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A TAUBERIAN REMAINDER THEOREM
WITH APPLICATIONS TO LAMBERT SUMMABILITY

SIN PHING MOO STRUBE

1. Introduction.

The term ‘“Tauberian theorems’ owes its name to Tauber [9] who in
1897 proved a conditional converse of the well-known theorem of N. Abel
[4, p. 10]. Later J. Littlewood [6] obtained the same conclusion with
a much weaker condition. The special Tauberian theorems applied in
the study of divergent series and summability methods were generalized
by N. Wiener’s ‘“General Tauberian theorem” [12] in 1932. A Tauberian
remainder theorem is a quantitative version of a Tauberian theorem.
Beurling [1] was the first to study the size of the remainder term corre-
sponding to Wiener’s theorem, using the theory of Fourier analysis.
The remainder theorem corresponding to the Littlewood theorem was
proved by Freud [2] and Korevaar [5], using approximation theory.
Ganelius [3] used the method of Fourier analysis to generalize these
results.

If K € L(— o0,), we denote the Fourier transform of K by

R(z) = \*_K(t) exp(— 2mitz)dt, x€(—o0,00).

The kernels K considered in many known remainder theorems satisfy
the condition that the reciprocal of the Fourier transform of K has an
analytic continuation to a strip about the real axis or to the whole com-
plex plane, and which satisfies a certain growth condition in that region.
Lyttkens [7] studied the case where K(x)-! has an analytic continuation
to a strip below the real axis. (Professor Harold S. Shapiro informed me
that Lyttkens has obtained further results as yet unpublished.)

We have obtained results for the class of kernels with no assumption
of analyticity but with conditions on the growth of K(z)-! and its
second derivative on the real line. This enables us to study the remainder
term corresponding to the Lambert summability method. The proof of
our main theorem is partly based on those discussed in [3].

I would like to thank Professor T. Ganelius of the University of Gote-
borg for his comments and advice in the preparation of this paper. I also
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thank Professor P. Duren of the University of Michigan for his suggestion
of this problem.

2. The main theorem.

NoraTioN. Let K € L}(— o0,00), ¢ € L®(— 00,00). The convolution of
K and ¢
Krp(@) = (2 K(z—t)p(t)ds

is defined for each z € (— oo, ).
Throughout this paper let ¢ denote a constant which need not be the
same at each occurrence.

We say a function g belongs to S if g is monotonic increasing, g(z)=
O(x) and g(2x) =0[g()].

TaroreM 1. Let R(t)"*=f(t), p € L®(— o0, 00). Suppose that
(1) tIf@+ 1" = OH()], [t - oo
where H(|t|)/|t| is monotonic increasing and H(|t|)=O[exp (ct?)],
(2 p(@) = Kxg(x) = O[W(x)], x—>oo

where W € 8.
Furthermore let @ satisfy the tauberian condition

(3) BUP,<y<zo+vi-1[P(Y) —@(@)] = O[V(2)], 2 —> oo
where V € S. Then
@) = O(1) infpp) [R-1+ H(2R + 1) W (2)7]
where O(1) is a constant independent of R and x.
CoroLLARY. Under the assumptions of Theorem 1, with H(t)=explt|,
and W(x) <exp(V(x)), we have
9(2) = Olog W@)]) z—oo.

Proor. Theorem 1 implies that
9(@) = O(1) infp_y[R-+ W(@) exp(2R+1)] .
By choosing 3R =log W(z), we obtain the result.
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3. Proof of Theorem 1.

We first state and prove a simple lemma which we shall apply in the
final stage of the proof.

LemMMA. Let ¢ € L®(—o0,00) and let V(x) be a monotonic increasing
SJunction such that V(z+1)=cV(x), c> 1. Suppose

(4) SUD,<y<aiv1[P¥) —@(@)] S V(@) 2 —>o.
Then

SUPz<y<z+r1[P(Y) —@(@)] = O(RY), @& —> o
for all R < V(x) where “O’’ is a constant independent of R and x.

Proor. It is only necessary to consider large values of R and . Let «
be fixed and define n=[cV (x)R-!] where [a] denotes the greatest integer
in a. Define z; recursively by z,=z,

xk = xk__1+ V(xk_l)_l, (k= 1,2,.--,n+ 1) .
Then it is easily seen that for large values of R and x we have

Ty =2 2z+R! and =z, < x+cR1.

n

Hence for z<y<a+ R

Py —g@) £ ¢ 3% V(Eg—)"
= o(p11—2)
= c(xn+ V(xn)_l—x)
< ¢lc+1)R1

if R< V(x), and lemma is proved.

We shall begin the proof of Theorem 1. We may assume that
H([t]) < exp(nt?/8) .

NoraTioN. Let
E(y) = exp(—ay?®), 6(y) = R(sinnRy)*(nRy)~2.

Then

B(u) = exp(—nu?), S(u) = 1—|u|R-1.
Define

(5) Q) = £(8)§oo B2t —u)3(w) exp (— 2miun) du
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where 7 is a real number. With a suitably chosen # the following inequal-
ity holds:
(6) lp()] = 6|Q@*g()| +
+4 8UP,<i <oy 2p1 [P(@ — V) E(v) — @@ — E)E(£)] -
This is the same inequality as formula (1) on page 20 in [3]. It is proved

in the same way, the only difference being that the integrability of @
in our case follows from the formula

Q@) = (2nx)-2{=, Q" (t) exp (2nizt)dt .

We now denote the two terms on the right of (6) by I, and I, and we
start by estimating I,. For all ¥ we have

Q)| = |§= @(¢) exp (2nity)dt)
< (Xl f OS2 R Bt — w)(w) dudt

< B lf ) Bt —w)dtdu .
Now

§2e | F(0) Bt~ )
< SisrlfE+u) b+ 5y plfE+w) B(E)dt
= O[H(2R)/|R]
uniformly for all |u|<R, since tf(¢)=O0[H(t)] and H(|t|) <exp («t?/8).
Thus for all y,
(7 Q(y) = O[H(2R)] .
Next for all y+ 0, we obtain by integrating the following by parts twice

that
(2w f () B(t — w) exp (2mity)dt|
< olyl (2w ILFOB(E—w)]"|dt .
It is clear from condition (1) and by an application of Taylor’s Theorem

that |¢f'(¢)| =O[H(|t| + 1)]. Similarly to the discussion leading to identity
(7), we have that for all y+0,

(8) Q(y) = O[H(2E+1)/y%] .
It follows from (7) and (8) that for all values of y
(9 Qly) = O[H(2R+1)/(y*+1)].

Finally, for all large z, we have (in view of identity (9) and condition (2))
that
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(10) 1@ *y(x)| = O[H(2R+1){°, [yp(x—y)|/(y*+ 1)dy]
= O[H(2R+1) {3, <. I9(x—»)l/(v*+ ) dy +
+ opyizal¥(@— )|/ (¥2 + 1) dy]]
= O[H2R+ )W ()],

which gives an estimate for I,.
The final stage is to estimate I,, which can be rewritten as

I, = sup,([p(z—v) —p(x—§)1E () + [E(v) - E(&)]lp(x —§)) -
Since the derivative of E is bounded, we have for all v
sup,[E(v) — E(é)]lp(x— &) = O(R™) .

As for the remaining term in I,, we consider two cases separately.

Caske 1. Suppose |v|>z/2. Since ¢ is bounded
sup; [p(z —v) — plz — £)JE(v) = O[E(x[2)] = O(RY)
if R <exp(x?/4).

Cask 2. Suppose |v|<z/2. This is the case where we need the Tau-
berian condition (3) on ¢. Clearly

sup; [p(z —v) — p(x — £)]E(v)
= O(1) sup;[p(x —v) — p(z —§)]
= 0(1) SUPx_op-1<yv<X [‘P(X) - (P( Y)]

where X =x—v, Y=2—¢&, and it is noted that r <2X <3z, 2 -252Y <32
if B> 2.

Now it follows from condition (3) and the above Lemma that
SUPx_op15vsx [P(X) —@(Y)] = O(RY)
if R<V(Y). Thus
sup,[p(x —v) —p(x—§)] = O(B)
if R< V(x). We therefore have
(11) I, = O(R1)
if R< V(z). Combining (6), (10), and (11) we conclude that as x — oo,
¢(x) = 0(1) infp_pey(R*+ H(2R+1)W(2)7)
which is the required result.
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4. Further result.

By weakening the Tauberian condition on ¢(x), we may still be able
to obtain a remainder term for ¢(x). In the study of summability, this
would imply that a weaker Tauberian condition on a bounded sequence
{s,} will yield convergence provided the transformed sequence converges
at a suitable rate.

THEOREM 2. Under the assumptions of Theorem 1, replacing condition
(3) by
(3) SUD, <y <z 4+ V-1 [9(¥) — @(@)] = O[V(2) U ()]

where U € 8 and U(x)=o0(V(x)), we have
p(x) = O(1) infp_p)(RU() + H(2R+ 1) W (x)7) .

Proor or THEOREM 2. Since identity (10) is still valid, it is only
necessary to consider I,. Similar to the previous section leading to an
estimate for I,, together with a slight variation of the Lemma and the
above condition (3') we obtain

I, = O[RU(x)]
if R<V(x).

5. Application to the Lambert summability.

The Tauberian theorem for the Lambert summability method is used
in the proof of the prime number theorem. In using this method, the
essential information needed is that the zeta function {(s) does not
vanish on the line Re{s}=1. The aim of this section is to obtain a re-
mainder theorem for this method. We cannot apply general remainder
theorems which require the analytic continuation of the kernel under
consideration since this would presume the knowledge that {(s) has no
zeros in a strip |Re {s}—1| <e. However our theorem is applicable since
the rate of growth of {(s) and its second derivative is known on the line
Re{s}=1.

DEeriNtTION [4] [8]. Let 35 o, be an infinite series and let
n

(12) o(u) = (1—u) E;,”_I;L—ﬁ_’%—‘, lw] < 1.

We say that a sequence {s,} is limitable by the Lambert method to s
if o(w) is convergent for all |u| <1 and lim,_,, o(u)=s, where a,=3,—

8p_1.
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It is known [4] that the Tauberian condition for the Lambert method
is @, =n~1, Our theorem is:

TrEOREM 3. Let W € 8. Suppose

(i) o(w) = O(1/W[—log(—logu)]), u—1-
and

(ii) a, < nl.

Then

8, = O(1flog[W(logn)]), m—>oo.

In particular if W(z)=2x then under the above conditions, we have
8, = O(1/log(logn)), n —occ.
Proor or THEOREM 3. By a change of variables, we obtain as y — oo
1/ 1 1 * te—t/y
o) = [L+ 0 Hly | = dst)
where s(t)=3,-,a,, (2o=0). Let G(t)=te~!/(1—e~), t>0. By a further
change of variables, we have as x — oo,
(13) o(exp[—exp(—=)]) = (1+0(exp(—=)))(K *p(x))
where K(z) =exp(—z)GF[exp(—=x)] and ¢(x)=s(expz). Now it is not dif-
ficult to show [8, 10] that
R@) = —2nixl(1 + 2mix)t(1 + 2nizx)

and f(x)=K (x)~*=0(exp(c|x|)) as x - co. Moreover f’ and f’ have order
less than or equal to exp(c|z|). This follows from known results [11] that,
as |¢| - oo, the functions 1/{(1 +1z), {(1 +1x), {'(1+ix) and {''(1 +1x) are
all bounded by certain powers of log |z|. Hence condition (i) of Theorem 1
is satisfied with H(|t|])=exp(c|t|). Next, condition (i) of Theorem 3 and
relation (13) imply that

Kxp(x) = O[W(x)1], x> .
Finally, we have by hypothesis (ii) that
?(y) —p(x) = s(expy)—s(expx)

(exp(y) —exp(x) + 1)(exp (—=))
= (exp(y—z)—1+exp(—2)).

IIA

Hence
SUP, «y<x+W(x)-1 [‘P(y)‘_q’(x)] = O[W(x)‘ll: X —>o00.
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It follows from corollary of Theorem 1 that

p(x) = O([logW(x)]™'), x> .
That is,
8(n) = O(1/log[W(logn)]), n—>oo.
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