L^p ESTIMATES FOR CONVOLUTION OPERATORS DEFINED BY

COMPACTLY SUPPORTED DISTRIBUTIONS IN Rⁿ

JAN-ERIK BJÖRK

Introduction.

Let \mathbb{R}^n be the *n*-dimensional euclidean space where $x = (x_1 \dots x_n)$ are coordinate vectors and consider also a dual copy of \mathbb{R}^n with coordinate vectors $\xi = (\xi_1 \dots \xi_n)$. Let $|x| = (x_1^2 + \dots + x_n^2)^{\frac{1}{2}}$ be the euclidean length and $(x, \xi) = x_1 \xi_1 + \dots + x_n \xi_n$ the scalar product.

If $v \in \mathscr{E}(\mathbb{R}^n)$, that is if v is a distribution with a compact support in \mathbb{R}^n , then its Fourier Transform

$$\hat{v}(\xi) = v_x(e^{-i(x,\xi)})$$

exists. Associated with v is the convolution operator T_v , where

$$T_v(f)(x) = (2\pi)^{-n} \int e^{i(x,\xi)} \hat{v}(\xi) \hat{f}(\xi) d\xi = (f * v)(x)$$

is defined for every $f \in C_0^{\infty}(\mathbb{R}^n)$.

Let $\|\cdot\|_p$ be the norm in $L^p(\mathbb{R}^n)$.

THEOREM 1. Let $v \in \mathscr{E}(\mathbb{R}^n)$ and suppose that $|\hat{v}(\xi)| \leq (1+|\xi|^2)^{-\alpha}$ is valid for some $0 < \alpha < n/4$. Then

$$||T_v(f)||_p \leq C(v,\alpha,n)||f||_p$$

for every $f \in C_0^{\infty}(\mathbb{R}^n)$ and where $p = 2n/(n+4\alpha)$.

The proof is based upon a consideration of the limit case when $\alpha = n/4$ and a fairly explicit estimate of $C(v,\alpha,n)$ arises from the proof. Observe that when $\alpha > n/4$ then $\int |\hat{v}(\xi)|^2 d\xi < \infty$ and hence v already exists as a compactly supported L^2 -function and the result in Theorem 1 becomes trivial and is even true when p=1.

Theorem 2. There exists a constant A_n such that if $v \in \mathscr{E}(\mathbb{R}^n)$ satisfies

$$|\hat{v}(\xi)| \leq (1+|\xi|^2)^{-n/4}$$

Received April 1, 1973.

and if

$$\delta(v) = \sup\{|x-y|: x,y \in \operatorname{supp}(v)\},\,$$

then

$$||T_v(f)||_p \le A_n (1 + \delta(v))^{n(1/p - 1/2)} (p - 1)^{-1} ||f||_p ,$$

for every 1 .

The two results above turn out to be easy consequences of the powerful methods developed in [1]. We prove (an inproved version of) the limit case first and deduce Theorem 1 by Complex Interpolation. In Section 3 the corresponding periodic case is described and we prove by explicit examples that Theorem 1 is sharp.

1. The case when $\alpha = n/4$.

We refer to [1] for the definition and the basic properties of the two spaces $H^1(\mathbb{R}^n)$ and BMO(\mathbb{R}^n). The result below is proved in [1, p. 149, Corollary 1].

LEMMA 1.1 (Fefferman-Stein). Let $v \in \mathscr{E}(\mathbb{R}^n)$ and suppose that

$$||v*f||_{\mathrm{BMO}} \leq A_v ||f||_{\infty}$$

for every $f \in C_0^{\infty}(\mathbb{R}^n)$ and some constant A_n . Then

$$||v*f||_{H^1} \le C_n A_v ||f||_{H^1}$$

for an absolute constant C_n .

The (well-known) result below is easy to verify directly.

LEMMA 1.2. Let $J_{n/2}$ be the Bessel Potential of order n/2, that is

$$J_{n/2}(\xi) = (1+|\xi|^2)^{-n/4}$$
.

Then

$$||J_{n/2}*f||_{BMO} \leq A_n ||f||_2$$

for every f.

Let us put

$$\varDelta = \{v \in \mathscr{E}(\mathsf{R}^n): \ \mathrm{supp}(v) \subseteq B^n = \{x \in \mathsf{R}^n: |x| \le 1\}$$
 and
$$|\widehat{v}(\xi)| \le (1 + |\xi|^2)^{-n/4} \ \text{for every } \xi\} \ .$$

THEOREM 1.1. There exists a constant A_n such that if $v \in \Delta$ then

$$||v*f||_{H^1} \le ||f||_{H^1} \quad for \ all \ f \in C_0^{\infty}(\mathbb{R}^n) \ .$$

The proof requires a result which takes care of "an error" in [1, p. 143, line 17-23].

LEMMA 1.3. Let $v \in \mathscr{E}(\mathbb{R}^n)$ be such that $\operatorname{supp}(v) \subseteq \mathbb{B}^n$ and $\|\hat{v}\|_{\infty} \leq 1$. If Q is an open cube in \mathbb{R}^n , whose axes are parallel to the coordinate axes and centered at the origin while its n-dimensional volume $|Q| \geq 1$, then

$$|Q|^{-1} \int_{\Omega} |v * f(x)| dx \leq 3^{n/2} ||f||_{\infty} \quad \text{for } f \in C_0^{\infty}.$$

PROOF. Set $f_1(y) = f(y)$ when each $|y_v| < 1 + \delta/2$ and let $f_1 = 0$ otherwise. Here $\delta^n = |Q|$ and clearly $v * f(x) = v * f_1(x)$ for every $x \in Q$.

By Schwarz Inequality

$$\begin{split} & \int_{Q} |v * f(x)| \, dx \, \leq \, |Q|^{\frac{1}{2}} [\int_{\mathbb{R}^{n}} |v * f_{1}(x)|^{2} \, dx]^{\frac{1}{2}} \\ & \leq \, |Q|^{\frac{1}{2}} ||f_{1}||_{2} \, \leq \, |Q|^{\frac{1}{2}} (\delta + 2)^{n/2} ||f||_{\infty} \, \, , \end{split}$$

and since $\delta \ge 1$ the result follows.

Using Lemma 1.1. and Lemma 1.3. and the fact that BMO-norms are translation invariant we see that Theorem 1.1. follows if we can prove:

Let $v \in \Delta$ and let Q be an open cube, centered at the origin while |Q| < 1 and let $f \in C_0^{\infty}$, then there exists a scalar λ such that

$$|Q|^{-1} \int_{\Omega} |v * f(x) - \lambda| dx \leq A_n ||f||_{\infty},$$

where A_n is an absolute constant.

To prove this, set $f_1(y) = f(y)$ when $|y_r| < 2$ for every $v = 1 \dots n$, and let $f_1 = 0$ otherwise. Now $v * f(x) = v * f_1(x)$ for every $x \in Q$ and we consider $g(x) = J_{n/2} * v * f_1(x)$.

Since $v \in \Delta$ we see that $||g||_2 \le ||f_1||_2 \le 4^n ||f||_{\infty}$ and finally Lemma 1.2. gives that

$$||J_{-n/2}*g||_{BMO} \leq 4^n A_n ||f||_{\infty}.$$

The result follows since $J_{n/2}*g = v*f$ in Q.

REMARK. The idea to insert the Bessel Potential occurs already in [1, Theorem 1].

Before Theorem 2 is proved we insert some remarks about $\mathcal{M}(H^1)$ = the multiplier algebra over $H^1(\mathbb{R}^n)$. Using the fact that

$$H_{\mathbf{0}^{1}} = \{ g \in C^{\infty}(\mathbb{R}^{n}) : \ \hat{g} \in C_{\mathbf{0}}^{\infty}(\mathbb{R}^{n} \setminus \{0\}) \}$$

is a dense subspace of H^1 , it follows easily that if T is a translation invariant operator on H^1 then for each $f \in H_0^1$ we get

$$Tf(x) = (2\pi)^{-n/2} \int e^{i(x,\xi)} \hat{f}(\xi) m(\xi) d\xi$$
,

where m is a continuous function in $\mathbb{R}^n \setminus \{0\}$ and locally the Fourier transform of a measure with a finite total mass, that is when $\psi \in C_0^{\infty}(\mathbb{R}^n \setminus \{0\})$ then $\psi(\xi)m(\xi)=\hat{\mu}(\xi)$ for some $\mu \in M(\mathbb{R}^n)$. In particular the point-evaluation $m \to m(\xi)$ is a complex-valued homomorphism on the Banach algebra $\mathscr{M}(H^1)$ for every $\xi \in \mathbb{R}^n \setminus \{0\}$. It follows by Gelfand Theory that $|m(\xi)| \leq$ the operator norm of T over H^1 . Hence m is bounded and continuous in $\mathbb{R}^n \setminus \{0\}$, that is $\mathscr{M}(H^1)$ can be identified with an algebra of bounded continuous functions in $\mathbb{R}^n \setminus \{0\}$. In particular the hypothesis in [1, p. 159, Theorem 7] is redundant. Finally we have interpolation between $\mathscr{M}(H^1)$ and the multiplier algebras over L^p , 1 , and we conclude the following.

Proposition 1.4. If $m \in \mathcal{M}(H^1)$ then $m \in \mathcal{M}(L^p)$ for every 1 and here

$$||m||_{\mathscr{M}(H^1)} \, \leqq \, A_n(p-1)^{-1}(||m||_{\mathscr{M}(H^1)})^a(||m||_{\infty})^{1-a} \; ,$$

where a=2/p-1 and $||m||_{\infty} \leq ||m||_{\mathscr{U}(H^1)}$ always holds.

PROOF OF THEOREM 2. Translating v if necessary we may assume that the origin belongs to $\operatorname{supp}(v)$. Using Theorem 1.1. and Prop. 1.4. we have the result when $\delta(v) < 1$. Suppose now that $\delta(v) \ge 1$ and let $v_1 \in \mathscr{E}(\mathbb{R}^n)$ satisfy $\hat{v}_1(\xi) = \hat{v}(\delta(v)\xi)$ which gives that $\operatorname{supp}(v_1) \subseteq B^n$. Since the norms in $\mathscr{M}(L^p)$ (and in $\mathscr{M}(H^1)$) are invariant under dilatations we see that Theorem 2 follows if we can prove that

$$\|\hat{v}_1\|_{\mathscr{M}(H^1)} \, \leq \, A_n \big(1 + \delta(v)\big)^{n/2} \; .$$

This last estimate follows exactly as in Theorem 1.1. if we instead employ the dilated Bessel Potential J_{δ} satisfying

$$\hat{J}_{\delta}(\xi) = (1 + \delta(v)^2 |\xi|^2)^{-n/4}$$
,

where the companion to Lemma 1.2. gives that

$$\|J_{\delta} * f\|_{{\rm BMO}} \, \leq \, A_n \big(\delta(v)\big)^{n/2} \|f\|_2 \; .$$

2. The case when $0 < \alpha < n/4$.

Methods and results from [1, p. 156] are used. We treat a normalized case and set

$$\Delta(\alpha) = \{ v \in \mathscr{E}(\mathsf{R}^n) : \operatorname{supp}(v) \subseteq B^n \text{ and } |\hat{v}(\xi)| \leq (1 + |\xi|^2)^{-\alpha} \},$$

where $0 < \alpha < n/4$.

If $v \in \Delta(\alpha)$ and if z = x + iy, $0 \le x \le 1$, we define the operator

$$T_z(f)(x) = \int (1+|\xi|^2)^{A(z)} e^{i(x,\xi)} \hat{v}(\xi) \hat{f}(\xi) d\xi$$

where $A(z) = (z-1)n/4 + \alpha$. We get immediately that

(2.1)
$$||T_{1+iy}(f)||_2 \le ||f||_2$$
 for every (real) y .

Now we wish to establish that

$$||T_{iy}(f)||_{H^1} \leq (1+|y|)^{n+1}C(v,\alpha,n)||f||_{H^1}.$$

We set

$$Sf(x) = \int (1+|\xi|^2)^{-n/4} e^{i(x,\xi)} \hat{v}(\xi) \hat{f}(\xi) d\xi$$

so that $T_{iv}(f) = \mathcal{M}_{iv}(Sf)$, where

$$\mathcal{M}_{iv}(g)(x) = \int (1+|\xi|^2)^{iny/4} e^{i(x,\xi)} \hat{g}(\xi) d\xi$$
.

It is well-known that

$$\|\mathcal{M}_{iy}(g)\|_{H^1} \le A_n(1+|y|)^{n+1}\|g\|_{H^1}$$

for every real y.

So it remains only to estimate S(f). Let us put $\beta = n/2 - 2\alpha$ and consider the Bessel Potential J_{β} . Let Q be an open cube, centered at the origin. We must establish that

(2.3)
$$|Q|^{-1} \int_{Q} |J_{\beta} * v * f(x) - \lambda| dx \leq C(v, \alpha, n) ||f||_{\infty}$$

for some complex scalar λ .

If |Q| > 1 then Lemma 1.3. works because $||J_{\beta}||_1 = 1$ and it is then sufficient to choose $C(v, \alpha, n) = 3^{n/2}$ and $\lambda = 0$.

Let then |Q| < 1 and put $f_1(y) = f(y)$ when $|y_v| < 4$ for every v, while $f_1 = 0$ otherwise. Now we have that $||J_{-2\alpha} * v * f_1||_2 \le 16^n ||f||_{\infty}$ and since $J_{\beta} = J_{n/2} * J_{-2\alpha}$, it follows from Lemma 1.2. that there is a scalar λ such that

$$(2.4) |Q|^{-1} \int_{Q} |J_{\beta} * v * f_{1}(x) - \lambda | dx \le 16^{n} A_{n} ||f||_{\infty}.$$

Finally, set $f_2 = f - f_1$ and observe that f_2 has its support well away from the origin. Hence $\tilde{J}_{\beta} * v * f_2 = J_{\beta} * v * f_2$ in Q, where $\tilde{J}_{\beta} = \psi(x) J_{\beta}(x)$ and $\psi \in C^{\infty}(\mathbb{R}^n)$ is such that $\psi(x) = 0$ for |x| < 2 and $\psi(x) = 1$ for $|x| \ge 3$.

Recall now that J_{β} is a beautiful rapidly decreasing C^{∞} function if we avoid a neighborhood of the origin. Since v has a compact support it follows that $J_{\beta}*v$ is a C^{∞} function, rapidly decreasing at infinity.

But then we can conclude that

$$||J_{\beta}*v*f_2||_{\infty} \leq C(v,\alpha,n)||f_2||_{\infty}$$

where we can use $C(v, \alpha, n) = \|\tilde{J}_{\beta} * v\|_1$ and this number is easy to estimate when $v \in \Delta(\alpha)$.

Since $||g||_{\text{BMO}} \leq ||g||_{\infty}$ we have now obtained (2.2) and at this stage we only have to put z=t, where $(1-t)n=4\alpha$ and use [1, Corollary 1, p. 156]. This gives an absolute constant A_n such that

$$||T_v(f)||_p \le A_n (1 + C(v, \alpha, n))^t ||f||_p$$
,

if $p = 2n/(n+4\alpha)$ and $C(v,\alpha,n)$ is a constant which makes (2.3) valid.

Finally, using dilatations we can easily analyse the constant $C(v,\alpha,n)$ in Theorem 1 even when v has a large compact support.

3. The periodic case.

Let T¹ be the unit circle and let Z be the set of integers. From Theorem 1 we obtain the result below.

THEOREM 3. Let $0 < \alpha < \frac{1}{2}$ and set $p = 2/(1 + 2\alpha)$. If now $L = \{\lambda_n\}$ is a sequence of complex numbers such that $|\lambda_n| \le (1 + |n|)^{-\alpha}$ for every n, then we have that

$$\|\sum a_n \lambda_n e^{int}\|_p \le C(L) \|\sum a_n e^{int}\|_p$$

for every trigonometric polynomial $\sum a_n e^{int}$ and where $\|\cdot\|_p$ is the norm in $L^p(\mathsf{T})$.

Using the proof in [2, p. 478-479] we can verify that Theorem 3 is sharp.

For let $0 < \alpha < \frac{1}{2}$ be given. If $k \ge 2$ is an integer we choose a (Rudin–Shapiro) polynomial

$$p_k(e^{it}) = \sum \varepsilon_v(k)e^{ivt}$$
,

where $\varepsilon_v(k) = 0$ when v is outside $(2^k, 2^{k+1}]$ and $\varepsilon_v(k) = +1$ or -1 when $2^k < v \le 2^{k+1}$, while $|P_k|_q \le 42^{k/2}$ for all $2 \le q \le \infty$.

Now we set $\lambda_v(k) = \varepsilon_v(k)$ when $v \in (2^k, 2^{k+1}]$ and $L = \{2^{-k\alpha}\lambda_v\}$ where $\lambda_v = \lambda_v(k)$ if $2^k < v \le 2^{k+1}$ and $\lambda_v = 0$ if $v \le 4$. Let T_L be the convolution operator defined by L and let 1 and <math>1/p + 1/q = 1.

We get

$$||T_L(P_k)||_q = 2^{-k\alpha} ||\sum_k e^{int}||_q$$
,

where \sum_{k} is taken over $(2^{k}, 2^{k+1}]$. The last term is greater than $A_0 2^{-k\alpha} 2^{k/p}$ for a fixed positive constant A_0 .

So if $\|T_L(P)\|_p \le C(L)\|P\|_p$ for all trigonometric polynomials P, then we must have

$$A_0 2^{-k\alpha} 2^{k/p} \leq C(L) 42^{k/2}$$
 for $k \geq 2$.

Hence $p \ge 2/(2\alpha + 1)$ and Theorem 3 is sharp by M. Riesz' Convexity Theorem.

4. Added in proof.

Theorem 2 is sharp because the following example can be given. Let $g(x) \in C_0^{\infty}(\mathbb{R}^n)$ be a fixed test function such that g(x) = 0 when some $|x_v| > \frac{1}{3}$ while $g(x) \ge 0$ and $\int g(x) dx = 1$. Let $k \ge 1$ be an integer and consider the 2^{nk} lattice points (v_1, \ldots, v_n) , where each v_i is an integer between 0 and $2^k - 1$ and let $s_1 \ldots s_N$, with $N = 2^{nk}$, be some enumeration of these points. Choose next numbers $\{\varepsilon_v\}_1^N$, $\varepsilon_v = +1$ or -1, in such a way that the periodic polynomial

$$P(\xi_1 \ldots \xi_n) = \sum \varepsilon_n e^{i(s_v, \zeta)}$$

satisfies $|P(\xi)| \leq 2^{n+nk/2}$ for every ξ .

Put $G(x) = 2^{-n-nk/2} \sum \varepsilon_v g(x-s_v)$ and observe that $|\hat{G}(\xi)| \leq |\hat{g}(\xi)|$ for every ξ . Hence \hat{G} is majorized by the rapidly decreasing function \hat{g} and this holds independently of k. The diameter of the support of G(x) is roughly 2^k and we can estimate the norm of the convolution operator G* from below over $L^p(\mathbb{R}^n)$ when 1 as follows.

Fix some $f \in C_0^{\infty}(\mathbb{R}^n)$ so that $f(x) \ge 0$ and $\int f(x) dx = 1$ and finally f has a small support close to the origin. Then the functions

$$h_v(x) = h_0(x - s_v) = \int g(x - s_v - y) f(y) dy$$

have pairwise disjoint supports as $v=1,\ldots,N$, and we conclude that

$$||G*f||_p = (2^{-n-nk/2})N^{1/p}||g*f||_p$$

holds. Hence the norm of the operator $T_G = G*$ over L^p is at least $2^{-n}a_0(2^k)^{n(1/p-1/2)}$ where

$$a_0 = ||g*f||_p/||f||_p$$

is a fixed positive constant.

REFERENCES

- C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972). 137-193.
- A. Figa-Talamanca, G. I. Gaudry, Multipliers of L^p which vanish at infinity, J. Functional Analysis 7 (1971), 475-487.

UNIVERSITY OF STOCHHOLM, SWEDEN