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THE MAXIMAL RING OF QUOTIENTS OF A
TRIANGULAR MATRIX RING

BO STENSTROM

1. Introduction.

The problem we consider in this note is to determine the maximal ring
of quotients of a ring of the form

. A M

2= (5 5)
where 4 and B are rings and M is an 4 — B-bimodule, and where addi-
tion and multiplication is defined as is customary for matrices. The most
convenient definition of the maximal right ring of quotients for this
purpose is the one due to Lambek [3], namely as the bicommutator of
an injective envelope of R (as a right R-module).

2. Preliminaries.
We need some known basic facts concerning injective modules over

the ring
A M
2= (5 5)

(we refer to [2] for details).
A right R-module is a pair of modules X , and Y, together with a
B-linear map
«: XQ, MY,

We write it as a row vector (XY),, and R then operates upon it as

(z v) (g 11;) = (ra x(z@m)+yd).
Instead of & it may be more convenient to use the corresponding A-linear
map

&: X > Homy(M,Y).

Received March 8, 1974.



THE MAXIMAL RING OF QUOTIENTS OF A TRIANGULAR MATRIX RING 163

Similarly, a left R-module may be considered as a column vector

(v)
Y B ’
where 8: M®pY — X is A-linear.
The ring monomorphism x%: 4 x B - R induces a forgetful functor

#y: Mod— R - Mod — (4 x B)

of the categories of right modules. As usual, %, has a right adjoint x*
(extension by scalars) and a left adjoint »'. Explicitly,

#(X x ¥) = (XHomy (M, Y) Y),

with « given by the evaluation map. From [2] we have:

Lemma. The injective envelope of an R-module (X Y), is
x'(E(Kera)x B(Y)) .
We need to know the endomorphism ring of an object of the form
%' (X x Y). By adjointness we have
Homp(x'(X x ¥),x(X x Y)) = Hom 4y p(#4x'(X x ¥),X x Y)
~ Hom 4, x((X®Hompz (M, Y))x ¥, X x ¥)

., (End,(X) Hom,(Homg(M,Y),X)
= ( 0 Endg(Y) )’

and one may check that the multiplcation in Endg(x'(X x Y)) coincides
with the matrix multiplication in the last ring, which we for brevity

denote by .
Am
&= (5 3):
As a left R-module, »'(X x Y) takes the form

(Hom;X(M, Y)),, @ (g’)o ’

where §: M ®p Homg(M,Y) - X is the evaluation map. From this one
may in principle compute the bicommutator of x'(X x Y), although the
formulas become rather messy.
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3. The maximal ring of quotients.
We now choose in particular the R-module R=(4 M@®B),, where
&: A -~ Homg(M,M®B) ~ Endz(M) ® Homgz(M,B)
maps a € A to the endomorphism of M given by left multiplication
with a. Hence we obtain from the Lemma that
E(R) = «'(E(Ann (,M)) x E(M®B)) ,

where Ann (M) denotes the annihilator of the 4-module M.
We now assume that M is a faithful A-module. If we write ¥ =E(M)®
E(B), then we simply have

0 (0
ER) = x'(0x Y) = (HomB(M Y))o @ (Y)o
as a left module over the ring

0 0
Endg(E(R)) = ( 0 Endy Y)) .
In this case it is easy to compute the bicommutator of E(R), and we
obtain:

THEOREM. If ,M is faithful, then the maximal right ring of quotients of
R= (A M) 18
0 B
Qu (B) = ( Ends(Homg(M,Y)) Homg(Hompg(M,Y), Y))
maxt™ ™ \Homp(Y, Homg (M, Y)) Bicg(Y) ’

where Y =E(M)®E(B) (as right B-modules) and B=Endgz(Y).

Note that R= (‘(1)1 JZ) imbeds in the matrix ring ¢),,,.(R) in a canon-
ical way.
4. An example.

Let B be an arbitrary ring, and let 4 be a subring of the full matrix
ring M, (B). Then the free right B-module B" is a faithful left 4-module,

and we consider the ring
R (A B”)

0 B
In this case we have

Y = EB)"* and B = M, (Endg(E(B)).
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Furthermore we have Homg (M, Y)~ E(B)*n+D, Clearly we obtain from
the Theorem that

Oous (5 5 )) = (Mo oisf®) GO = el

The imbedding (‘g B; ) > M,y (Qmax(B)) is given by

a b,
.0
a (by,...,b,) .
(0 b )H o . .

a b,

0 .0 b
Two special cases:
(1) R = (O % ) ,  where K is a field.

Then the maximal right ring of quotients of R is @, (R)=M, ,(K),
and by symmetry also the left maximal ring of quotients of R is @, (R)=
M, ., (K). However, R is imbedded in @, (R) by the map

@ b, .. .b,
0 b
a (by,...,b,) . .0
(0 b )H ) .
. 0 .
0 b

Hence Q.. (R) and @', (R) are isomorphic rings, but they do not coin-

max
cide as over-rings of R (cf. Cateforis [1]).

(ii) R=T,(4) is the ring of upper triangular matrices over an arbi-
trary ring A. Then

1,04 = (T 40,

and we obtain @, (7,(4)) =M, (Qna.x(4))-

5. Another example.
Consider the ring

(o x):
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where K is a field and V is an infinite-dimensional vector space. In this
case one finds that the maximal right ring of quotients is

(rromex ey )-
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