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THE EXTREMAL CONVEX FUNCTIONS
SOREN JOHANSEN

1. Introduction and summary.

We shall consider the convex cone K of finite continuous convex func-
tions defined on a convex set K in R2 A large class of extremal functions
is identified and it is proved that the extremal functions are dense in K.

Thus the results are very different from the results obtained for convex
functions on intervals, where all the extremal functions are of the form
avb for some affine functions @ and b, see Blaschke and Pick [1].

It is easily seen that

Kn(-K) =4,

where A denote the affine functions. Hence the cone K is not pointed
and the usual definition of an extreme point has to be modified as
follows:

DeriniTiON. Let f, g and & be elements of K, then f is called extremal
if for all g and A such that

J=1@g+h)
there exist a constant « >0 and an affine function a, such that

f=og+a.

We shall apply the following concepts from the theory of convex sets
and functions, see Rockafellar [2].

A polyhedral set is a closed convex set which is the intersection of a
finite number of halfspaces.

A polytope is a compact polyhedral set.

A face of a polyhedral set P is a subset F'— P with the property that

xecF,yeP, zeP, x=4(y+2) => yeF, zeF.

The 0 dimensional faces are the extreme points or the vertices. The
1-dimensional faces are the edges. A polyhedral set is bounded by a
finite number of edges and has a finite number of vertices. A polytope
is the convex hull of its vertices.
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A family of polyhedral sets P,,. . .,P,, is called a covering of the convex
set K if
Kc<cPu...uP,
and
riP,nriP; = @, i%j.

Here ri denotes the relative interior. The order of a vertex of a polyhedral
set in the covering is the number of polyhedral sets which contains it.
Let a,,...,a, denote a family of affine functions, then

f= max; s,

is called a polyhedral function and it is seen that it is convex and con-
tinuous, and that the sets

P; = {f=a}, dimP;=2,

give rise to a covering of R?%, and therefore of K, by polyhedral sets.

The class of extremal functions on R? which is found here can be
described as polyhedral functions which induce a covering where the
vertices are of order 3, see Theorem 1.

An alternative way of describing them is as follows: consider the
cylinder

C = {(x,u): u20, xeR}.

Any affine function a € 4 can be thought of as cutting away from C
the set
{(x,u) : 02 pu=a(z), e R}

After having cut C by means of the affine functions a,,...,a, we are
left with the epigraph of f=0va,v...va,

C, = {(z,u): p=f(z), xeR2}.

If each function a,, m=1,2,...,n is chosen such that it does not cut
through an extreme point of C,,_; then f will be extreme, since then the
vertices of the covering induced by f will have order 3.

The result that the functions thus constructed can approximate any
continuous convex function f uniformly on a compact set is now rather
obvious since the epigraph of f can be cut out of C by continuing the
above procedure, each time avoing the vertices already created, see
Theorem 2.

The actual proofs for convex sets in R? are more complicated since
we need extra conditions to ensure that there are enough vertices inside
K, see the lemma.
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2. A combinatorial lemma.

LemMma. Let C be an open convex set of dimension 2. Let P,,...,P,, be
a covering of C with convex closed polyhedral sets of dimension 2 such that

1) Each polyhedral set has a vertex tn C.

2) Any two vertices in C can be connected by a path of edges in C.
3) No vertex is in the relative interior of an edge.

4) Each vertex is of order 3.

Let finally f be a continuous function which is affine on each P, t=1,...,m.
Then if f=0 on two polyhedral sets with a common edge then f=0 on C.

Proor. Let P, and P, have a common edge L=P,nP, and let f=0
on P,uP,. We want to prove that there is a third polyhedral set P,
which has an edge L; in common with P; and an edge L, in common
with P,, then since f is affine on P; and 0 on L, and L,, the condition 3)
will ensure that f=0 on Pj.

If LnC contains no vertex of P, (or P,) then L would bisect C, such
that P, and P, would be on different sides of L. Now P, and P, each
have a vertex in C by condition 1), and by 2) they can be connected by
a path of edges inside C. This path must meet LnC and hence LNC
does contain a vertex. Let therefore ¥V, be a vertex in LnC. Since V,
is of order 3 there is a third polyhedral set P, which meets P, and P,
at V,. This set clearly has a common edge with P, and with P, and by
the above argument f=0 on Pj.

This was the start of the induction and we can now prove that the
conditions 1) through 4) are sufficient that the presented argument
spreads to all of C.

Let us assume that f=0 on

Ck=P1U...UPk, (kém),

which is connected and contains a vertex in the interior, namely V,.

If O\ C, =@ we have proved that f=0 on C. Otherwise let z € C\ Cy,
and let P be a polyhedral set which contains z. Let ¥V, be a vertex in
CnP.

Now consider the connected path that leads from ¥, to V, inside C.
Let Vg be the first vertex on this path which lies on the boundary of C,,.

Notice that since V; is reached from inside C,,, the three edges that
meet at ¥y all lie in €, but since V, is on the boundary of C; and in C,
there must be a polyhedral set P,,, say, which is outside C; and which
meets the boundary of C) at V3 and at two edges. Hence since f is affine
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on P, ., and 0 on C, we find that fis 0 on P, as well. This completes
the induction and the proof of the lemma.

Let us remark, that in case C'=R? there are two cases possible. Either
there are no vertices at all in which case the covering (P,,...,P,) con-
sists of parallel strips covering the plane, or there is at least one vertex,
in which case 1) and 2) are automatically satisfied.

Notice also that if the covering is induced by a convex function
then 3) is automatically satisfied and hence we see that the most im-
portant condition is the fourth condition that each vertex should have
order 3.

3. The extremal functions.

We can not identify all the extremal convex functions, but we can
find so many that there are enough to prove the main result that they
are dense in K.

THEOREM 1. A polyhedral convex function f is extremal in K if the
covering of K given by f satisfies the conditions 1), 2) and 4) for C=int K.

Proor. Let g and % be elements of K and let
f=1g+h).

Let P,,...,P,, denote the covering induced by f which satisfies the
conditions 1), 2) and 4). The condition 3) will then automatically be
satisfied.

Clearly g and » must be affine on each of the polyhedral sets P,,...,P,,
and we shall assume that g and & are polyhedral functions.

Now let a, b and ¢ denote affine functions, such that the functions

fh=f-a, g1=9-b b =h-c

all vanish on P;. Then
Si = g +hy) .

Let then 2, € int Pyn int K, where P, has an edge in common with P, .

If g,(xy) =0 then g, is 0 on P, and P,, and by the lemma g;=0 on K
which proves that g is affine and hence that f is extremal.

Let us therefore assume that g,(z,)>0, and by a similar argument
that A,(z,) > 0.
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Let us then define

fa = filfi®o), 92 = 91/91(%0), by = Ryfhy(,) .
Then
fa = ogy+(1—a)h,

where

0 < o = g(%)[2f1(x0) < 1.
Now we have that

fa=92=hy =0 on P,
and

fa(@o) = falwg) = hy(x) = 1,
but then

fa=¢gs=hy on P,.

If we apply the lemma to the piecewise affine function f,—g,, we get
that
fo=9s=hy, on K

which implies that f is extremal. This completes the proof of Theorem 1.

ProrosiTioN. If @ and b are affine functions then a and avb are extremal
Sfunctions. If c is an affine function such that the equations

a(x) = b(x) = ¢(x)

have only one solution in int K then avbvc is extremal.

Proovr. It is easily seen that a is extremal, and that the construction
in the proof of Theorem 1 will give that avb is extremal. The above
condition on ¢ ensures the existence of a vertex in int K and the covering
induced by avbvc satisfies the conditions 1), 2), and 4) of the lemma.

CorOLLARY. In the convex come of finite continuous convex funmctions
defined on R2, the polyhedral functions which induce coverings with vertices
of order 3 are extremal.

In particular the functions a, avb and avbvc are extremal if the equa-
tions
a(x) = b(x) = c(x)
have only one solution.

Proor. This follows from the remarks after the proof of the lemma,
together with Theorem 1 and the proposition.

We shall now prove the main result.
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THEOREM 2. Any finite continuous convex function on the convex set K
can be approximated uniformly on any convex compact subset of K by an
extremal convex function.

Proor. Let f e K be given as a finite continuous convex function on K.
Let K, <K be a compact convex set of dimension 2.

We shall prove that f can be approximated by modifying the function
on K, a finite number of times in such a way that the final modification
is an extremal function in K, which differs less than ¢ from f on K.

1) The first modification is to approximate f by a polyhedral function

.
J1 = subPi1cicndy

as follows: For each z € K, we find a subgradient @, and determine a
neighbourhood N, of x, such that f(y)<a,(y)+¢/4, y e N,.

By compactness we can pick out a finite number of neighbourhoods
which cover K, and the corresponding subgradients provide us with the
function f;.

2) The next step consists in modifying f; such that the polyhedral
covering induced by f; satisfies condition 1) of the lemma. Let therefore
P be such a polyhedral set where f; is affine and such that

intPnintK, + @ .
The set P need not have any vertices in int K, but let us choose
z; €int P nint K, .
Now choose three affine functions a, b and ¢, such that the equations
a(z) = b(x) = c(x)
only have the solution x=x,. The function
Jitél@avbdve)

will be a convex polyhedral function with a vertex at z,. This function
clearly induces a covering of K, with more polyhedral sets than before,
but each new polyhedral set will have a vertex in int K.

We then repeat this construction for each polyhedral set from f; which
does not possess a vertex in int K;. The final modification f, will consist
of f, plus a sum of simple extremal convex functions, and will have an
induced covering satisfying the first condition of the lemma. For 4 suf-
ficiently small, |f,—fi| <¢/4 on K.
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3) The vertices of f, need not be connected but let z, and z, be any
two vertices in int K. Let a be an affine function such that

: a(z,) = a(x,) = 0
and such that a=0.
The function

fa+6(0va)

is a convex polyhedral function whose covering of K, will contain some
new polyhedral sets. Each new set, however, will have a vertex on the
line determined by x, and z, inside int K, , and «; and z, can be connected
by a path of edges in int K, also lying on the line [x,,z,]. This procedure
is repeated by replacing x, by any of the vertices from f,, each time
adding a simple extremal function. We end up with a function f; whose
covering satisfies conditions 1) and 2) of the lemma. For ¢ sufficiently
small we get |fy—f3| <¢e/4 on K.

4) The final step consists in ensuring that all vertices have order 3.

Assume V to be a vertex of order s>3 and let @ be a subgradient
such that

fo(x) > a(z), xz+V

fa(®) = a(x), z=V.
Then

faVv (a+9)

is a convex polyhedral function with the property that for é sufficiently
small the corresponding polyhedral covering will be changed only around
V in such a way that V will be surrounded by a small polytope with s
vertices each of order 3. Clearly the new polyhedral sets constructed this
way still have vertices in int K, and these can still be connected inside
intK,.

This construction is repeated for each vertex of order >3 each time
taking the maximum of the function so far obtained and a suitable affine
function. The final function will induce a covering with all the desired
properties listed in the lemma.

For 8 sufficiently small this function f, will lie within /4 of f; on K.

Thus we can apply Theorem 1 and we get that f, is an extremal func-
tion which differs less than ¢ from f on K, as was to be proved.

It is curious to notice that a piece of chalk exhibits the shape of an ex-
tremal convex function when it has been used on the blackboard for some
time. Thus the answer was right at hand from the very beginning.
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