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SUBOBJECT CLASSIFIERS AND CLASSES
OF SUBFUNCTORSY

HANS ENGENES?)

The purpose of this paper is to show that for certain categories & of
sets, including the category of all sets for those readers who do not let
set-theoretic difficulties stop them, the functor categories

#Y and SIP

both have subobject classifiers (Corollary 1), but are not cartesian closed
(Corollary 2).

We say a category € is a full category of sets if the objects of € are
sets, each of its hom-sets of the form ¥(4, B) is the set of all functions
from 4 to B, and composition rules and identity maps are as usual for
functions between sets. We denote by % any full category of sets whose
object class |&| has the following property:

(*) If |#| has members of cardinalities « and B, and if y <«, then
|| has members of cardinalities y, «-f, and 2*.

Some examples of what |%| can possibly be are: all sets, all sets of
cardinality or rank less than some given strong limit cardinal » (meaning:
y <%= 2¥< %), all cardinal numbers smaller than such a %, any universe
in the sense of Grothendieck-Bourbaki (see [2]), but not any school of
sets in the sense of Mac Lane [5]. We assume the axiom of choice (here-
after called AC) in the form that onto functions between sets have sec-
tions, or right inverses. In any full category of sets epimorphisms are
onto, so any such category satisfies the categorical form of AC, in the
sense of [10].

We will say that a full category of sets is rich if it is closed under forma-
tion of subsets, power sets, finite cartesian products (constructed in the
usual set theoretic manner), and sets of all functions between any two
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members. In an attempt to avoid foundational difficulties of a set theo-
retic nature, we will not assume that a category of all sets is available
as a mathematical object, but we will assume that any full category of
sets can be extended to a rich category of sets. It is easy to see that &,
satisfying.(*), has a rich extension which is equivalent to & -as a cate-
gory. So we can assume that & is rich, since the statements to be proved
in this paper are about properties which are preserved under equivalences
of categories. Furthermore we will assume that for any given category &
there is a full category of sets containing the hom-sets of &', and one
containing, for each X € |Z|, the class of all subobjects of X (see defini-
tion below). -

We will need the following definitions: A set (or class) is & -small if its
cardinality is equal to that of an &-object. A category is locally & -small
if all its hom-sets are & -small, and a locally #-small category is & -small
if its object class is & -small. A subobject of an object X in a category
is an equivalence class of monomorphisms into X. If & is a category
with pullbacks, the power object functor on & is the contravariant functor
which associates to any object its class of subobjects, and to any mor-
phism f: X — Y the operation of pulling back subobjects of Y along f.
If this functor is representable, then any representing object for it is
called a subobject classifier in . A category Z with finite products is
cartesian closed if for any object X the functor — xX:% -~ % has a
right adjoint. Finally, & is a topos if it has all finite limits, is cartesian
closed, and has a subobject classifier (hence has all finite colimits, see
[7] or [8)).

" As Freyd has pointed out in [1], the universal monomorphism 2’ > Q
into a subobject classifier 2, mediating the representation of the power
object functor, must have £’ terminal in the category. This provides the
connection with the more familiar (and equivalent) definition: 2 is a
subobject classifier by way of a map ¢ from the terminal object 7' to 2,
if for any monomorphism f: X > ¥ there is a unique map ¢: ¥V - Q
making !y: X — T and f the pullback of ¢ and ¢.

It is easy to see that & is a topos, and it is well-known that %% also
is when & is &-small. If &% is to have a subobject classifier £, then,
for any X € |, the class of subfunctors of Z(X, —) must be &-small,
being in bijective correspondence with &% (Z(X, -),82) (assume for a
moment that the hom-sets of & are in &) and hence with 2(X). And if

-xF: % > 5%

has a right adjoint [F, —], then, for any X € |%|, the class of natural
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transformations from Z(X,—)x F to any G € |¥%*| must be -small,
being in bijective correspondence with

and hence with [F,Q@](X). Inspection of the proofs in [1] or [9] that ¥
is a topos for &-small Z reveals that these two necessary conditions,
obviously satisfied when & is & -small, are in fact sufficient; in effect,
what is really proved is:

LeMMA 1. Let & be as described, let & be a locally & -small category, and
let &' be a rich extension of & containing all the hom-sets of & but no sets
larger than those in |F|. Then % has a subobject classifier if and only if
the class of all subfunctors of each representable functor & — &' is F-small,
and S is cartesian closed if and only if the class

S X X,-)xF,G)
18 & -small, for any X € |%| and F,G € | F'%|.

We remark here, for future reference, that for a locally #-small cate-
gory & with an initial object I, the category %% is cartesian closed if
and only if it is locally % -small. “If” is clear from lemma 1, and “only
if” follows from lemma 1 and the observation that each set-valued
functor F' on & is naturally equivalent to (I, —)x F. If & does not
have an initial object, virtually anything can happen. E.g. putting
Z =|&| — the discrete category on the objects of & — yields an example
where &% is a topos but not locally & -small: Each representable func-
tor has exactly two subfunctors, and the natural transformations from

|LIX, =) x F

to G are in bijective correspondence with the #-small set of all func-
tions from F(X) to (X). So &'¥! is a topos by lemma 1, and it is not
locally &-small because the inclusion functor |&| - & has a non-%-small
class of natural transformations to itself (this follows from the obvious
fact that & has no object of maximal cardinality). Now #!¥! is just a
product of toposes, each of the form &. It is not hard to show that
given any family of toposes, its product category is again a topos. So
if & is a locally &-small groupoid (all morphisms invertible) then &%
is a topos, being equivalent to a product of categories of the form &,
M an &-small group. Next let Z be the (non-&-small) partially ordered
category of all &-small ordinals. Then any representable functor &' -~ &
has a non-&-small class of subfunctors — the representable subfunctors
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alone are too numerous (by the way, each subfunctor is representable) —
so &% has no subobject classifier. Nor is &% locally %-small, and hence
not cartesian closed, for (assuming for simplicity that each & -small
ordinal is an & -object) the natural transformations from the inclusion
functor & - & to itself are in bijective correspondence with the non-
increasing functions from the well-ordered class |%'| into itself, and they
form a non-&-small class. In contrast to all this, ¥ is a topos, as the
reader can easily verify.

In the following we will show that, when & is &% or &°op, %% has a
subobject classifier, but is not locally &%-small, hence not cartesian
closed, hence not a topos.

We will use the assumption, as mentioned before, that % is actually
a rich category of sets. Then subobjects in & have canonical representa-
tives (inclusions of subsets), and the same is true for &% (inclusions of
subfunctors). Notice that to define a subfunctor G of an & -valued func-
tor F on &, we need only define subsets G(X)< F(X), for each X € |%],
in such a manner that for any Z-morphism f: X — ¥, F(f) maps the
set G(X) into G(Y). We write G < F to express that @ is a subfunctor of F.

ProrositioN 1. For any set X € || the subfunctors of L (X,-):
&L - & form an F-small set, and so do the subfunctors of For(X, —)=
L(—,X): For - &,

Proor. We deal first with the covariant case. If X =@ then (X, —)
has exactly three subfunctors: the empty functor, the functor ¥ defined
by F(@)=@ and F(Y)=%(9,Y)={!y} for Y+ 0, and then &(D, —)
itself.

So now assume that X 3 @. It suffices to show that a given subfunctor
Fc#(X,~)is determined by its action on X, i.e. by the subset F(X)<
& (X,X). Since F(X,0) is empty, so is F(@). If Y € || is nonempty,
and |Y|<|X|, then let j: ¥ >» X be a monomorphism. Since there is
p: X — Y satisfying poj=idy, it is easy to see that

F(Y) = {fe S(X,Y)| jof e F(X)}.

If |Y|>|X|, let i: X > Y be a one-to-one map, and let r: ¥ - X be
such that roi=idy. For any ge &(X,Y) we can obtain a bijection
h,: Y - Y with Ay (g(X)) <4(X) as follows. On g(X) let h, be any one-to-
one map of g(X) into i(X). Then note that ¥ \g(X) and Y \ 2,(g9(X))
have the same cardinality, so take any bijection of the former onto the
latter as the action of 4, on Y \ g(X). Notice that g € F(Y) if and only
if hyog € F(Y), since h, is invertible. And since h,og maps X into ¢(X),
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there is (by AC) a function f,: X — X such that hjog=iof,. Now we
can see that
F(Y)={ge S (X,Y)| rohpoge F(X)}.

The inclusion “<” is clear, and for the converse suppose rok,og € F(X).
Then hyog = iof, = toroiof, = ioroh,oge F(Y),

so g € F(Y) as desired. So F(Y) is determined by F(X), for any Y € |¥|,
and this completes the proof of the covariant case.

Before we prove the contravariant case we need one more definition
and some more notation. A quasifilter on a set X will be a (possibly
empty) family of subsets of X (all of them nonempty, if X is nonempty),
containing all nonempty subsets of each of its members. We write @(X)
for the set of all quasifilters on X. The empty functor &or -~ & is de-
noted by F,, it is a subfunctor of any & -valued functor on #°r. We
write F, for the subfunctor of &(—,X) defined by

F(Y)=0 < Y +0

(so F, depends on the set X). Finally, we write ¥(X) for the class of
subfunctors of &#(—,X): &#or - &, If X is an S -small set then clearly
so is @(X). We will show that Y(X) also is F-small, by putting it in
“almost” bijective correspondence with @(X). We note in passing that
F,+F, for any set X, and if F € P(X)\ {F,} then F,<F. So ¥(X) has
a smallest and a second smallest element in the partial ordering “<”.

One can easily verify that the following formulas define mappings
a: ¥(X) - Q(X) and b: @(X) > V(X):

a(F) = {fX)| fe F(X)} for Fe¥(X),
bINY) = {fe LAY, X)| AU eJ:f(Y)<U} for JeQQX), Yel|¥|.

Now, to wrap up the proof of proposition 1, we need only prove:

LEMMA 2. For any set X, acb=idyx). If F € ¥(X) and either F+F,
or X=0 then b(a(F))=F. If X +@ then b(a(F,))=F,.

ReMARK. Thus @Q(X) is in bijective correspondence with ¥(X)\ {F,},
if X+, or with P(X), if X=0, so ¥(X) is an #-small set whenever
X is.

Proor or Lemma 2. If X =0 then

Y(X) = {Fo, Fy}, QX) = {0,{9}},
a(Fy) = @, a(F,) = {92}, @) =F, b({@}) = F,,

so everything is as it should be.
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Now assume X 4@, and let J € @(X). To see that a(b(J))=J we show
inclusion both ways. If f(X) € a(b(J)) with fe b(J)(X), then f(X) is a
nonempty subset of a member of J, so f(X)eJ. Conversely, if UedJ
then @+ Uc<X, so there is a function f: X - X mapping X onto U,
and any such f is in b(J)(X), so U=f(X) € a(b(J)). Hence a(b(J))=J, as
desired.

Next let F € P(X)\ {F,}, and let ¥ €|%|. To see that b(a(F))(Y)=
F(Y), we show inclusion both ways. If fe b(a(F))(Y) then there is
g € F(X) with f(Y)<g(X), by definitions of @ and b. Then, by AC, f
factors through g, i.e. there is 2: ¥ - X with goh=f. So fe F(Y). Con-
versely, if fe F(Y), then F(Y)+@ so F+F,. Since also F+F,, it fol-
lows that a(F)3+=@ (F, and F, are the only subfunctors of &(—,X)
taking the value @ at X), so b(a(F))(Y)+@. If Y =0, then b(a(F))(Y),
being a nonempty subset of & (@,X)={!x}, certainly contains f. And if
Y + @ there will be some %: X — Y with f((X))=f(Y) (by AC), and foh €
F(X), so f(Y) € a(F), so feb(a(F))(Y). Hence b(a(F))=F, as desired.

Finally, since X+ @ we have a(F,)=@, so b(a(F,))=b(@)=F,. This
completes the proof of lemma 2, and hence of proposition 1.

CoROLLARY 1. & and S5 both have subobject classifiers.

Proor. Having assumed, without loss of generality, that & is rich,
lemma 1 and proposition 1 apply directly.

We will denote the subobject classifiers in &% and &% by Q and ¥
respectively. This is consistent with the use we have made of the symbol
¥ in the proof of proposition 1 above. Let P denote the covariant power
set functor & — %, which takes a set to its power set and a function
f: X > Y to the ‘“direct image under f”’ operation P(X)— P(Y) (as-
suming, as before, that % is rich). Let K denote the functor

P(P(=),2): Fo» > &,

where 2=1{0,1} is some two-element set in |&|. Essentially, K is the
composition of the covariant with the contravariant power set functor.
By definition, a category is & -well-powered if each of its objects has only
an &-small class of subobjects.

ProrosITION 2. The subfunctors of P, as well as those of K, form non-
F-small classes, so neither S nor S7 is P-well-powered.

Proor. For P it suffices to observe that for any cardinal number «,

P(X) = {Y<X| |Y|<a}
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defines a subfunctor P, of P, distinct & -small cardinals define distinct
subfunctors, and the % -small cardinal numbers do not form an &-small
set.

For K, we map the class of subfunctors of P in a one-to-one fashion
into the class of subfunctors of K. Given H < P, let us define f < K by

AX) = {fe #(P(X),2) | fIH(X)=1}.

To see that this indeed defines a subfunctor A of K, let g e L(X,Y).
If f=hoP(g) € K(g)((Y)) with h|H(Y)=1, then

fIH(X) = (hoP(g) | H(X) = 1

because P(g) maps H(X) into H(Y). Hence K(g)(ﬁ( Y ))Cﬁ(X), as de-
sired.

Finally, if H,+H,<P, say if H,¢ H,, then there is X € |¥| with
H,(X)¢ HyX). Then the function f: P(X)- 2 which is constantly 1
on HyX) and constantly 0 on P(X)\ Hy(X) is in A,X) but not in
A,(X). So A,+1,, as desired.

COROLLARY 2. Neither &% nor " is locally &-small, nor is either
cartesian closed, nor, hence, is either a topos.

Proor. By corollary 1, each of these categories has a subobject classi-
fier, but by proposition 2, neither is &-well-powered, so neither can be
locally & -small. Since & and %#°p both have initial objects, the rest is
dealt with by the remark immediately after lemma 1.
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