. Let

$$h_i = \varphi(|z-x|)^{-1}(z-x)g_i$$
 and $F_i = (z-x)^{-(p+1)}h_i$.

We see that h_j and F_j are holomorphic in $C \setminus \Delta(x, 2^{-N_j})$ and $\Sigma \setminus \Delta(x, 2^{-N_j})$, respectively,

$$F_{j}(\infty) = \sum_{N_{j}}^{M_{j}} 2^{(p+1)n} \varphi(2^{-n})^{-1} f_{n}'(\infty)$$

which lies in $[\frac{1}{2},2]$ and $\{h_j\}$, $\{\overline{F}_j\}$ are uniformly bounded on each compact subset of C and C \ $\{x\}$, respectively. Moreover, $\{F_j\}$ is uniformly bounded on each compact subset of $\Sigma \setminus \{x\}$ by the maximum modulus principle. By passing to a subsequence, we have $\lim_{j\to\infty} F_j(\infty) = \beta$ for some $\beta \in [\frac{1}{2},2]$, and $h_j \to h$, $F_j \to F$ uniformly on each compact subset of C \ $\{x\}$ and $\Sigma \setminus \{x\}$, respectively; whence $F = (z-x)^{-(p+1)}h$ on C \ $\{x\}$. Since h is bounded near x, $\lim_{z\to x} h(z) = 0$ and

$$\lim_{z\to\infty}(z-x)^{-(p+1)}h=\lim_{z\to\infty}F(z)=F(\infty)=\lim_{i\to\infty}F_i(\infty)=\beta,$$

we get that h is entire and

$$h(z) = \beta(z-x)^{p+1} + \sum_{i=1}^{p} \beta_i(z-x)^i$$

where β_l is a constant for each l. Thus,

$$g_j = \varphi(|z-x|)(z-x)^{-1}h_j$$

$$\to \varphi(|z-x|)(z-x)^{-1}h \; = \; \beta \varphi(|z-x|)(z-x)^p + \sum_1^p \; \beta_l \varphi(|z-x|)(z-x)^{l-1}$$

boundedly on each bounded subset of $C \setminus \{x\}$, so

$$\int g_{l}d\sigma \rightarrow \int \beta \varphi(|z-x|)(z-x)^{p}d\sigma + \sum_{l}^{p}\beta_{l}\int \varphi(|z-x|)(z-x)^{l-1}d\sigma$$

for every compactly supported measure σ , with $\sigma(\{x\}) = 0$, by the bounded convergence theorem.

Suppose μ is a measure representing x for R(X) such that $\mu(\{x\}) = 0$ and

$$\int |z-x|^{-p} \varphi(|z-x|)^{-1} d|\mu| < \infty.$$

Then there is a measure μ_p , which is a linear combination of the measures $(z-x)^{-j}\mu$, $0 \le j \le p$, so that $\int f d\mu_p = (p!)^{-1}f^{(p)}(x)$ for all $f \in R_0(X)$ (see [3]). Therefore we get a contradiction by taking $\sigma = \varphi(|z-x|)^{-1}\mu_n$.

REMARK. If $\varphi \equiv 1$, then this theorem is only part of Melnikov's theorem: $\sum 2^n \gamma (A_n(x) \setminus X) = \infty$ if and only if there is no measure μ representing x for R(X) such that $\mu(\{x\}) = 0$ (see [1]).

REMARK. For a compact set X of type (L), $\gamma(A_n(0) \setminus X) = \varrho_n$. Also $a_n = \frac{3}{4}2^{-n}$, and $\varphi(a_n) \leq \varphi(2^{-n}) \leq 2\varphi(a_n)$. Hence

$$\sum \, 2^{(p+1)n} \varphi(2^{-n})^{-1} \gamma \big(A_n(0) \smallsetminus X\big) \, = \, \infty$$

if and only if

$$\sum \varrho_n a_n^{-(p+1)} \varphi(a_n)^{-1} = \infty ,$$

and thus there is a measure μ representing 0 for R(X) such that $\mu(\{0\}) = 0$ and $\int \varphi(|z|)^{-1} d|\mu| < \infty$ if and only if

$$\sum 2^n \varphi(2^{-n})^{-1} \gamma (A_n(0) \setminus X) < \infty.$$

Let φ be an admissible function with $\varphi(0^+)=0$. The construction in section 2 also demonstrates that there is a compact set X and $x \in X$, such that the unit ball of R(X) admits $\varepsilon \varphi$ as modulus of approximate continuity at x for every $\varepsilon > 0$, while

$$\sum 2^n \varphi(2^{-n})^{-1} \gamma(A_n(x) \setminus X) = \infty.$$

However, it is still unknown whether the following conjectures are true:

Conjecture 1. Suppose $\sum 2^n \varphi(2^{-n})^{-1} \gamma(A_n(x) \setminus X) < \infty$. Then the unit ball of R(X) admits $\varepsilon \varphi$ as modulus of approximate continuity at x for every $\varepsilon > 0$.

Conjecture 2. Suppose $\sum 2^n \varphi(2^{-n})^{-1} \gamma(A_n(x) \setminus X) < \infty$. Then there is a measure μ representing x for R(X) with $\int \varphi(|z-x|)^{-1} d|\mu| < \infty$.

ACKNOWLEDGEMENT. The author would like to thank A. Browder for his comments.

REFERENCES

- 1. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliff, 1969.
- 2. A. O'Farrell, Analytic capacity, Hölder conditions, and τ-spikes, Preprint.
- 3. J. Wang, An approximate Taylor's theorem for R(X), Math. Scand. 33 (1973), 343-358.

BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND, U.S.A.