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A CHANGE OF RING THEOREM WITH APPLICATIONS
TO POINCARE SERIES
AND INTERSECTION MULTIPLICITY

TOR H. GULLIKSEN

Introduction.

Let x,,...,x, be elements generating an ideal a in a commutative
ring R. Put 4 :=R/a and let M and N be A-modules. The purpose of
this paper is to find a close relationship between Tor4 (M,N) and
TorE (M,N). This is of course almost hopeless in general, so we make
right away the assumption that the Koszul complex K%(x,,...,z,) be
acyclic, cf. (2.2).

Let G=A4[X,,...,X,,] be the polynomial ring in m variables of degree
—2. The main idea is to turn Tor4 (M,N) into a graded G-module in
such a way that it becomes an artinian G-module whenever TorE (M, N)
is an artinian R-module. The main result (3.1) is formulated in terms of
more general derived functors. In particular we obtain dual results for
Ext. One of the consequences of (3.1) is the following (4.2):

Let 4,m be a local complete intersection with

m = dimm/m?*—dim4

and let M and N be A-modules of finite type such that M® N has
finite length {(M® 4N). Then there exists a polynomial 74, y(t) in Z[¢]
such that we have the following identity of power series

(*) 3, U(Tord, (M,N))tP = (1—12)~mny y(t) .

Moreover, if R - A is a surjective ring homomorphism where R is regular,
local of the same imbedding dimension as A then we have

”AM,N(—I) = y®(M,N)
where
1®(M,N) = 3 (—1)?|(Tor®,(M,N))

is the intersection multiplicity. Cf. Serre [3].
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As an application of (*) we prove that if 4*=A4 x M is the trivial
extension of a local complete intersection 4 by a finitely generated
A-module M, then the Poincaré series of 4*

>, dim Tor4® (k,k)e»

is a rational function (4.5), k being the residue field of A*.

Sections 1 and 2 contain more or less well-known lemmas. In section 3
we prove the main theorem (3.1), while section 4 contains the applica-
tions to intersection theory and the rationality problem for Poincaré
series.

Notation.
If H is a graded module, H, (pe Z) will denote its homogeneous

components, i.e.
H = HpeZ Hp

H is called positively graded if H,=0 for p<0. It is called negatively
graded if H,=0 for p>0.

If Y is a complex, its homology is denoted by H (Y). We use the
convention

H-?(Y) = H,(Y) for peZ.

R and A wlll always be commutative rings with identity. Mody de-
notes the category of R-modules. Let

F: Modg - Mod

be an additive functor. For ¢= 0 let L,F and R¢F denote the gqth left
derived functor, respectively the gth right derived functor of F. It is
convenient to introduce the following notation:

If F is covariant, put

D,F:=L,F for pz0,
D,F:=0 otherwise .
If F is contravariant, put
D,F:= R*F for p<0,
D,F:=0 otherwise .

In both cases we put
DF:=11D,F
where p runs through Z.
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1. Graded modules and Poincaré series.

1.1. DeriniTION. Let @=]] @, be a Z-graded ring and let H=]]H,,
be a Z-graded G-module. Let » be an integer. We define H(n) to be the
Z-graded G-module

H(n) = 1 H(n),
where H(n),=H,_,.

If each H,, is a G-module of finite length I(H,), we define the Poincaréd
series of H to be the formal power series

xu(®) =3, UH,)tP' .

Observe that if n>0 and if H is positively graded, then so is H(n) and
we have

1am(E) = t"2q(0)

whenever yg or yg, is defined.

1.2. LEMMA. Let H be a Z-graded left module over a mot necessarily
commutative ring G. Assume that H,=0 for all p sufficiently small (re-
spectively large). Let X : H —~ H be a homogeneous G-linear map of nega-
tive degree w. Assume that the graded G-module KerX s artinian (respec-
tively moetherian), then H 1s an artinian (respectively noetherian) module
over the ring G[X].

Proor. The noetherian case is a version of the Hilbert Basis-Satz.
We will only prove the artinian case.
Put I=KerX and let

H=H2H'2 H* > ...

be a descending sequence of graded submodules of H. For each pair of
non-negative integers p,q put

I?e =InXPH?,
Then I7.9 are left H-modules satisfying
Ira o Ir+Lbay o+l
Since I is artinian we can pick an integer ¢ such that
I = [7Q for ¢q=Q, p20.
We will now show that
XrH? = XPH? for ¢q2@Q, p20.
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It suffices to show that in each degree r the inclusion map
(XH?), > (XPHO),

is an isomorphism. This can be shown by induction on r applying the
five lemma to the diagram

0 Ip7 S (X0 HY), = (XP#1HY),.,,, >0

| o In

0 Ip2 s (XPHO), > (XP1HO),,,, > 0

1.3. LEMMA. Let A be a commutative ring and let G=A[X,,...,X,,] be
the polynomial ring. Let wy,...,w, be mon-zero integers, and give G a
grading by putting Gy=A and letting X; have degree w;. Let H be a graded
G-module which is either positively or negatively graded, and such that each
homogeneous component H, is an A-module of finite length. Assume more-
over that H is either an artinian or a noetherian G-module. Then there exists
a polynomial 7(t) in Z[t] such that the Poincaré series of H has the form

2m(t) = [(L—t) ... (L—tm)]2q() .
(For m=0 the formula should be read yz()=7(¢)).

Proor. The standard proof which goes by induction on m can be
adapted to all cases. Let us just sketch the proof in the case where H
is artinian and positively graded. For m=0 we have H,=0 for almost
all p, hence y(¢) is a polynomial. Now let m > 0. Let us first treat the
case where w,, < 0. Multiplication by X,, gives rise to an exact sequence
of graded G-modules

) 0>N-S HZ% H(—w,)>C >0
with homomorphisms of degree zero. It follows that
{2) (L=t7"m)xg(t) = xn(t)—2c()
cf. (1). Since N and C are killed by X,,, they are modules over
G/X,.6 ~ A[X,,.. ., X 4]
and the induction hypothesis applies to N and C. Hence the desired
formula for y4(t) follows from (2).

In the case where w, >0 we just have to replace (1) by a sequence of
the form

0>N-S Hw,) % H->C -0
and repeat the argument.
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2. Differential graded modules and algebras.

2.1. DEFINITION. A pair (K,d) will be called a DG-algebra over a ring
R if K is an associative, strictly skew-commutative differential graded
algebra over R, with differential d of degree —1, and unit element 1,
such that

Ky,=R-1 and K, =0 for p<0.
A differential graded module over a DG-algebra (K,d) will briefly be
called a DG-module over K.
A triple (K,d,¢) will be called a DGA-algebra over R if

(i) (K,d) is a DG-algebra over R
(ii) € is a surjective algebra homomorphism from K onto a residue class
ring of R such that
ed =0 and gK,) =0 for p>0.

¢ will be called the augmentation.

Let (K,d,c) be a DGA-algebra over R with augmentation ¢: K - 4.
By a DGA-module over K we mean a triple (L,d’,n) where (L,d’) is a
DG-module over K and 7 is an R-linear map from L to an A-module,
such that

nd" =0
and
n(xl) = e(x)p(l) for xe Ky, leL,.
2.2. ExawmpLE. Let 2,,...,2,, be a sequence of elements in a commu-

tative ring R. Let
K = KR(z,,...,z,)
be the Koszul complex generated over R by =,...,z,, cf. Serre [3,

chapitre IV, no. 2]. K is a DG-algebra over R. Observe that K,=R.
Equipped with the augmentation indiced by the canonical map

R -~ R/(x’_,. . -,xm)

K becomes a DGA-algebra over R. By the augmentation ¢deal in K we
will always mean the kernel of this augmentation. Recall that if
x,,...,%, is a regular sequence, then K is acyclic.

2.3. DerFINITION. Let K be any DGA-algebra over R and let L be a
DGA-module over K with augmentation %: L -~ M. Let w be a non-
negative integer, and let (x,),.; be a set of homogeneous cycles in Kerz,
of degree w. By the symbol combination

...,1,...;dl,==,}
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we shall mean the DGA-module L’ over K, uniquely determined by
(i)—(iii) below:

(i) As a graded K-module, L’ is the direct sum of L and the free
K-module with basis (7',),.;, each T, being a homogeneous element of
degree w+ 1.

(ii) The differential d on L' is defined as follows: By (i) every element
in I’ can be expressed uniquely in the form I+ %, T, where | and £,
are homogeneous elements in L and K respectively, k, being zero for
almost all «. Letting dx and d; denote the differential on K and L
respectively, we can now define d as follows

Al +3 k,T,) := dr(l)+ 3, (A(k,)To+ (= 1)k, 2,)

where [k,] denotes the degree of k,.
(iii) We equip L’ with the augmentation induced by the augmenta-
tion on L.

It is now straight forward to check that L’ is a DGA-module over K.

2.4, LeMMA. Let K be a DGA-algebra over R, with augmentation
e: K~ A, A being a factor ring of R. Let M be an A-module. Then there
exists an acyclic DGA-module L over K with augmentation onto M, and such
that L is free as a K-module.

Proor. We shall obtain L as the union of an ascending chain of
DGA-modules over K )

bclltg ...clrc ...

We will define L* inductively. For n=0, choose a set of generators
(m,),ero for the A-module M. Let L° be the free DG-module over K
generated by a set of generators (7',9),. ;0 of degree zero. Now we equip
LY with the unique augmentation #:L°% - M sending 7.° to m, for
all x. Now let n>0 and assume that L™ has been constructed. Let
(®,).c1 be a set of generators for the R-module :

Z,(L*) n Kery/B,(L") .
Here Z, (L") and B,(L") denote the set of n-cycles and n-boundaries in
L, y denotes the augmentation on L*. If I is empty, put L*+ := L»,
otherwise define
Intt = I™...,T,,...;dT, =z,}.
Finally put ‘ :
L:= UnzoI™...
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1t is easily seen that L is an acyclic DGA-module over K, with augmenta-
tion onto M. It is also clear that L is free as a graded K-module.

2.6 REMARK. The construction of L above can be made canonical in
following way: Each time a set of generators is to be chosen, one can
select the maximal one,

2.6 LEmMMA. Let K be an acyclic DGA-algebra with augmentation-ideal 1.
Let L be a DGA-module over K, which is free as a graded K-module. Then
the canonical map L — L[IL induces an isomorphism

H(L) ~ H (LJIL).

Proor. If L is generated by elements of degree zero, then as a com-
plex we have L~JI K hence IL~]TI so H (IL)=0. Now let L* be the
sub-DGA-module of L generated by the elements of degree <n. We have
an exact sequence of complexes

0 — IL» —*» ILn+  Cokeri — 0

where Cokeri, as a complex, is isomorphic to a direct sum of copies of
the complex I.
Hence H (Coker:)=0 so

H (IL*) = H (ILn+1)
Hence by induction
H((IL*) =0 forall nz0.

It follows that H (IL)=0, whence the map
H (L)~ H (L/IL)

is an isomorphism.

2.7 LEMMA. Consider the following diagram of complexes:

0 0 0
¥ ¥ v

0-X'>X->X">0
R A

0-Y >Y->Y">0
b+

02 -Z~>2"->0
4 ¥ ¥
0 0 0
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with exact rows and columns, + indicating that the square is commutative,
— indicating an anti-commutative square. Then the exact homology se-
quences yield a commutative diagram

H(Y)->H(Y")~>H(Y')
l ¥ 4
H(Z) - H (Z") - H (Z")
‘ v i
H(X)~H (X") > H (X')

Proor. This follows easily from Cartan—Eilenberg [1, chaptre IV,
proposition 2.1] by forcing the upper diagram to be commutative by
changing sign of the upper, left vertical map.

3. The main theorem.

From now on let zy,...,%,, be elements in a commutative ring R
generating an ideal a. Let K := K&(x,,...,z,,) be the Koszul complex.
Cf. (2.2). Put 4 := R/a and consider the functor

T:Mody - Mod 4
defined by T(M)=M[aM. Let
F:Mod, —~Mod,,
be a given A-linear functor and consider the composition F :=F-T'.

We will consider Mod 4 as a subcategory of Mody in the obvious way.
Observe that F is the restriction of F' to Mod,. In the following

G = A[X,,...,X,]

denotes the polynomial ring, negatively graded by giving each X; the
weight —2. The main result in this paper is the following:

3.1 THEOREM. Assume that the Koszul complex K =KZ%(x,,...,x,) 18
exact. Then for each A-module M, the graded A-module

D F(M) = 11D, F(M)
can be given structure of a graded G-module tn such a way that:

(i) D_F becomes a functor from the category of A-modules to the category
of Z-graded G-modules.

(i) If F 1is covariant (respectively contravariant) and if D F(M) is an
artinian (respectively noetherian) R-module, then D F(M) is an artinian,
positively graded (respectively noetherian, negatively graded) G-module.
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(iii) If D, F(M) is an A-module of finite length for all q in Z, then so is
D,F(M).

(iv) If D F(M) is an A-module of finite length, then there exists a poly-
nomial n(t) in Z[t] such that

S, UDF(M))tld = (1—82)-man(t) .
Moreover we have

m(—1) = 3, (—1)UD,F(HM)) .

Before entering the proof of the theorem we shall prove the following
lemma:

3.2 LEMMA. Let L be a DG-module over the DG-algebra
K = K&z,,...,x,) .

Assume that L s free as a graded K-module. Let I be the augmentation
tdeal in K. Then

(i) H (F(L/IL)) has a structure of a Z-graded G-module with the following
properties:

(ii) If F s covariant (respectively contravariant) and if the graded A-mo-
dule H (F(L)) is artinian (respectively noetherian), then the graded G-module
H (F(L/IL)) is positively graded and artinian (respectively negatively graded
and noetherian).

(iii) If H(F(L)) is an A-module of finite length for each q, then so is
H(F(L/IL)).

(iv) If H (F(L)) is an A-module of finite length, then there exists a poly-
nomial n(t) in Z[t] such that we have the following identity of powerseries:

S UH(F(L/IL))t = (1—2)-ma(t) .
Moreover we have

a(—1) = 3, (= L)(H(F(L))).

Proor. Let 7'y,...,T,, be a set of algebra generators for K such that
dT,;==z,; for i=1,...,m. Let a be the ideal generated by ,,...,z, and
put Y := LjaL. Clearly we have an identity of complexes

(1) F(L) = F(Y).

Let [1,m] denote the set {1,...,m}. In the following we shall let S denote
an arbitrary subset of [1,m], and Ig denotes the ideal in the algebra K
which is generated by 7T, for each ¢ S. We consider the following
DG-module over K:

YS:= Y/I,Y .
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We put Y2 := Y. Observe that
(2) L/IL = Y®tm |

Since Y¥ is in particular a complex of R-modules, we may apply F and
obtain a complex F(Y¥®) of A-modules.
From (1) and (2) we have

(3) H (F(L)) = H (F(Y°))
(4) H (F(L/IL)) = H (F(Y™™))

(i). We shall now equip the graded A-module H (F(Y%)) with a
structure of a graded G-module. Let us start by defining the action of
X, on H (F(YS)) for an arbitrary ¢ in [1,m]. If 4 is not in S, then we let

X, act as the zero-map. Let us now assume that 7 € 8. Consider the
homogeneous map f;: ¥ — Y of degree 1, defined by

fily) = (=1)?T,y forevery ye Y,.

One sees that f; is a K-linear map which commutes with the differential.
Put
S;:= 8\ {i}.

One easily checks that f; induces a DG-homomorphism
YSi Y'S‘

whose kernel equals 7'; Y, which in turn equals the kernel of the can-

onical map of degree zero
ge: YSi > Y8

Hence f; induces an injective map ¥§ — ¥, which by abuse of notation
will be denoted by T';, regardless of S. Thus we have an exact sequence
of complexes over 4

(5) 0> ¥s ZL ySi % ys .

From now on we will assume that F is covariant. The proof in the con-
travariant case is similar and will be left to the reader. (5) splits as a
sequence of 4-modules. Hence we obtain an exact sequence of 4-modules

(6) 0> F(YS) > F(Y5) - F(Y5) > 0.

Let 0° denote the connecting homomorphism in the homology sequence
associated to (6). Now we define the action of X; on H (F(Y¥)) as follows

X;h:= (—1»%h) where he H,(F(Y%)).
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In this way X,; may be considered as a homogeneous map of degree — 2.
The reason for the factor (—1)? is that we want certain maps arising
later to be G-linear.

In order to have an action of @ on H (F(Y¥)) it remains to show that
X, and X, are commuting operators on H (F(Y%)) for 1,j€[1,m]. If 4
or j is not in S, then this is obviously the case. Hence there is no loss of
generality assuming that ¢ and j are distinct elements in S. Put

Sij = S\{":,j} .

Using exact sequences of the type (5) we obtain a diagram of complexes
with exact rows and columns

0 0 0

¥ ¥ ¥
05 T v .75 >0

b umo ym
0 ¥Si L, ySii L, ySi ¢

2 ¥ ¥
0->Y5 T ¥85i > ¥S 50

\ ¥ ¥

0 0 0

in which every square is commutative, except the left upper square
which is anti-commutative. Recalling that every short exact sequence
in the diagram splits, we apply the functor ¥ and obtain the following
diagram by considering the associated homology sequence:

H(F(Y5)) L B (F(Y9))
v ¥
) H(F(Y%) -2 H (F(Y5)
2 N’
H(F(Y$)) -2 H(F(Y9))
¢af i,oi
H(F(Y5)) -2 H(F(Y5))

By (2.7) the lower square is commutative, hence X; and X; commute.
Before proving (ii) we shall make an additional remark which will be
referred to later. It is easily seen that the middle square is also commu-
tative, while the upper square is anti-commutative. However, replacing

Math. Scand. 34 — 12
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& and o in (7) by X, and X, respectively, we obtain a commutative
diagram. Hence every map in the homology triangle

H(F(YS) X H(F(YS))

¥ LH (F( YS‘))‘——|

associated to (6) is G-linear.

(ii). Let us now assume that H (F(L)) is an artinian graded 4-module.
We will prove that H (F(L/IL)) is an artinian graded G-module. For
each Sc(1,m] consider the following homogeneous subring of @

G5:= A[X;,...,X;] where S={i,,...,i;}.

Put G := A. By (4) it suffices to prove that H (F(Y%)) is an artinian
graded GS-module for all S. This will be done by induction on s, the
number of elements in S. If s =0 then S =0, so it is true by assumption,
because of (3). Now let r be a positive integer, and suppose that
H (F(Y%)) is an artinian GS-module whenever § has less than r elements.
Now assume that S has exactly r elements. Choose an element ¢ in S.
By (8) we have an exact sequence of Gi-modules

H (F(YS) > H (F(Y5)) X% H (F(Y9)).

By the induction hypothesis H (F(Y*)) is an artinian @5-module. Since
the map X is of negative degree, it follows from (1.2) that H (F(Y*%)) is
an artinian GS-module, which was to be shown.

(iii). Assume that H (F(Y%) is an A-module of finite length for all g.
Using the exactness of (8) and induction on p, one easily shows that
H,(F(Y%)) is an A-module of finite length for all p. Now (iii) easily fol-
lows, using (3) and (4).

(iv). Let us now assume that H (F(L)) is an A-module of finite length.
In particular we have

H(F(L)) = 0 for all g sufficiently large .

By (ii), H (F(L/IL)) is an artinian graded module over ¢ = A[X,...,X,].
Hence by (1.3) there exists a polynomial z(t) such that

S UHSF(LIIL)))te = (1—82)-ma(t) .
It remains to show that

(9) ”(“ 1) = Zq (“ l)ql(Hq(F(L))) :
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Consider the exact triangle (8). To simplify the notation, put
H:= H(F(YS), H:=H(F(Y9)

and let yy(t) and x;(t) be the corresponding Poincaré series, cf. (1.1).
In the proof of (ii) we have seen that H is an artinian graded GS-module.
Hence by (1.3) there exists & polynomial g(¢) in Z[¢] such that

(10) xa(t) = (1—3)~2g(t)

8 being the cardinality of S. Similarly there exists a polynomial g(t)
such that

(11) xa(t) = (1-13)=*+g() .
To prove (9) it clearly suffices to prove the following
(12) g(—=1) =g(-1).

Let U be the kernel of the homogeneous map H — H in (8). Then for
all p we obtain from (8) an exact sequence of 4-modules

0— Up—E—)Hp»ﬁp»ﬁp_zeUp_l-»O.

Hence we have an exact sequence of positively graded modules and
homogeneous maps of degree zero

0>-U~H->H->HZ2)-~UQ1)->0.
Looking at the corresponding Poincaré series we get

(13) A=)y = xa—(1+8)xy -

As a submodule of H, U is an artinian graded module over G%. Hence
by (1.3) there exists a polynomial u(t) such that

(14) xu(t) = (1=8%)=**u(t) .

Multiplying both sides of (13) by (1—¢?)*-! and substituting (10), (11)
and (14) we obtain

g(t) = g(t)— (L +2)u(t)
which yields (12).

Proor or (3.1). The theorem will be proved only in the case where F
is covariant. The contravariant case can be proved similarly and will be
left to the reader.

To each A-module M we select an acyclic DGA-module L over K,
which is free as a graded K-module, and whose augmentation maps L
onto M. This can be done in view of (2.4) and (2.5). Let I be the augmen-
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tation ideal in K. Since K is acyclic, it follows from (2.6) that L/IL is an
A-free resolution of M. Hence

D,F(M) ~ H(F(L|IL)) = H(F(L/IL)).

By (3.2), D.F(M)=11,D,F(M) is a graded G-module.

To prove (i) let ¢: M —~ M’ be a homomorphism of A-modules. We
are going to show that the induced map D F(p) is G-linear. Let L and L’
be selected acyclic DGA-modules over K with augmentations » and %’
onto M and M’ respectively. Since L is K-free and L’ is acyclic we have
a commutative diagram

L2r
A At
M-Z M
where @ is a homomorphism of DG-modules over K.
@ induces an A-homomorphism &: LJIL - L'/IL’' and we have

D F(p) = H(®).

Put 8:={1,...,m} and let 7 € 8. Using the notation in the proof of (3.2)
we have
L/IL = YS.

Moreover we have a commutative diagram
0->¥sZL ySi, ys .0

¥ ool
0> Y858 Y8, ¥8 50

where the rows are split-exact (cf. (5) in the proof of (3.2)) and the ver-
tical maps are induced by @. From this diagram we obtain a commuta-
tive diagram
H (F(Y$)) =% H (F(Y9))
{ D.F@ y D.F@)
H (F(Y$)) =% H (F(Y9))

showing that D F(g) is G-linear. Since
DF(M) = H(F(L)),

(ii)~(iv) follows immediately from (ii)—(iv) in (3.2).
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4. Applications of (3.1) to Poincaré series and intersection multiplicity.
4.1 CorROLLARY. Let R be a noetherian ring and let a be an ideal in R
which is generated by a regular sequence ,,...,x,,. Put A := R|a. Let M
and N be A-modules of finite type such that (M QN) < oco.
(i) If Extgz? (M,N)=0 for p sufficiently large, then there extists a poly-
nomial f(t) in Z[t] such that
3, (Ext» (M, N))t2 = (1-12)-f() .

(ii) If TorE,(M,N)=0 for p sufficiently large, then there exists a poly-
nomsal g(t) in Z[t] such that

o U(Tor4, (M,N))te = (1—12)-mg(t) .

Proor. The condition (M ®@N)<oco yields that TorE,(M,N) and
Extp?(M,N) as well as Tor4,(M,N) and Ext (M, N) have finite length
for all p.

Since #,,. . .,,, is a regular sequence, the Koszul complex K%&(z,,. . .,z,,)
is acyclic. Now everything follows immediately from (3.1).

Recall that a local complete intersection is a local ring whose comple-
tion is the quotient of a regular local ring modulo a regular sequence.

4.2 CoroLLARY. Let M and N be modules of finite type over a local
complete intersection A, m. Assume that MQ N has finite length. Then
there exists a polynomial w4y, y(t) in Z[t] only depending on A, M and N
such that

(i) 25 YTordy, (M, N))? = (1—12) a4y y(t)
where m =dimm/m?—dim 4.

(i) 74 g, 3(t) =74p1, n(8),

" denoting m-adic completion.
(i) If 0 > M' - M — M" — 0 i3 an exact sequence of A-modules, then
ndy, n(—1) = whyp n(— 1)+ n(—1) .

(iv) If A 18 a homomorphic image of a regular local ring R of the same

imbedding dimension as A, then considering M and N as R-modules we have

ady, w(—1) = 2*(M,N)
where
1B(M,N) = 3, (—1)?l(Tor®,(M,N)) .

Proor. ¥® 4 has finite length over 4, moreover we have

(1) Tor4, (M,N) = Tor4,(M,N) for all p
and
dimm/m?—dim4 = dimm/m?—dim4 .
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Hence (ii) follows from (i). To prove (i) it suffices to assume that 4 = 4.
Hence we may assume that 4 has the form 4 =R/a where R is a regular
local ring and a is generated by an R-sequence z,. . .,z,,, which may be
chosen in the square of the maximal ideal m in R. In that case we have

m = dimR—dim4 = dimm/m2—dim 4
= dimm/m?—-dim4 .

Now (i) follows from (ii) in (4.1). We will now prove (iv). Let 4 be of
the form A~R|a where R is regular of the same imbedding dimension
as A. Let x,,. . .,x,, be a minimal set of generators for a. Then z,,...,z,,
is an R-sequence and we have

m = dimm/m?—dimA4 .
It follows from (iv) in (3.1) that
mdy, n(—1) = 34 (=1)2Tor®, (M, N))
¥E(M,N) .

Il

To prove (iii) we just have to pass to the completion and apply (ii) and
(iv) and use the additivity of y®(—,N).

4.3 ExampLE. Let 4 be a local complete intersection with residue
field £ and imbedding dimension n. It follows from theorem 6 in Tate [4]
that ﬂAk'k(t) = (1 + t)n.

4.4 REMARK. Let A, m be a local (noetherian) ring, and let M and N
be A-modules of finite type such that M® ,N has finite length. Let
R - 4 be any minimal surjective ring homomorphism from a regular
local ring R onto the completion of A, minimal meaning that R and 4
have the same imbedding dimension. Under this assumption it can be
shown that the intersection multiplicity xR(ll? ,IV) is an integer depending
only of A, M and N. A reasonable notation for this would be y4(M,N).
Clearly this generalizes the Serre intersection multiplicity to arbitrary
local (noetherian) rings. (4.2) then shows that the “intersection multi-
plicity” y4(M,N) over a complete intersection 4 can be expressed in-
trinsicly in terms of the Poincaré series of Tor4 (M,N) without reference
to an ‘‘ambient space’.

4.5 CoroLLARY. Let A,m be a local complete intersection and let A*=
A x M be the trivial extension of A by a finitely generated A-module M.
Let k be the residue field of A*. Then the power series
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A-
> UTor4”, (k,k))t»
represents a rational function.

ProoF. Put n=dimm/m?, m=n—dimA. k may be identified with the
residue field of 4. By (4.3) we have

> UTor4, (k,k))tP = (1—£2)"™(1+1t)™.
By (4.2) there exists a polynomial 74, ,(¢) such that
Do UTord, (M,k))tP = (1—12)"mady, 4(t) .
It follows from Theorem 2 in Gulliksen [2] that
S, YTord®, (k,k))tr = [(1—t2)m —tady ()] 2L +E)™.
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