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L» ESTIMATES FOR CONVOLUTION OPERATORS
DEFINED BY
COMPACTLY SUPPORTED DISTRIBUTIONS IN R

JAN-ERIK BJORK

Introduction.

Let R™ be the n-dimensional euclidean space where z=(z,...%,) are
coordinate vectors and consider also a dual copy of R™ with coordinate
vectors £=(&;...4,). Let |z|=(x®+ ... +x,%)t be the euclidean length
and (z,&)=z,£,+ ... +2,&, the scalar product.

If v € £(R"), that is if » is a distribution with a compact support in R®,
then its Fourier Transform

2E) = vgfe™®?)
exists. Associated with v is the convolution operator 7',, where
Tf)@) = (2n) §eO0(E)f(E)dE = (f+v)(2)

is defined for every f e C,™(R™®).
Let ||+]|, be the norm in L?(R™).

THEOREM 1. Let v e &(R™) and suppose that |H(&)| < (1+ |&|?)~> i3 valid
for some 0 <x <nf4. Then
1Tl = Clv,,n)lfllp
for every f e Cy™(R*) and where p=2n/(n+ 4x).

The proof is based upon a consideration of the limit case when x =n/4
and a fairly explicit estimate of C(v,«,n) arises from the proof. Observe
that when «>nf4 then {[0(£)|2dé <o and hence v already exists as a
compactly supported L?-function and the result in Theorem 1 becomes
trivial and is even true when p=1.

THEOREM 2. There exists a constant A, such that if ve &(R™) satisfies

B = (1+1&H)—A
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and if
6(v) = sup{lx—y| : x,y € supp(v)},

7o)l
for every 1<p<2.

then
A,(148(w)aP-13)(p— 1)1 f],

A

The two results above turn out to be easy consequences of the powerful
methods developed in [1]. We prove (an inproved version of) the limit
case first and deduce Theorem 1 by Complex Interpolation. In Section 3
the corresponding periodic case is described and we prove by explicit
examples that Theorem 1 is sharp.

1. The case when a=mn/4.

We refer to [1] for the definition and the basic properties of the two
spaces H'(R*) and BMO (R®). The result below is proved in [1, p. 149,
Corollary 1].

Lemma 1.1 (Fefferman-Stein). Let v € &(R™) and suppose that

loxflleMo = Aullflleo
for every f € C;°(R™) and some constant A,. Then

lvafllzs = Cpd,liflla

for an absolute constant C,.
The (well-known) result below is easy to verify directly.

Lemma 1.2, Let J,,, be the Bessel Potential of order nf2, that ts

Jara(€) = (L+ |74
Then

I as2#f Mo = Aallflle
for every f.

Let us put
A4 = {ve &R") : supp(v)<Br={xeR": |z|<1}
and [9(&)] < (1 +|&|2)—/¢ for every &} .
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TaEOREM 1.1. There exists a constant A, such that if v € A then

lo*fllgr < fllgn  for all fe Cy™(R™).

The proof requires a result which takes care of “an error” in [1, p. 143,
line 17-23].

Lemma 1.8. Let v € &(R?) be such that supp (v)<B” and ||P||,<1. If @
18 an open cube in R™, whose axes are parallel to the coordinate axes and
centered at the origin while its n-dimensional volume |Q| =1, then

Q1 (o lvxf(@) | dw < 3"2fll, for feCy®.

Proor. Set f,(y) =f(y) when each |y,| <1+4/2 and let f; =0 otherwise.
Here 6"=|Q| and clearly vxf(x)=wvxf,(z) for every x € Q.
By Schwarz Inequality

$o lvaf(x)ldx < |Q1§palvefi(@)Pdalt
2 1QRIflle = 1QIFE+2)2f [l »

and since 6 21 the result follows.

Using Lemma 1.1. and Lemma 1.3. and the fact that BMO-norms are
translation invariant we see that Theorem 1.1. follows if we can prove:

Let ve 4 and let @ be an open cube, centered at the origin while
@] <1 and let f € C®, then there exists a scalar 4 such that

Q17 §o lvaf@) —Aldz < A,l|fllo »

where A4, is an absolute constant.

To prove this, set f;(y)=f(y) when |y, | <2 for every »=1...n, and let
J1=0 otherwise. Now vxf(x)=vxf;(z) for every x € @ and we consider
9(@) =J p/oxvfy(2).

Since v € 4 we see that ||glly = ||fills £ 4"|fllo and finally Lemma 1.2.
gives that

I/ -nr2*glleMo = 4™ Aullf [l -

The result follows since J,,,,#g =v+f in Q.

ReMARK. The idea to insert the Bessel Potential occurs already in
[1, Theorem 1].

Before Theorem 2 is proved we insert some remarks about #(H*)=
the multiplier algebra over H(R®). Using the fact that

Hp = {ge C®(R"): g€ Cy®(R*\{0})}
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is a dense subspace of H?, it follows easily that if 7' is a translation in-
variant operator on H? then for each fe H! we get

Tf(x) = (2r)-™2 § @O f(E)m(&)déE

where m is a continuous function in R*\ {0} and locally the Fourier
transform of a measure with a finite total mass, that is when
v € Cy®°(R*\ {0}) then y(£)m(&)=/(£) for some u € M(R"). In particular
the point-evaluation m — m(£) is a complex-valued homomorphism on
the Banach algebra #(H*) for every & € R*\ {0}. It follows by Gelfand
Theory that |m(&)| = the operator norm of 7' over H'. Hence m is bounded
and continuous in R"\ {0}, that is .#(H') can be identified with an
algebra of bounded continuous functions in R®\ {0}. In particular the
hypothesis in [1, p. 159, Theorem 7] is redundant. Finally we have inter-
polation between .#(H') and the multiplier algebras over L?, 1<p=<2,
and we conclude the following.

ProrosiTION 1.4. If m € M (H') then m € M (LP) for every 1<p<2 and
here

gy £ An(@—1)Hlmll_g@y)*(Imlleo)*=2

where a=2[p—1 and ||m||,, < |Im|| gz, always holds.

Proor orF THEOREM 2. Translating v if necessary we may assume that
the origin belongs to supp (v). Using Theorem 1.1. and Prop. 1.4. we have
the result when d(v)< 1. Suppose now that d(v)=1 and let v, € &(R")
satisfy 9,(&)=%(d(v)é) which gives that supp(v;)=B". Since the norms
in A (L?) (and in #(H')) are invariant under dilatations we see that
Theorem 2 follows if we can prove that

101l gy S An(1+6(w))™2.

This last estimate follows exactly as in Theorem 1.1. if we instead
employ the dilated Bessel Potential J, satisfying

Jo(€) = (1+0(v)E[2)—4,
where the companion to Lemma 1.2. gives that

o*fllBMo S A,,(d(v))"/zllf fls -
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2. The case when 0 <a <nf4.

Methods and results from [1, p. 156] are used. We treat a normalized
case and set

Ax) = {ve &R : supp(v)<B" and [9(&)| < (1+]E%)},

where 0<ox<nf4.
If ve A(x) and if z=2z+14y, 02 =<1, we define the operator

T,(f)(@) = §(1+ £y 4@ek09(£)f(6)dE ,
where A(2)=(z—1)n/4+«. We get immediately that

(2.1) T2+l = Iflle  for every (real) y .
Now we wish to establish that

(2-2) 70 er = A+ 1y Cw,0,m) | f g1 -
We set

Sf(x) = §(1+|£[2)-netm0(8) f(£)dE
so that 7', (f)=#,(Sf), where

M (g)(x) = §(1+]|E2)imvAei@d (&) dE
It is well-known that

4@z = Aa(1+ Y1)+ llglle
for every real .

So it remains only to estimate S(f). Let us put f =n/2 — 2« and consider
the Bessel Potential J,. Let @ be an open cube, centered at the origin.
We must establish that

(2.3) Q12 §o W prosf(x) — Al dz < C(v, 1) flloo

for some complex scalar A.

If |Q| > 1 then Lemma 1.3. works because ||J,|l; =1 and it is then suf-
ficient to choose C(v,a,n)=3"2 and 1=0.

Let then |@|<1 and put fy(y)=f(y) when |y,| <4 for every v, while
f1=0 otherwise. Now we have that ||J_, *v«fy|l, <16%|f|l, and since
Jg=d p9*J _y,, it follows from Lemma 1.2. that there is a scalar 4 such
that

(2.4) Q17 {o I/ prvsfy(z) —Aldz < 1674, ||f |l -

Finally, set fy,=f~f, and observe that f, has its support well away
from the origin. Hence J p*Ufa=J gevaf, in @, where J s=v(@)J4(x) and
v € C°(R") is such that y(z)=0 for |z| <2 and y(z)=1 for |x|=3.



134 JAN-ERIK BJORK

Recall now that J; is a beautiful rapidly decreasing C*° function if
we avoid a neighborhood of the origin. Since v has a compact support it
follows that J s*v is a C* function, rapidly decreasing at infinity.

But then we can conclude that

I prv4falleo < O(2,00,m)]falleo

where we can use C(v,a,n)=|J s*vll, and this number is easy to estimate
when v € 4(«x).

Since |lgllgmo =119l We have now obtained (2.2) and at this stage we
only have to put z=¢#, where (1 —¢)n =4« and use [1, Corollary 1, p. 156].
This gives an absolute constant 4, such that

ITo(lp = An(1+Clv,0,m)) 1l »

if p=2n/(n+ 4«) and C(v,x,n) is a constant which makes (2.3) valid.
Finally, using dilatations we can easily analyse the constant C(v,«,%)
in Theorem 1 even when v has a large compact support.

3. The periodic case.

Let T* be the unit circle and let Z be the set of integers. From Theorem
1 we obtain the result below.

THEOREM 3. Let 0<x <} and set p=2/(1+2x). If now L={A,} is a
sequence of complex numbers such that |A,| < (1+ |n|)~* for every n, then
we have that

IZ andne™|, < CL)Z ane™,

for every trigonometric polynomial Y a,e™ and where ||-||, is the norm in
Lr(T).

Using the proof in [2, p. 478-479] we can verify that Theorem 3 is
sharp.
For let 0<x <} be given. If k=2 is an integer we choose a (Rudin-
Shapiro) polynomial
pule) = 3 ey(k)e

where ¢,(k)=0 when v is outside (2%,2%+!] and ¢,(k)= +1 or —1 when
2% <v < 2%+, while |P,|, < 42*2 for all 2<g < oo,

Now we set A,(k)=e¢,(k) when ve (2%,2¥+1] and L={2%1,} where
Ay=A (k) if 2¥<v<2k+1 and 4,=0 if v<4. Let T, be the convolution
operator defined by L and let 1<p<2 and 1/p+1/g=1.
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We get
ITL(Plly = 2753 e, ,

where 3, is taken over (2%, 2k+1]. The last term is greater than A,2-%» 2k/»
for a fixed positive constant A4,,.
So if |TL(P)ll, = C(L)||P||, for all trigonometric polynomials P, then
we must have
A 2-k=2kp < O(L)42%2 for k22.

Hence p=2/(26+1) and Theorem 3 is sharp by M. Riesz’ Convexity
Theorem.

4. Added in proof.

Theorem 2 is sharp because the following example can be given. Let
g(x) € Cy*(R*) be a fixed test function such that g(x)=0 when some
|,] >} while g(x)20 and {g(z)dz=1. Let k21 be an integer and con-
sider the 27* lattice points (vy,...,v,), where each v, is an integer be-
tween 0 and 2¢—1 and let s, ... sy, with N =27, be some enumeration
of these points. Choose next numbers {e,}Y, ¢,= +1 or —1, in such a
way that the periodic polynomial

P(E] LY fn) == z avei(‘svvo

satisfies |P(£)| < 2n+nk/2 for every £&.

Put G(x)=2-"—"¥2 3¢ g(x—s,) and observe that |Q(&)|<3(£)| for
every £. Hence G is majorized by the rapidly decreasing function § and
this holds independently of k. The diameter of the support of G(z) is
roughly 2* and we can estimate the norm of the convolution operator
G from below over L?(R") when 1<p<2 as follows.

Fix some fe Cy®°(R") so that f(z)2 0 and {f(x)dz=1 and finally f has
a small support close to the origin. Then the functions

hy(@) = ho(x—3,) = {g(x—s,—y)f(y)dy
have pairwise disjoint supports as v=1,...,N, and we conclude that
IG+fll, = (2~»-"k/2)NVP|ig«f]|,

holds. Hence the norm of the operator T'z=G@=* over L? is at least
2-7mq(2F)n1/p-1/2) where

ag = llg*flp/ 111l

is a fixed positive constant.
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