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COMPACTNESS AND TIGHTNESS
IN A SPACE OF MEASURES WITH THE TOPOLOGY
OF WEAK CONVERGENCE

FLEMMING TOPSQOE

1. Introduction.

Let X be a Hausdorff space and denote by ., (X) the set of non-
negative totally finite measures u defined on the Borel o-field %(X) and
satisfying the condition

ud = sup{uK: Kc A}

for every Borel-set 4, where the supremum is taken over all compact
subsets K of A. Provide .# (X) with the topology of weak convergence,
that is, the weakest topology for which all maps

p—\fdu

with f a bounded real-valued upper semi-continuous function, is upper
semi-continuous. In this topology a net (u,) on #,(X) is convergent
with limit u € A4 (X) if and only if

(1) limp, X = uX
and
(2) liminfu, G = pG

for all open subsets G of X (cf. Theorem 8.1 of [20]).

Call a subset < A (X) tight if the measures in £ live uniformly on
compact sets except for all small error, i.e. if, for every positive ¢, there
exists a compact K £ X such that

p((K) < e
for all u e 2.

It is the purpose of this paper to give a survey of results on the connec-
tions between tight and compact subset of .#,(X). The reader will also
find some new results. Of particular interest are the Prohorov spaces.
A regular Hausdorff space X is called a Prohorov space if the relatively
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compact subsets of .#,(X) are precisely the same as the tight subsets
with
sup{uX : pe P} < .

Since, in any case, a tight subset with sup {uX: u € 2} < oo is relatively
compact (see below), X is a Prohorov space if and only if every compact
subset of #_(X) is tight.

One may say that the first result on Prohorov spaces is the fact that
the reals R, in its usual topology, is a Prohorov space (this is more or
less equivalent to the classical selection theorem of Helly). It is also
obvious from the known properties of # (X) in its socalled vague topo-
logy, that every locally compact space is a Prohorov space (cf. also
Theorem V.4 of A. D. Aleksandroff [1]). The first result leaving the locally
compact case states that every Polish space, i.e. every separable space
metrizable with a complete metric, is a Prohorov space; this result is due
to Prohorov, cf. Theorem 1.12 of [16]. The latest research in the area,
due to David Preiss [15], indicates, that among the separable metrizable
spaces it is very hard to find any Prohorov spaces other than the Polish
ones.

Certain aspects of the theory have been left aside. Thus we have not
discussed signed measures, a topic which is perhaps most effectively
dealt with from the standpoint of functional analysis — we refer the
reader to the two recent accounts [9] and [12].

2. Preliminaries.

We shall study compactness with the help of nets (rather than filters);
for the basic notions on nets see Kelley [13].

A net (z,)=(z,),.p on a topological space X is said to be compact
(more accurately compact in X) provided every subnet of (x,) contains
a further subnet which converges in X (or, equivalently, if every uni-
versal subnet of (z,) converges). The following easily established result
is useful.

Lemma 2.1. The net (z,) 18 a compact net in X if and only if, to every
covering X =U {G,: i € I} of X by open sets, there exists a finite subset I*
of the index set I such that

z, el {G: tel*}), eventually .

A subset A of X is called net-compact (more accurately net-compact
tn X) provided every net on A is compact or, equivalently, if every
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universal net on A4 is convergent, or, as a third characterization, if the
diffuse net on A defined by considering the indentity map id: 4 — A4
and the diffuse ordering on the domain of id (¢ <b for all a,b € 4) is com-
pact. From the last characterization we obtain from Lemma 2.1:

Lemma 2.2. A subset A< X i8 net-compact if and only if the following
holds:

VX = {G;: iel} II* finite: A c | {G;: i eI*}.
As a corollary to this we get

Lemma 2.3. In case X 18 regular, a subset is net-compact if and only if
it 18 relatively compact.

3. Necessary and sufficient conditions for compactness.

From the discussion in section 2, it is obvious that if we can decide
which universal nets (u,) on #_,(X) are convergent, we will be able to
characterize the net-compact subsets of .# (X). Assume, as we may,
that the universal net (u,) satisfies the condition

limsupp, X < .

If (u,) is convergent, it is natural to conjecture that the limit measure
can be constructed from the set-function 4 - limu 4. A careful inspec-
tion of the simplest cases in which (u,) is known to converge will soon
lead to the conjecture that the desired limit measure is given by the
formula

3) pd = supgc 4infgoplimu,d; A eB(X);

here, the letter K indicates a compact subset and the letter @ indicates
an open subset of X (in fact, to gain this insight, it is enough to consider
the example in which (u,) is a universal subnet of the sequence (u,),
where u,, is an one-point probability measure on R concentrated at the
point 1/n).

Now it follows from Theorem 2 of [19] that the formula (3) always
defines a measure u € # (X) irrespectively of which universal net (u,)
is being investigated so long as it obeys the condition limsupu, X < co.
(In fact, this is not surprising since a well-known feature of measure
theory is that if we apply two limit operations to an additive set-function,
we end up with a (countably additive) measure.) Since the constructed
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measure y satisfies condition (2) for all open @, it follows that (u,) con-
verges weakly to u if u satisfies (1) i.e. if

(4) supginfooglimp,G = limu X .
We now obtain the result that if < .# ,(X) is tight and if
sup{uX: peP} < w,

then £ is net-compact (in fact relatively compact since the closure of a
tight set is tight); to see this, consider a universal net on # and verify (4).

Let us express the tightness condition in an equivalent but more com-
plicated way! When we below write ((k), it indicates that (Gg) is a
family of open sets indexed by the compact subsets K of X such that
each Gx contains K. It is easy to see that & is tight if and only if to every
such family (@), and to every ¢, there exists a set G5 in the family,
such that u([@x)<e holds for all 4 € #. In short, we may express this
condition as follows:

(5) V(Gg)Ve>03G Vue?: ul(lGx) < ¢.

A slightly more careful analysis than that we had in mind above will
reveal the fact, that in case & satisfies the usual condition

sup{uX: pe P} <
and, furthermore, the following relaxed form of (5):
(8) V(Gg)Ve>03Gg,,G,,...,.0, VuePI1Zisn: u(Gx) < ¢,

then &£ is net-compact.
The conditions we have now arrived at are necessary and sufficient,
in other words we have (cf. Theorem 4 of [19])

THEOREM 3.1. < A (X) 18 net-compact if and only if P is bounded,
that s

sup{uX: peP} < =,
and condition (6) holds.

The proof of necessity is quite easy, just employ Lemma 2.2 together
with the fact that for each family (G) the sets

{ne M (X): u(Gx)<e}

constitute an open covering of 4, (X) (this proof is more neat than the
one given in [19]).
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If X is regular, 4 (X) is regular too (Theorem 11.2, (iv) of [20]) so
that by Lemma 2.3, we may replace the word ‘“‘net-compact” in the
above result by ‘‘relatively compact”.

Theorem 3.1 also generalizes to a characterization of compact nets.
on A (X), cf. Theorem 4 of [19].

4, First examples of non-Prohorov spaces.

The first such example was constructed around 1961 by Varadarajan
[22, p. 225] and the second is from 1967 and due to Fernique (Example
1.6.4 of [8]).

VARADARAJANS EXAMPLE. We consider the set of natural numbers.
with an added point oo:

X = NuU{wo} = {1,2,...,00}.
Denote by p,, a uniform distribution on {1,2,...,n} that is
bn = nYHegt et ... +e,),

&, denoting a unit mass at the point %, and let x4 be a unit mass at the
point co. Consider on X the finest topology for which the sequence (u,)
converges weakly to u. It is seen, that this makes sense, that each point
in N is isolated and that a set ¢ containing the point oo is open if and only
if it is of ‘““density’ 1, that is, the number of points in @ less than or
equal to n divided by » tends to 1 as n - co. The reader can easily see
that X is a normal Hausdorff space for which only the finite subsets are
compact. This last fact, at once tells us that X is not a Prohorov space
since the compact set {u;,us,. . .,u} is not tight. (The reader will have no
difficulty in veryfying that condition (6) is satisfied for this set.)

A topological space of this type is useful for many other purposes;
the idea to consider such spaces seems to be due to Appert cf. Sierpinski
[18, p. 60].

FERN1QUE’S EXAMPLE. Let X be a separable Hilbert space and pro-
vide X with its weak topology. Denote by (¢;);~; an orthonormal basis
for X (in its norm-topology). Consider the sequence (u,),~, of measures.
on X where

fn = 072 27211 Eney, »

&, denoting a unit mass at the point x. Clearly, the set {u,: n =1} is not
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tight. We shall prove that it is relatively compact, in fact we shall prove
that u, — &,. It is sufficient to prove that for all z, € X

u,G -1 where G = {&: [(z,7)|<1}.
But this follows immediately from the inequalities

1a([G) = S1o Kz, 20) P (%) = § K2, o) |2dpty ()
= 173 31" neg, 2)[* = 02 l2ll® -

'This simplification in the presentation of Fernique’s example is due to
R. Dudley.

IIA

5. Invariance properties of Prohorov spaces.

All topological spaces occuring in this and in the remaining sections
are assumed to be regular Hausdorff spaces. Which operations will allow
us to construct new Prohorov spaces from old ones? The natural ‘“build-
ing stones’ are the obvious Prohorov spaces viz. the compact ones. The
only really obvious operation preserving the Prohorov-property is that
of taking closed subsets, thus, a closed subset of a Prohorov space is a
Prohorov space. This is, however, too trivial to be of much help.

In the search for operations preserving the Prohorov-property, the
following three lemmas seem particularly useful.

LemMma 5.1. If P is a relatively compact subset of M (X) and F a closed
subset of X then P|F, the family of measures obtained by restricting the
measures in P to the subset F, is a relatively compact subset of M (F). In
particular, if F is known to be a Prohorov-space, we can for each ¢> 0 find
a compact subset K of F such that

WENK) <e, Vue?.

It is interesting that there seems to exist no elementary and direct
proof of this result, whereas, as soon as Theorem 3.1 is available, the
proof reduces to a simple argument which we shall leave to the reader.

Before the next lemma, we introduce the following definition: <
M (X) is said to be t-smooth if

ianef Supl‘egllF =0

for every family & of closed subsets of X filtering downwards to the
empty set. It is straight forward to deduce from Theorem 3.1. (a simple
direct proof can also be deviced) the following:
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Lemma 5.2. If #< A (X) 18 relatively compact, then P is t-smooth.

Lemma 5.3. If P< M (X) is compact, and F is a closed subset of X, and
if the constant a is so that

uF <a, Vue?
then, to every e > 0, there exists an open set G containing F such that

u@ < a+e, VYue?.

Proor. To every u e & we can find a compact set K, disjoint with F
such that

p(F\K,) < ¢.

Now choose a closed set F, disjoint with K, and such that 1?'”, the
interior of F,, contains F. Then

uwlF) < a+e.

The result now follow by consideration of the open covering of £ con-
stituted by the sets

{ne# (X): 9(F,)<a+¢e}
where u e 2.

THEOREM 5.4. If X can be covered with finitely many closed Prohorov
subspaces, then X itself 18 a Prohorov space.

This follows immediately from Lemma 5.1.

It may be remarked that the examples of Varadarajan and Fernique
show that the result can not be generalized to a countable covering with
closed Prohorov subspaces (even compact subspaces will not work).

Also note, that it is essential that the subspaces in Theorem 5.4 be
closed. Indeed, Varadarajans space is the union of the two Prohorov
spaces N and {c}. Perhaps it is true that if X can be covered with
finitely many Prohorov spaces 4,,...,4, and if the topology of X is
the finest topology rendering the canonical imbeddings 4; - X continu-
ous; t=1,...,n, then X is a Prohorov spaces. If true, this would be more
general than Theorem 5.4. (Here is a result going in the direction indi-
cated: If X is of countable type (see the definition further on) and if X
can be written in the form X =KuA4 with K compact and 4 a Prohorov
space, then X is a Prohorov space. We do not know if the condition on X
can be relaxed only assuming that this set is a closed Prohorov space.)

Math. Scand. 34 — 18
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THEOREM 5.5. The Prohorov property is a local property i.e. if, for every
z € X there exists a subset A, of X containing x in its interior and such that
A, (in its relative topology) is a Prohorov space, then X is a Prohorov space.

This nice property of Prohorov spaces, due to Hoffmann-Jorgensen,
is not difficult to prove utilizing Lemmas 5.1 and 5.2 (cf. Theorem 6 of
[12]). As corollaries we obtain:

CorOLLARY 5.6. If X can be covered with open Prohorov subspaces,
then X itself is a Prohorov space.

CorOLLARY 5.7. Every open subset of a Prohorov space is a Prohorov
space.

Proor. Let G be an open subset of the Prohorov space X. By regular-
ity we can, for every x € ¢ find a closed neighbourhood contained in G.
Since this closed neighbourhood is a Prohorov space, @ is a local Prohorov
space, hence a Prohorov space.

The result can also be proved in a more elementary and direct way
as an application of Lemma 5.3 (this remark we owe in part to R. O.
Dayvies).

Corollary 5.7 can be generalized from open subsets to G4-subsets by a
simple ‘“‘e2-m-argument’ (cf. Theorem 5 of [12] and also Theorem 6.1
which offers a generalization). Thus we have:

THEOREM 5.8. A Gy-subset of a Prohorov space is a Prohorov space. In
particular, it follows that every topological space X which is complete in the
sense of Cech (i.e. X i8 homeomorphie to a Gy-subset of a compact space)
18 @ Prohorov space.

Prohorovs result that Polish spaces are Prohorov spaces is a special
case of this result. We remark, that Prohorovs original proof (cf. Theorem
1.12 of [16]) is very simple and direct; by Proposition 3 of [12], the same
idea of proof can be carried over to cover the general case of spaces
complete in the sense of Cech.

We shall now look at another corollary of Theorem 5.5. For this we
need the notion of a space of point-countable type; these spaces were in-
troduced by Henriksen and Isbell and by Arhangel’skii and are spaces
for which every point is contained in a compact set having a countable
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neighborhood basis; if we demand that every compact subset be con-
tained in a compact subset having a countable neighbourhood basis, we
obtain the spaces of countable type. Every metrizable and every locally
compact space is of countable type (we refer the reader to Arhangel’skii
[2] for further information). Furthermore, we shall introduce the ter-
minology, that a sequence (4,,) of subsets of X is strongly increasing if
(4,,) is increasing and if every compact subset of X is contained in one
of the 4,’s. We can now state:

CorOLLARY 5.9. If X 18 of point-countable type and if there exists a

strongly increasing sequence (A,) of Prohorov subspaces, then X is a Pro-
horov space.

Proor. This follows from Theorem 5.5 since X is the union of the
interiors of the 4,’s (cf. Proposition 3 of [12].

The next result is related to the corollary just established, but can
not be proved by a similar method. The question we ask is whether it
is possible to relax the condition that X be of point countable type, only
assuming that X is a k-space. We remind the reader that X is a k-space
if every subset of X intersecting every compact set in a closed set is
necessarily closed. The result that every space of point-countable type
is a k-space is due to Arhangel’skii (Theorem 3.7" af [2]).

THEOREM 5.10. If X is a k-space and if there exists a strongly increasing
sequence (F',) of closed Prohorov subspaces, then X is a Prohorov space.

Proor. Let Z< 4 (X) be compact. To prove that £ is tight, we shall
verify condition (5). Therefore, let (Gx) and ¢ > 0 be given. By Lemma 5.1
we can, for each # =1 find a compact subset K, of F, such that

wF,\NK,) <& Vue?.
Then we also have
uWF.\NGg,) <&, VYue?.

By Lemma 5.3 we can find open sets H, such that H,, contains F,\ G,
and such that

uH, < 2, VYue?.

For every n, Gg UH, is an open set containing F,. (At this place it is
perhaps convenient to note the following simple fact: If X is a k-space,
(4,) a strongly increasing sequence, and.if (¢,) is a sequence of open
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sets such that G,24,, n21, then N°G, is open.) It follows that the sets
V'n = nzn (GK, u Hv)

are open. Since ¥V, t X there exists by Lemma 5.2 an n such that
V) <e, Yue?.

For every u € # we now have

:u([:GK,,) = /“([:GK,, n E'Hn) +:“(CGK,. n Hn)
s p(( Vo) +pH,
< 3¢

and it follows, that (5) is satisfied.

In [12] the reader will find a different proof of this result; in fact
Theorem 7 and Corollary 6 of [12] are more general than Theorem 5.10.
It is not known whether the condition that the strongly increasing se-
quence in Theorem 5.10 consist of closed sets can be relaxed (compare
with corollary 5.9).

Theorem 5.10, as opposed to the results derived so far, has the inter-
esting feature that it allows the construction of Prohorov spaces not
satisfying any completeness conditions, using compact spaces as ‘‘build-
ing stones”. Indeed, as pointed out in Example 1 of [12], the dual of a
metrizable, locally convex infinite dimensional linear vectorspace is a
Prohorov space in the topology of uniform convergence on precompact
sets; also, such a space is a k-space which is not of point-countable type.
Furthermore, Example 2 of [12] shows that there exists a Prohorov
space which is not even a k-space. The same kind of examples were also
developed, independently in [9, pp. 126-129].

THEOREM 5.11. Let K be a compact subset of X and (F,) a sequence of
closed Prohorov subspaces of X such that F,nK=@ for n21 and such
that any closed subset of X disjoint with K s contained in at least one F,,
(tn other words, the complements of the F,’s constitute a neighborhoodbase
for K.) Then X 18 a Prohorov space.

Proor. Let Z< A (X) be relatively compact, and let ¢ > 0 be given.
Choose a sequence (&,) of positive numbers with 33°¢, <e. We may as-
sume that the sequence (F',) is increasing. By Lemma 5.1 we can find
compact sets K, < F,, such that

uF,.\NK,) <¢,, Yue?.
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Put
KO =Ku U;o (Kn\Fn—l)
(where F,=@). By regularity of X, it is easy to see that the sets [}i’n;
n =1 constitute a neighbourhood basis for K. By Lemma 7.5 of [20] it
follows that K is compact. For every u we have
:u([:KO) = ”(EKO n U?O Fn) = hmn—wmu(Fn\KO) ’

and since

F‘n\KO = :L'--—l [(Fv\Fv—l)\KO]

S :'l=l [(Fv\Fv—l) AN (Kv\Fv—l)]

—g— :l/=1 (Fv\Kv) b
we see that

IIA

M([:KO) z;:o En <e

for all pe 2.
It is not known what happens if we replace the condition
Feclosed, FNK =0 = dn: F g F,
by the condition that X be a k-space and that
K’ compact, K'nK = @ = 3n: K' ¢ F,

holds. If the conclusion of the theorem — that X is a Prohorov space —
still holds, we would have obtained a generalization of Theorem 5.10
(the latter would correspond to the case K = Q).

6. The Prohorov property for spaces connected by mappings or by cor-
respondences.

In this section we continue the type of investigations carried out in
the last section. The first result is formulated in the language of corre-
spondences (=multivalued mappings). We remind the reader that a
correspondence ¢: X — Y assigns to every point # € X a non-empty sub-
set p(x) of Y. For A < X we define

p(d) = U {p(z): z€ 4}
and for B& Y we define the weak inverse ¢*B by

o¥B = {x: ¢p(x)nB+ B}
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and the strong inverse ¢*B by
9°B = {x: p(x)<B}.

Note that, in case g is surjective (pX = Y), ¢* is a correspondence ¥ - X
and (¢¥)”=¢@. The correspondence ¢: X — ¥ with X and Y topological
spaces is upper semicontinuous compact valued, in short usco, provided

F closedin ¥ = ¢¥F closed in X ,
and
zeX = ¢(x) compactin ¥,

hold. If ¢: X — Y is usco one has
K compact in X = @K compactin Y .

Let ¢: X - Y be usco. We define a new correspondence, which we shall
denote be the same letter, ¢: A (X) > 4 (Y) by

pp) = ne M (Y): uX=nY and u(¢p*G)<nG, VG openin Y};
une M (X).

It can be shown that, ¢: .# (X)—> .#,(Y) is again an usco corre-
spondence when . (X) and # (YY) are provided with the topologies of
weak convergence, in particular, ¢(u) is nonempty for every u € A (X).
For these results and for a more detailed discussion of measure preserving
correspondences we refer the reader to the paper [21].

TrEOREM 6.1. (Compare with Theorem 5 of [12].) Let ¢,: X - Y,,;
n 21 be usco correspondences and assume that for each sequence (L,), with
L, a compact subset of Y, , the set

n:lo- 1 (pnw(Ln)

8 a Prohorov subset of X.
Then, if the Y, are Prohorov spaces, so 18 X.

Proor. Let < 4 (X) be compact. Then ¢, () is a compact subset
of 4, (Y,) for each n2>1 (cf. Lemma 1.10 and Theorem 3.13 of [21]).
To &> 0 there then exist compact subsets L, of Y, such that

N(La) < €2, Vyeg,(P).
Put
F = n?—l ‘in(Ln) .
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Then F is a closed Prohorov subspace of X, hence, by Lemma 5.1 there
exists a compact subset K of F sueh that

wFNK)<e Vpue?.
We claim that

u(F) <e, Yue?

holds. To see this, let u € £ be given and let (7,)) be a sequence of mesures
with #,, € ¢,,(#); n= 1. Then we have

p(0F) = p(Un=1 2a*( L))
< 37 m(ea*((Ly))
2 10 Ln)

<&

IIA

as claimed above. It is now clear that

‘u(EK) < 2, Yue?,
thus £ is tight.

As obvious corollaries we get that a countable product of Prohorov
spaces is a Prohorov space, and that a countable intersection of Proho-
rov subspaces of a space X is again a Prohorov space. We wish to single
out the following:

COROLLARY 6.2. Let z: X — Y be a perfect map (that is, = 18 a continu-
ous, surjective, and closed map for which n—(y) is compact in X for each
y€Y). Then X is a Prohorov space if and only if Y is a Prohorov space.

ProoF. Observe that = is perfect if and only if = as well as #* con-
sidered as correspondences are usco. Then apply Theorem 6.1.

We mention the following open problem:

ProBLEM. Is the continuous open image of a Prohorov space a Proho-
rov space ?

This Problem is related to the problem whether the continuous open
image of a space complete in the sense of Cech is complete in the sense
of Cech (recently, Z. Frolik has informed the author that he has settled
this problem in the negative).



200 FLEMMING TOPSQE

7. Tightness of special compact subsets.

Even though X may not be a Prohorov space, it may still be true
that all compact subsets of .#_ (X) of a special type are tight. Such
results are usually established by imposing countability restrictions on
the space X; we feel, it is a natural demand that the countability re-
strictions are not more severe than that they are satisfied by every
separable metrizable space. The results of this section are interesting in
the light of the fact, to be commented on in section 8, that among the
metrizable spaces there are plenty of non-Prohorov spaces.

The first result of the desired type is due to LeCam (Theorem 4 of [14])
and states that if X is metrizable and if < .# (X) consists of the ele-
ments in a convergent sequence, then & is tight. It is fairly obvious
from the proof of LeCam that one may relax the metrizability condition
only assuming that X is a space of countable type (cf. Theorem 9.3 of
[20]). Thus LeCams theorem can be stated:

TaeorEM 7.1. If X is a space of countable type and if (u,)n»1 s @ con-
vergent sequence on M (X) then P ={u,: n21} is tight.

Note that, in view of the examples of Varadarajan and Fernique,
some restriction on the space X is necessary.

A refinement of LeCams result is due to Choquet (Proposition 31 of
[5]) and, independently, to Hoffmann-Jorgensen (Theorem 9 of [12] and
its corollaries), and consists in replacing the condition on &, assuming
only that & is compact and countable (see also proposition 6 of [9]).

TrEOREM 7.2, If X 48 a completely regular space of countable type, then
every compact and countable subset of M (X) is tight.

We remark that the results in Hoffmann-Jergensen [12] are more
general, firstly the basic space X is allowed to be slightly more general,
and, secondly the condition that & be countable is replaced by the
condition that & be scattered.

The measures in & in the above results are quite arbitrary. Another
line of research is to investigate what happens if one imposes restric-
tions on the measures in the (relatively) compact family £. At first one
observes that in case & consists of one-point measures, it is obvious
that & is tight. Secondly, one may note that in case, for some finite n,
the support of each measures in & contains at most » points, then &£
is tight. (Observe that the sets {x: 3y € # with u({r})=¢} are net-com-
pact. More generally, if x4, - u and (F,) is a net of closed sets with
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u.F.=e, ¥d, then for every compact K with u([K)<e we have KnF <+ @

where
F = {x: VN(z): N@x)nF , + @ infinitely often}.)

A result more substantial than these remarks is the following due to
Balkema [3]:

TuroreM 7.3. If X us metrizable, and if the compact set P only contains
measures with compact support, then P is tight.

Note that this result is not true if we only assume that & is relatively
compact, indeed, in any non-Prohorov space there exists a relatively
compact set of probability measures & containing only measures with
compact support, and such that there to any compact set K exists a
ue P with uK =0. Also, as is seen from Varadarajan’s and Fernique’s.
examples, some restriction on the topological nature of X is needed.

8. The first examples of separable metrizable non-Prohorov spaces..

The first such example is, to the best of our knowledge, due to C. Léger
see [5, p. 6], who used a type of space first considered, for a completely
different purpose by Sierpinski (cf. [18, p. 142]). Independently, Balkema
also noted the existence of such an example (cf. [3]).

ExampLeE. (Léger, Balkema). Let 8=[0,1]x[0,1] denote the unit
square. We shall “construct’” X as the complement of a certain subset
4 of 8. Denote by #: S — [0,1] the projection of S on the first coordinate
space. For a subset B< S denote by B[x] the section

Blz] = {y: (z,y)eB}.
We claim that there exists a set 4 =S such that

1° A[«] contains at most one point for all = € [0,1]
2° K compact, K =[0,1] = KnA+0@.

To see this, consider the class " of compact subsets K of S with zK =
[0,1]. A simple cardinality-argument tells us that there exists a bijec--
tion z - K, from [0,1] onto . Choose for each z € [0,1] a point y(z}
such that (z,y(z)) € K,. Clearly, the set

A = {(z,y(x)): z€[0,1]}

satisfies the requirements 1° and 2°.
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In terms of the space X =[A4, condition 2° can be expressed in the
following way

2'° K compact, KX = Jz: K[z]=09.
Now consider the family
P = (e,01: ze[0,1]},

A denoting Lebesgue measure (¢,®4 is thus Lebesgue measure concen-
trated on #-1(x)). Since the mapping # - ¢,®2 is continuous, £ is com-
pact. By 2'°, £ is not tight.

It follows, that if A =[ X satisfies 1° and 2°, then X can not be Polish.
The simplest purely topological proof of this is probably to remark that
for the continuous open mapping n of X onto the compact set [0,1] no
compact subset K of X satisfies K =[0,1]. That X can not be Polish
then has been proved by D. H. Fremlin (private communication, Sep-
tember 1971).

It is natural to ask if one can avoid the axiom of choice and give a
more effective construction of the set 4. J. P. R. Christensen remarked,
using some results from [6], that this can actually be done, and in this
way a measurable 4 can be constructed. Thus there exists a Borel subset
of § which is not a Prohorov space. A result of Mokobodzki (Théoréme
23 of [5]) then assures the existence of a K -subset (i.e. a countable
union of compact sets) of S which is not a Prohorov space. These obser-
vations led R. O. Davies to give a very explicit and ingenious construc-
tion of a K -set 4 satisfying 1° and 2° (cf. [7]). Thus we have

THEOREM 8.1. There exists a K -subset of 8=[0,1]x [0,1] which is not
a Prohorov space.

As remarked by D. Monrad, it follows by the actual construction of
Davies that the space X is a Baire space (by the results of the next
section it is easy to see the existence of such examples since it is easy to
construct separable metrizable Baire spaces which are not Polish).

There is a problem related to the Prohorov space problem which has
been solved by the consideration of examples of the above type. Note,
that if < .#,(X) is tight, then so is co(#), the closed convex hull of
&. Therefore, if X is a Prohorov space the implication

{7) 2 compact = co(%) compact
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holds. It is also known that if every v-smooth measure on X is tight
(i.e. contained in (X)) then (7) holds; this follows from a result
essentially due V. S. Varadarajan (cf. Theorem 6 of [22]). We shall now
give examples showing that (7) does not hold for every separable metri-
zable space.

The first example is due to C. Léger and uses the continuum hypo-
thesis. With the aid of this hypotheses it is easy to prove the existance
of a total ordering of [0,1] such that

{x: =<y} is countable, Yy [0,1].
Then it is easy to see that if

X = {(y): =<y}

and

P = {(e,®4: z€[0,1]),

then £ is compact but co(Z) is not compact.

The other example is due to D. H. Fremlin (private communication,
april 1971) and does not make use of the continuum hypothesis. Frem-
lin remarks that if 4 <8 can be found satisfying 1° and

3° K compact, K<S, AK>0 = Knd+0Q,

A denoting the 2-dimensional Lebesgue measure, then an example of
the desired type can easily be constructed. To establish 1° and 3°, denote
by o, the first ordinal of cardinality X and let 6 : w - K, be a bijec-
tion of w, onto the compact subsets K of S with 2K > 0. We claim that
there exists a family (x,,v,) such that

w<wg

(X ¥o) EK,y Vo<og
and

wl#CUz:>xml='=xwz

holds. This is proved by induction: If w; <w, and if for every w<w,,
(%,,y,) is constructed satisfying the required conditions, then, since
AK, >0 we find by Fubinis theorem that A(zK,)>0 (now 1 is the one-
dimensional Lebesgue measure), hence the cardinality of =K, is x.
It is now obvious that (z,,y,,) € K, can be found such that z, +z,
for all w <w,. This finishes the induction proof. It is now clear that

A = {(%,Y,) : ©<wo}
satisfies 1° and 3°.
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9. The results of David Preiss.

It is quite evident that the results of Preiss [15] are the deepest re-
sults on the Prohorov space-problem published so far — the results al-
most close the subject — as far as metrizable space are concerned — even
though one can still pose unsolved problems. The beauty of the first
result is partly due to its simplicity — in statement, not in proof! It reads:

THEOREM 9.1 The rationals Q is not a Prohorov space.

We shall now give the details of the proof. Even though the proof is
very close to Preiss’s original proof, some convenient changes in the
details are due to D. H. Fremlin. Also, P. Billingsley have suggested
some alterations in the presentation.

We need the following simple general lemma:

Lumma 9.2 Let X* be compact and X a Borel subset of X*. For each
1=1,2,...,let G, be a family of open subsets of X* such that

{G\X: Ge¥}
18 upward filtering with union [X. Then
P={Pec#MX): VIVGeY,: PGnX)21/}}
18 compact in A 1(X).

Proor or TrEOREM 9.1. Let « € [0,1]. Let
z = 0,6, ... = 27°€27"

be the expansion of z in binary digits (each ¢; is either 0 or 1 and infinitely
many of the ¢ are 0). The exceptional number 1 has the expansion
1.00..... By r=r(), called the rank of z, we denote the number of 1’s
in the expansion of z(r(0)=r(1)=0). By n;=n,(x), n,=n,(x), etc. we
denote the waiting times; these are defined by the equations

n, =min{i: =1},
n+ng = min{i>n, : =1},
N+ Ny+ng = min{i>n +ng: g = 1},

In case r(x)=v < oo, we have n,,=n,,=...=00.
By d;(x) we denote the largest among the ! first waiting times. In case
r(x) <1, we have d;(z) = 0.
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We shall employ the notation z={(n,n,...), that is, we put
<n1,n2 .. > = 2302—(n1+n2+...+n,) .
‘We put
Myng...m)y = (MyNy...N,0000...)

The following simple fact will be useful:

(8) Let my,m,,...,n, be natural numbers and p=0 an integer. Then
the open interval

({nymg...0), {nyny. .. n)+ 2 P1inmet...+mtp)

consists of those y € [0,1] which can be written in the form

Y={mng... mN,...)
with n,,, 2 p+1 and n,,, <oo (hence r(y) =»+1).
Let
X, ={x: r(x)sk}; kz1
and
X =UTX; = {z: r(xr)<oo}.
Then X is the set of dyadic rationals in [0,1]. In its natural topology X
is countable and without isolated points. Since X is also metrizable it
follows by a well-known result of Sierpiriski (cf. [17]) that X is homeo-
morphic to Q.
Define subsets of [0,1] by

Gl = {x: k+l<r(x)Soo, dfx)sk}; k21,121,

and put
U= {G: k21, 121}.
Then:
(9) G} is open ,
(11) GINX = {z: dx)k},
(12) G\ X $[0,1]\ X for each fixed l as k1 oo,
(13) U= {z: r(x)zny(x)+2}.

(9) follows from (8) (with »=1, p=0) and (10)-(13) are obvious.
By Lemma 9.2, the set

P ={Pe M MNX): P(QnX)=1[l, VE,1I}
is compact.
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In the remaining part of the proof, K denotes a fixed compact subset
of X. We shall prove that & is not tight by proving that there exists
P € # with PK =0. To achieve this, we shall construct a certain sequence
Hos Pys oy - - - ON M (X)) such that

(a) p, is supported by X, : u([X,)=0;»20,
(e) p(GinX)=1l, VE,1.

If, for some », 4, X =1 then the measure P obtained by normalization
of u, meets the demands P € 2 and PK =0. Thus in the construction of
(u,) we shall try to make the total masses u, X as large as possible.

We start the construction by putting u,=0. If u, has been defined,

satisfying (a)-(c), u,,, is defined as follows. Denote by V,,, the set
. Vv+1 = Xv+1nchnEKn U'

It Vv+l =0 we pUt' Byr1= Hye
If V,,,+ 9, we define a function g,: V,,, - [0,1] by

(14) g,(x) = inf{I-1—p (G nX): ze@}}}
(thus the infimum is taken over those (%,1) for which z € G}}). Choose
Z,.1 € V., such that
(d) 9,(2,41) Z § 8UP,ep,,,9,(%)
and put
(15) Byia = ”v+gv(x'+1).6:ty+1 .

Clearly (a)-(c) continue to hold when » is replaced by »+1. It will
also be important, that the construction has been carried out so that
(d) holds in case V,,;+ @.

Assume now, for the purpose of an indirect proof, that supu, X < oo.
Then we can choose a sequence (n,) of natural numbers such that

wXNX,) < 1/2v; v =12,...,
where u denotes the measure u=supy,. Put
Y, = (mny...n).
We claim that there exists », such that
(16) Y1€ Vo, Vr2y,.

To see this, put ¥ = {(m;n,...). Then y, >y as » > 0. As ye[K, we
have y, € (K, eventually. Clearly, y,,, € X,,;\ X, for all ». By (13) we



COMPACTNESS AND TIGHTNESS IN A SPACE OF MEASURES . . . 207

have y,,, € U for y=n,;+1. This proves (16). It is interesting to note
that the only fact about the structure of the compact subsets of X used
in the entire proof, is the obvious fact that a subset of X is compact in

X if and only if it is compact in [0,1]. Also, this fact is only used in the
above proof of (16).

For v > v, we have

luv+1X _lu'rX = gv(xv+1) g %gv(yr!—l) .
Thus, if we can prove that

(17) gv(yv-i"l) —2- 1/21’, V'V g ’Vo ’

we will have a contradiction.
To establish (17), let »2», and k,! with y,,, € G}! be fixed. Clearly,
k+1=<v, hence I<». By (8), and the definition of G,},_Lit follows that

le n (yl—l»yl—l'*'2—(n1+”'+nl_l+k)) - @
and that
Yyr1 € le n (yl—l’ Yi1 + 2_(nl+”‘ +n1—1+”l"1)) .

We conclude that &£ >mn;—1 from which n;<k+! follows. Utilizing this
and (10), we have

”V(G’Cl n X) = Mv(EXk‘H) = :u’v([;an)
< w(X,) =@
hence
oG n X) 2 (2)1 2 ().

By definition of g,, this argument establishes (17) and we have arrived
at the desired contradiction.

Having proved this result Preiss goes further to prove the very ge-
neral:

THEOREM 9.2. Let X be a coanalytic subset of [0,1]. Then, if X ts @
Prohorov space, X is necessarily Polish.

The proof is based on Theorem 9.1 and the following result, interes-
ting in its own right: If X is coanalytic and not Polish then X contains
a copy of the rationals Q as a G4-subset.

But Preiss goes even further:

THEOREM 9.3. If the continuum hypothesis 18 assumed then there exisis
a Prohorov subspace of [0,1] which is not Polish.
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Of the 3 theorems mentioned, the last one is by far the simplest and
we now give the details needed to establish that result. (The exposition,
which is different from the one in Preiss’s paper, was suggested by
Roy O. Davies.) We take as basic fact the result that, assuming the con-
tinuum hypothesis, there exists an uncountable subset of the unit in-
terval [0,1] having a countable intersection with every nowhere dense
subset of [0,1] (cf. Besicovitch [4]). Let Y denote such a set and put
X =[0,1]\Y. We shall prove that X is a non-Polish Prohorov space.
Let D be a countable dense subset of Y. Let & be a compact subset of
M 1X). Since [0,1]\ D is a Gy-subset of [0,1], and as such a Prohorov
space, we can, for a given £>0, find a compact subset K, of [0,1]\ D
such that

wWEonX)>1—e, VYpe.
Since

(Ko Y)°glz'onl7=1%onl—)= o,

K,nY is nowhere dense and hence countable. Then [0,1]\K,Nn Y is a
Prohorov space and there exists a compact subset K; of [0,1]\NK,n Y

such that
wWEinX)>1l—-g Vued.

'Clearly, K=K,n K, is a compact subset of X for which uK>1-2¢
holds for all x € #. This argument shows that X is a Prohorov space.
If X were Polish, ¥ \ D would be an uncountable analytic space and as such
contain a copy of the Cantor space (cf. Theorem II1.6.1. of [11]) which
is a contradiction. Thus X is not Polish, in fact the argument shows
that X can not be analytic.

The results of Preiss also imply the following result:

THEOREM 9.4. Bvery separable metrizable Prohorov space is a Baire space.

We remark that the result does not hold without the metrizability
.assumption — an explicit example of a non-Baire Prohorov space with
the additional feature that every subspace of it is a Prohorov space
was constructed by D. Monrad.

The author found it natural to ask whether a metrizable space is
.a Prohorov space if and only if every G,-subset of it is a Baire space.
However, D. H. Fremlin has recently (private communication, december
1972) demolished this conjecture by exibiting an example, using the
Sierpinski-Balkema-Leger type of construction, of a metrizable non-
Prohorov space every G,-subset of which is a Baire space.
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