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SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS
WITH VALUES IN AN ORDERED VECTOR SPACE

JOCHEM ZOWE!

Abstract.

It was shown by Valadier [8] that a convex function defined on a
topological vector space X with values in a topological order complete
vector lattice Y is subdifferentiable (even regularly subdifferentiable) at
each point, where the function is continuous. We will prove that under
some assumptions on X and the order cone C this even holds, if Y is
an ordered topological vector space. Furthermore we will see that under
our assumptions on X and C the Gateaux differentiability of a convex
function is equivalent to the existence of only one subgradient. Our
result apply e.g. if X is a separable reflexive Banach space and Y is a
semireflexive locally convex space ordered by a cone with a weakly
compact base.

1. Introduction and notations.

Throughout the following let X and Y be separated locally convex
vector spaces over R and let Y be ordered by a closed convex proper
cone C. We write 2<y for z,ye Y if y—ze C. With X', Y’ we denote
the topological duals of X and Y and with (-,-) the canonical bilinear
forms on the dualities (X,X’) and (Y,Y’). Furthermore let o(-,-),
7(+,*), B(+,*) stand for the weak, Mackey- and strong topologies with
respect to the dual pairs (X,X') and (Y,Y’). We write for example
X', for X’ under o(X’,X), No(X',X) for the neighbourhood filter of 0
in X', A°, (4,) for the interior (closure) of a set A< X’, ete. If A<X’
is convex then A,= A, and we omit the subscript.

We will consider a function f mapping a nonvoid convex subset K of
X into Y such that for all z;,z,€ K and AeR, 0<i<]1,

S+ (1 =A)zg) < Af(2y) +(1—2)f(xs) -
Received August 8, 1973.
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[ is called a convex function. It is assumed throughout the following
without further mentioning that

(1.1) =z,€ K° and f is continuous at x,, when f is regarded as a mapping
of X into Y.

What we are interested in, is the set
(1.2)  Of(xy) := (T e L(X,Y): T(x—xy) =f(x)—f(x,) for all z € K}

of subgradients of f at z, (here £ (X, Y) stands for the set of continuous
linear mappings from X into Y). of(x,) is called the subdifferential of f
at x,. In the special case ¥ =R the subdifferential is a nonvoid convex
compact subset of X', (see [4]). Each ' in the dual cone of C

C':={yeY: (Cy) =0},
defines a convex functional
(1.3) y'of(x) := (f(x),y’Y forall xzeK.
Therefore

(1.4) Oy of )(=xy), ¥’ €', is @ nonvoid convex compact subset of X', .
(Here

0y of )wy) = {&' € X' : {w—wy,2") <y of (@) —y'of(x,) for all ze K}.)

Valadier [8] showed that an analoguous result holds for f itself, if Y is
an order complete vector lattice. In his proof this assumption on Y is
essentially used to show that of(z,) is nonvoid. We are going to demon-
strate that this result remains valid for an ordered vector space, if
(C")°,+9. Roughly speaking, our idea is the following: First note that
the transpose S of a T € of(x,) is a continuous linear mapping from Y,
into X', and that Sy’ € d(y'of )(x,) for all y' € C'. Conversely, we will
construct a continuous linear mapping S from Y’ into X', with

Sy € dy'of )z,), Yy eC,

and the transpose will belong to ¢f(x,). The existence of a §: (' - X’
such that Sy’ € 0(y' of )(x,) is an easy consequence of (1.4). The important
point is that under the assumption (C’')°,+@ the mapping S can be
chosen to be linear and continuous.
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2. Auxiliary propositions.

For the proof of our principal auxiliary result, proposition 2.5, we need
some further information about the sets o(y'of)(x,), y € C'. First let
us state some simple well-known facts. The directional derivative of
y'of, y' € C', at x, in the direction &,

(¥'of ) (wo; h) = HimA(y'of (@ +Ah) —y'of (zy)), 40, 2 >0,

is a positively homogeneous, subadditive functional in A, defined for all
h e X. We have

(2.1) (y'of)'(w; b) = inf{A-(y of (wo+Ak) —y'of (%)) : 4>0,x,+Ah € K},
and thus

ProPoSITION 2.1. Let y' € C'. Then «' €0y’ of )(x,) if and only if
b2’y < (Y'of)(xg; h)  forall he X .

ProrosiTION 2.2. Let ' € C' and hye X. Then

Chos o' = (Y’ of ) (o5 o)
Jfor some xy' € 0(y of )(,).

Proor. Consider the convex functional p(h) : = f'(z,; h). We have

P(h) < Y of(xy+h)—y of ()

for & small enough such that z,+ k€ K, and because of p(h)+p(—h)=
p(0)=0 we get

p(h) < max{|y’of (xy+ k) —y of (x,)l, |y’ of (o) =y of (o — A1} .

Since y’of is continuous at z, by assumption (1.1), p must be continuous
at 0. From

plho+h) < plhe)+p(h) and  plhe) < plho+h)+p(—h)
we get

—p(=h) < pho+h)—plhe) < P(h)

that is, p is continuous at A, as well. But then p has a subgradient at h,
that is, for some z,’ € X’

Ch—hg, gy < p(h)—plhy) forall heX.
h=0 and h=2h, show
(=ho2y) < —plho), (hose) < P(Zho) —plho) = Plhy)
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and thus (o, 76"y =p(ho) = (' of ) (o; o) and
(hay'y < p(b) = (y'of ) (xy; B) forall heX .
From proposition 2.1 we get x,’ € 0(y'of )(,)-

Because of proposition 2.1 the hyperplane
{&' € X" : (hoya')=<ho, %o )}

supports o(y'of )(x,) at x,’ and consequently z, is a boundary point of
o(y' of )(x,). It will be a crucial fact for our construction below that under
some assumptions on X there exist boundary points 2’ of d(y'of )(z,) and
supporting hyperplanes H with Hno(y of )(z,) = {z'}. To this let us call
a point z, of a convex set 4 in a locally convex vector space £ an exposed
point of 4, if there exists [ € £’ such that l(z,) > () for all x € 4, z+ =z,
(see [2]). For later use we note a strengthening of the Krein-Milman-
Theorem [2]:

LemMa 2.3. If A is a convex weakly compact subset of a Banach space E
and E is either separable or uniformly convex, then A is the closure of the
convex hull of the exposed points of A

A = clconvexpd .

In the following we denote by expd(y’of)(x,), ¥’ € C', the set of ex-
posed points of o(y’'of )(x,) where X’ is endowed with any topology I~
consistent with (X', X) (that is, o(X',X) <7 < (X', X)). Since (X',)' =
(X',)’, this set is well-defined.

If 2y € expo(y’'of)(x,) then for some hye X

Choyte') > Cho,’)  for all @' € Ay’ of )(@,), ="+,
and from proposition 2.1 and 2.2 we obtain (k") = (¥ of ) (%y; k),
that is,

ProrosiTioN 2.4. Let y' € C' and ' € expo(y'of )(x,). Then there exisis
ho € X such that

Cho ') < Kby = (Y'of) (o5 ko)  for all z' € 0(y of )(wo), &’ +2y" .
We are now prepared to prove our main auxiliary result:
ProrosITION 2.5. Suppose y,’ € (C')°, and =z, € convexpo(y, of )(z,).

Then there exists a Se L(Y',X',) such that Sy’ €0(y'of )(x,) for all
y' € C'. Moreover, Sy, =x,'.
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Proor. It is easily seen that it is sufficient to prove the assertion
for z,’ € expo(y, of )(x,). Let x,’ be such an element. To y," and z, fix
h, as in proposition 2.4 and then choose for every 3’ € ¢’ an element z’
in X', say Sy’, such that

(2.2) Sy' € o(y'of)(@), <ho,SYY = (Y'of ) (o5 bo) -
That this can be done is the contents of proposition 2.2. Now let
y = % Ay, 9/ €C, 2,20 and k>1.

Going back to the definition of o(y'of )(x,) and (y'of ) (z4; hy), it is easily
verified that (2.2) holds as well if we replace Sy’ by 3¥_,1,8y,". Con-
sequently

2.3)  SCk. Ay) =3k, A48y, forall y/ eC’, 4,20, k=1,

if we assume that Sy’, for y' € C’, is uniquely determined by (2.2).
Because of proposition 2.4 this is true for y,’, so that Sy, =z,’. Now
suppose that for some y,’ € (', (2.2) is satisfied by z,’,2z,”, =,"+2,". Since
Yo € (C")°, we can choose 0 <4< 1 small enough such that
’ 1 ’ }' ’ ’

Yo' i= % Ty €0
thus Sy,’ is defined. But then (2.2) holds for y, =4y, + (1 —4)y,’, if we
replace Sy,’ by

o' i=Awy +(1-A)8y,” or a:=Ax"+(1-2)8yy,

and thus Sy, =2'=2"" in contradiction to our assumption x,'+z,”". So
we see that § maps ¢’ “linearly” in the sense of (2.3) into X’. Since
(C")°,+9, every y’ € Y’ is representable in the form y' =y,’ —y," where
y1',ys € C'. If y' =y,' —y,’ is another representation of y’ with y,’,y," € (',
then y,"+y,' =y5' +y,’ € C' and from (2.3) we obtain

Sy,'—8y,' = Syy'—8y," -
Thus by
Sy := 8y, — 8y, where y'=y"1-¥, ¥1i’\9x' (",
8 is uniquely extended to all of ¥. Of course, § is linear, Sy’ € 9(y’of )(x,)
for y' € C' and Sy, ==,’.
It remains to prove the continuity of 8. To this end, let

U:={z'eX: [(h,2')| <1}, MeX,

be given. We choose A > 0 small enough such that z, + Ak, € K and define
VeN«(Y',Y) by
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Vi={eY: Ky,yDdl<ii=1,2}
where

Y11= f(@o+Ahy) —f(2o),  Ya := fl@g) —f(xo—Ahy) .
For y' € ¥nC’ we obtain from proposition 2.1, (2.1) and the definition
of V ’ ’ ' '
(Ahy, By') < (y'of ) (w5 Ahy) < Cyry') < 2
and similarly (—2k,,8y’> <{—y,¥y') <A, that is,
S(VnC') = {&' e X' |(Ahy, @) <A} =TU.

Since (C')°, 3@ there exists a convex symmetric W e Nv(Y',Y) and a
y' € C' such that y' + W<C', y'+ W<V and thus

2W=W-W=u+W)-@y'+W)<¥VnC'-VnC.
We get
SCW)<8(VnC'-¥VnC')<=U-U =2U.

This completes the proof.
Taking the adjoint of the above S we obtain

ProprosITION 2.6. Suppose X is a Mackey space (that i3, X has the
topology ©(X,X')), y,' € (C')°, and z, € convexpo(y, of )(x,). Then there
exists a T € of (x,) such that y,' oT =x,'.

Proor. Let S be the above constructed mapping and define for every
z € X a linear form 7z on Y' by

Tz,y'y:= (x,Sy’) forall y €Y.
Since Se L(Y',X’',) we have Tze(Y')=Y for z€ X; but then
Te#X,7Y,) and furthermore 7T € £(X, Y), since X is a Mackey space
(see [6, chapter IV, 7.4]). By construction
o' oT)(=) = {Tx,y,) = (%, 8yy") = <@,%0")

for all z € X, that is, y,'oT =2,'. ‘
Now assume that 7T ¢ of(x,), hence T(Z—=z,)%f(Z)—f(x,) for some
Z € K. Then the compact convex set {z},
z 1= f(@) —flao) — T(Z— ) ,

and the closed convex set C can be strictly separated by a closed hyper-
plane, that is, for some '’ € ¥’ and AR

{&y") > 4> (zy) forall yeC.
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Since C is a cone, we see that y' € C', 1<0 and thus {z,3') <0, that is

@2, 8y') = (T(@—%),y") > Y of(®) —y of (%)
in contradiction to Sy’ € (¥ of )(x,).

3. Main theorems.

In order to be able to apply proposition 2.6 we have to make two
assumptions: (C')°,+@ and expo(y'of)(x,) +D for some y' € (C')°,. Be-
fore we give a condition guaranteeing the existence of exposed points,
let us note a simple consequence of (C')°,+@. To this end, remember
that the order cone C is called normal with respect to a topology 7 on Y,
if there exists a base of neighbourhoods ¥ of the origin in J such that

[u,2] :={yeY: usysz} <V if uzeV.
We have
ProrositioN 3.1. If (C')°, D then C is normal in Y .
Proor. Since (C')°,+@ each y,"€ Y’ is representable in the form
Yo' =91'— Y2’ Y1,y € C'. Now
peY: [(yyHl<l,i=12} = {ye Y : Ky,yHI<2};
consequently the sets
yeY: Kyy/dl<1,i=12,....m}, y/ eC,
form a base for No(Y, Y’). But then the assertion follows easily from the
fact that for y,/ € ¢’ and uSy=<z
w9y < <4:9) < 2y

Now let X be semireflexive and normable (hence a reflexive Banach
space) and either separable or smoothly convex. Then X’ is a Banach
space as well and furthermore separable respectively uniformly convex
(see [3, § 26,10, (12)]). From (1.4) it follows that o(y'of)(w,), ¥’ € (', is a
nonvoid convex o(X’,X'’)-compact subset of X’ ; hence by lemma 2.3

Lemma 3.2. If X is a reflexive Banach space and either separable or
smoothly convex, then

expo(y’of)(x,) £ @ forall y'eC'.
3(y'of (o) = cleonvexpd(y'sf)(a,) -
(Here the closure can be taken in any topology consistent with (X', X).)

Moreover
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REMARK. Lemma 3.2 applies for instance to X =1 and X=1L»,
l<p<oo.

Now we can state our first theorem. The central result will be that
of (z,) is nonvoid; the other points are proved similarly as in [8].

TrEOREM 3.3. If

(a) X is a reflexive Banach space and s either separable or smoothly convez,
(b) (C')°:+9,

then of(x,) is a nmonvoid convex equicontinuous subset of L(X,Y,).
If, furthermore,

(¢) all order intervals [u,z] are relatively compact in Y,
then of (x,) 18 compact in L (X,Y,).

(Here Z,(X,Y,) is the space #(X,Y,) endowed with the topology of
simple convergence.)

ProoF. of(x,)+@ is an immediate consequence of assumptions (a),
(b), lemma 3.2 and proposition 2.6. The convexity of of(z,) is obvious.

Now let Ve No(Y,Y') be given; as shown in the proof of proposition
3.1, we may assume that V is symmetric and that [u,z]<V if u,z€ V.
Because of the continuity of f in z, there exists a symmetric neigh-
bourhood U of 0 in X such that f(z,+ U)—f(x,) < V, that is,

f@o+h)—f@) €V, [flx))—fl@p—h)e -V =V

for all h € U. From ThZf(xy+h)—f(x,) and T(—hk) < f(z,—h)—f(z,) for
all 7' € of(z,) and he U we get

Th e [f (@) —f(xo—P), flxo+h)—flz)] = V,

showing that of(a,) is an equicontinuous subset of £ (X,Y,).

As we have seen, for each & € U the set {Th: T € of(x,)} is contained
in some order interval and by (c) in a relatively compact subset of Y.
Since U is absorbing this holds for all A € X ; hence of(x,) is relatively
compact in Z(X,Y,) (by [1, chapitre 3, § 3, n° 5]). The proof will be
finished if we can show that 9f(z,) is closed in Z(X,Y,). To see this,
note that L(X,Y)=2(X,Y,). In fact L(X,Y)<c¥L(X,Y,) is trivial.
Now for Te £(X,Y,) and y' € Y’, the mapping = - {(T'z,y’) is a con-
tinuous hence weakly continuous linear form on X, which is equivalent
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to T'e £(X,,Y,), and, since X is a Mackey space, T' € £(X,Y) (by [6,
chapter IV, 7.4]). Thus
f (@) = Nzex ('€ L(X,Y): T(x—2y)<f(x)—fl,)}
= nxeK {T € .?(X, Yu) : T(z“xo) Ef(x) ’f(xo)‘a}

and the theorem follows from the fact that for each x € X, the mapping
T —>T(x—=z,) from £ (X, Y,) into Y, is continuous, and that C is closed
inY,.

REMARK. Assumption (a) was only needed to guarantee the existence
of at least one exposed point in o(y'of)(x,) for some y’ € (C')°,. Our
theorem holds, of course, with any hypothesis yielding the existence of
such a point.

In section 4 we will give a condition for ¥ and C under which the
assumptions (b) and (c) are satisfied.

The function f is even regular subdifferentiable at x, in the following
sense

THEOREM 3.4. Under the assumption (a), (b), (c) of Theorem 3.3:
y'o0f(xy) = 0y of )(x,) forall y €C'.
Proor. Note first that y'oof(z,) <0(y of )(x,). Thus lemma 3.2 implies
Y oof(x,) < o(y'of )(x,) = clconvexpd(y'of)(x,) for y'eC’.
From proposition 2.6 we get
convexpo(y'of )(z,) < y oof(x,) for y' e(C)°,.

Now for each y’' € Y’, the mapping 7 — y'oT maps £ (X,Y,) continu-
ously into X', and consequently y’'o9f(z,), for ' € €', is compact in X’ .
The assertion follows for ¥’ € (C')°, from the above inclusions. Now, sup-
pose ' € (y'of )(x,) but z’ & ¢’ 0df(x,) for some y' € C’, y’ ¢ (C')°,. Then
by a separation argument
(3.1) @ +U)n (yoof(x)+U) = @
for some UeNo(X',X), say U={ueX': KZ,u)|<1}. For a fixed
¥ €(C')°, and z," € d(y, of )(x,) we consider the sequences

¥ = o+ (=g, = e (L=, =12,

Then ;' € 2’ + U for j larger than some j,. Moreover, it is easily verified
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that ;" € 9(y; of )(z,) for all j, and, since y;’ € (C')°,, that ;' € y; 00f(x,).
Hence
(3.2) z;' € (&' + U) n y;00f(xy) for j=j, .

Since of(x,) is compact in Z(X,Y,), there exists A>0 such that
KTZ,y," —y')| <4 for all T € of(x,); hence

K&, (45’ —y')e )| = j7KTZ,y,' —y")] < 1

for j larger than some j,, that is,

Y5 0o (@y) < y'odf(@e)+ U ,
and because of (3.1),
@' +U) nyy oof(x,) = @

for j=j;. This contradicts (3.2).

ReMARK. The assumptions of the above theorems are, for example,
satisfied in the special case X =R", ¥Y=R™ and C any closed proper
convex cone in R™. Since R™ is order complete if and only if the closed
cone C is generated by m linearly independent elements, our theorems are
in the finite dimensional case a direct generalization of the results given
by Valadier.

In order to give an example, where theorems 3.3 and 3.4 do not hold,
let Y be an ordered vector space with topology 4 >o(Y,Y’). Define
X:=Y, and consider any fe #(X,Y,) but f¢ L(X,Y) (for example
f(@):=z for z € X). f is a convex mapping satisfying (1.1) for z,=0. It
is easily verified that 9f(0)=@ but o(y'of)(0)+ .

4. Cones with a compact base.

We will give a condition for ¥ and C, under which (C’)°,+@ and all
order intervals are relatively compact in Y. In order to do this remember
that a nonempty convex subset B of C is called a base for C if each
y € C, y+0, has a unique representation y=24b, where be B, AR, 1>0
(see [5, chapter I, § 3]). If (C")°,+@ and y,’ € (C")°, then the closed con-
vex set

B:={yeC: (y,9,>=1}
is a base for C. Now

Ky,y'> <1 for yeBand ¥y e U := (—y/’+C')n(y' -C),

and, since U € N©(Y',Y), the base B is an equicontinuous subset of
(Y’,)’=7Y. By the theorem of Alaoglu-Bourbaki:
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ProposiTioON 4.1. Suppose (C')°, %D and y, € (C')°,. Then
B={yel: {yy>=1}

18 a weakly compact base for C.

If Y is semireflexive then the converse of 4.1 holds:

PrOPOSITION 4.2. Suppose Y is semireflexive and C has a weakly com-
pact base B lying in a closed hyperplane H not containing 0. Then (C')°,+ Q.
Furthermore, all order intervals are relatively compact in Y .

Proor. Let BcH={ye Y:{y,y,’y=1} for some y,' € Y'. Since B is

a base for C we see that y,’ € C'. We will show that

(%901 = (=%’ +C") n (yy' = C)
is a barrel in Y’_ (that is, a convex circled closed and absorbing set) and
thus an element of N¢(Y’,Y), since Y’, is barreled (by [6, chapter IV,
5.5]). But then (C')°,+ @, since

Yo +[=%"%'1<C".

Moreover, we see that C is normal in Y, (by proposition 3.1) and thus
all order intervals are bounded in Y, hence relatively compact in Y,
(by [6, chapter IV, 5.5]).

It is easily verified that [—y,’,¥,] is convex, closed and circled since
Yo' € C'. In order to see that [ —y,’,y,] is absorbing let y," € Y’ be given.
We will show that y," € Al —y,’,y,] where A>0 is such that B<AU for

U:={yeY: yyHl<1};

since B is compact in Y, such a A exists. Now, assume y," ¢ Al —¥y,',%o'],
that is,

Ay dyy —C" or Ay é& —y/'+C".

Let us consider only the case A-1y,’ ¢ y,'—C’ (the other assumption can
be dealt with similarly), that is,

zl := yol_l_lyll ¢ Cl .
By a separation argument there is a y € Y, y=+0, and an x € R such that
(Y, ) > a > (y,2’) forall y €C'.

Since C is a cone, we get <0, yeC":={ue Y:{(u,C')>0} and, by
the bipolar theorem, y € O, that is, y=pb where b € B, #>0. Thus



80 JOCHEM ZOWE

BKy,2') = b,2) = by -4 Kby) < af~1< 0,
hence A-1(b,y,") > {b,y,'> =1, that is, b & AU in contradiction to the choice
of 4.

From proposition 4.2. we get

THEOREM 4.3. Let Y be semireflexive. Then theorem 3.3 and 3.4 hold if
the assumptions (b) and (c) are replaced by

(b") C has a weakly compact base lying in a closed hyperplane not running
through 0.

Remark. It is easy to construct closed proper convex cones C satis-
fying (b’). For this purpose let H be a closed hyperplane in ¥ not con-
taining 0, take a nonempty convex weakly compact subset B in H and
define C:= U,,(2B.

5. Subdifferentiability and Gateaux differentiability.

Let us note an interesting conclusion from proposition 4.1. Recall
that the infimum (if it exists) of the set

{AY(f(wo+ AR) — f(xy)) : 2>0, xy+ Ak € K}

is called the directional derivative f'(xy; h) of f at z, in the direction h
(cf. [8]).

THEOREM 5.1. If (C')°,+@ then f'(x,; h) is defined for all he X. If,
in addition, C is normal, then

f'(@g; B) = LmA-Y(f(xy+ Ak) —f(x,)), A—>0,41>0.

Proor. Let A € X and assume z,+ % € K (otherwise replace & by 1A,

A> 0 sufficiently small). For 0<ux<v<1 we have
v—

St ) = £ (Z=E vt (o)) < T2 fla) +E fl 4 o1

and hereby
(B.1)  uflwo+uh)—f(m) S v f(@g+oh)—f@y), O<psv<l.
Similarly one gets
S(@o) —f(@wg—h) S p(flwo+ph)—flz,)) for O<pu<1
and thus with
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Yn 1= 0(f(@o+nth) —f(2o)) —f(@o) +f(@o—h), n=1,2,...,

we have
02y,2y, fornz>m, n,meN,.

We will show that the sequence {y,},.y converges in Y, to some y.
This yields for each n,e N that

yECl{an nzno} < CI(yno_C) = yno_C’

that is, y is a lower bound for {y,},.n. If 2z is any other lower bound,
that is, z<y, for all n, then y,—2€C and thus y—ze C=C, hence
y=inf{y,}. The first part of the assertion is an easy consequence from
this.
As shown in section 4 each y,’ € (C’)°, determines a representation
Ypn=~,b, where
boeB:={yeC: (yy/)=1}

and 4, >0. From 0=y, <y, for n>m we obtain 0<4, <4, so that {4,}
converges. Moreover, for some 4> 0 sufficiently large {y,} <conv(0UAB).
As conv(0UAB) is a compact subset of Y, the convergence of {y,} will
follow, if we can show that {y,} is a Cauchy sequence in Y. To see this,
let €Y' be given. Then y' =y,"—y,” where y,,y,’ €(C’)°,. If y,=
& Uy =f,v, are the representations of y, € {y,},.n With respect to the
bases given by y,’,y,’, then

KY:i—= 459 < KYi— Y59 )+ 1Ky = Y5920 = log— o1 + 18— Byl

and this converges to 0, if ¢,j — co. Thus {y, } is a Cauchy sequence in Y.

Since C is normal in Y, (by proposition 3.1), it is an easy consequence
of (5.1) that

f'(xo; B) = LimA-Y(f(xy+ Ah) — f(x,)), A—>0,A>0,

in Y. If in addition C is normal in Y, this even holds in Y (by [5, chap-
ter 2, 3.4]).

Theorem 5.1 shows that the above definition of the directional deriva-
tive is in accordance with the definition used in 2.
Recall that f is called Gateaux differentiable at x,, if

Hm A=Y f(zy+ AR) —f(#,)), 4 -0,

exists for all he X ([3, § 26,4]). Since for a convex function f: R» - R
the partial derivatives (if they exist) are continuous (see [7, Theorem
4.4.7]), the Gateaux- and Fréchet-differentiability coincide for such an f.
Thus 5.2 is a generalization of the well-known theorem that a convex
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function f: R® — R is differentiable at z, if and only if f has a unique
subgradient at x, (that is, there exists only one ‘“‘nonvertical” supporting
hyperplane at (x,,f(x,)) to

{(z,2) e R+ : f(x) <2})
(cf. [7, Theorem 4.4.6]).

THEOREM 5.2. If assumptions (a), (b), (c) of theorem 3.3 hold and if C
18 normal in Y, then f is Qateaux differentiable at x, if and only if f has a
unique subgradient at x,.

Proor. Suppose
d(xg; b) := limA-1(f(zy+ Ah) —f(z,)), A—>0,

exists for all » € X. Let T' € of(x,). Then for 4 € X and all 1 > 0 sufficiently
small
ATh = T(xy+2h—o) < fl@o+Ah)—f(x,) ,

hence Th <d(zy; k). For —h we get
—Th = T(~h) S d(@y; —h) = —d(wy; h)

and thus Th=d(z,; h) for all A, which shows that 7' is uniquely deter-
mined.

Now, suppose that f is not Gateaux differentiable at z,, and let us
show that of(x,) contains at least two elements. From theorem 5.1 we
get f'(2y; b))+ —f'(xy; —h) for some A, hence

(f'(awos B), Y + (—f'(@o; —h),y") for some y'eC’,
that is,
@' of ) (s B) + —(y'of ) (o5 —h).
We choose z,’,z,’ € 0(y’of )(z,) as in proposition 2.2,
(b)) = (y'of)'(@wo; B)  and  (—h,z)") = (y'of)'(@; —h),

and thus (h,z,")+(h,x,"), that is z,"+x,". The remaining part of the
proof follows from theorem 3.4.

Note AppED IN PROOF. Recently M. M. Day pointed out that Lemma
2.3 holds without the assumption that E is either separable or uniformly
convex (M.M. Day, Normed linear spaces, 3. edition, Springer-Verlag,
Heidelberg - New York, 1973, ch. III, 5, 5a). Consequently in Lemma 3.2
and Theorem 3.3 the hypothesis that X is either separable or smoothly
convex can be omitted.
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