GROUP RINGS OF FINITE REPRESENTATION TYPE

WILLIAM H. GUSTAFSON

1. Introduction.

In this note, we wish to discuss Artinian group rings which are of finite representation type in the sense that they have only finitely many non-isomorphic indecomposable modules. Thus let A be a commutative, Artinian ring and let G be a finite group; we will consider the group ring AG. By Maschke's Theorem, we know that if A is a field whose characteristic is either zero or a prime which does not divide the order of G, then AG is semisimple and hence of finite representation type. If, on the other hand, A is a field whose characteristic p divides the order of G, then AG is of finite representation type if and only if the p-Sylow subgroup of G is cyclic. This was shown by D. G. Higman [6]. Later, Kasch, Kupisch and Kneser [9] and Janusz [7] gave more refined information about the number of indecomposable modules in this case. Janusz [8] determined the structure of the indecomposable modules in considerable detail.

Here, we will give necessary and sufficient conditions for AG to be of finite representation type, where A is an arbitrary commutative, Artinian ring.

2. The theorem.

Our approach will depend on two crucial facts:

i) A commutative, Artinian ring is of finite representation type if and only if it is serial (i.e. each indecomposable projective module has a unique composition series).

This is established in Colby [1]. It can also be deduced easily from Dickson and Kelly [3].

ii) Any homomorphic image of a ring of finite representation type is also of finite representation type.

This is easy to prove.

Received November 7, 1973.

Now, each commutative, Artinian ring A is a direct product $A_1 \times \ldots \times A_n$ of local, Artinian rings, and clearly we have

$$AG = A_1G \times \ldots \times A_nG.$$

Since the identity elements of the A_iG are central idempotents of AG, we see that an indecomposable AG-module is annihilated by all but one of the A_iG . Thus AG is of finite representation type if and only if each A_iG is. Hence the problem is essentially solved once we prove

THEOREM. Let A be a local, commutative, Artinian ring, and let G be a finite group. Then AG is of finite representation type if and only if

- a) A is serial and
- b) if the characteristic of A/rad A is a prime p which divides the order of G, then A is a field and the p-Sylow subgroup of G is cylic.

PROOF. First, suppose that AG is of finite representation type. Since the augmentation map $\varepsilon: AG \to A$ is a surjection, A must be serial by i) and ii) above. Further, we have a surjection $AG \to kG$, where k = A/rad A hence, kG must be of finite representation type. It follows then that either the characteristic of k does not divide the order of G, or the characteristic p of k divides the order of G and the G-Sylow subgroup G of G is cyclic. In the latter case, we see by [4] that each G-module is G-module G-modu

$$N^G = AG \otimes_{AH} N$$
.

Now, if AH is of infinite representation type, we see from [10] that for each $n \ge 1$ we can find an indecomposable AH-module N whose length as an A-module is greater than n. But N is an AH-summand in N^G by [2, 63.6], so it follows by the Krull-Schmidt Theorem that some indecomposable AG-summand of N^G has A-length greater than n, whence AG is of infinite representation type. Thus, if AG if of finite type, so is AH. As in [5, Theorem 1.7], it is easy to see that AH is a commutative, local, Artinian ring with residue field k. Thus it suffices to show that if A is not a field and $H \neq \{1\}$, then AH is not serial. For this, we note that if I denotes $(\operatorname{rad} A) \cdot AH$ and A is the kernel of the augmentation map $\varepsilon: AH \rightarrow A$, then neither of these two ideals is contained in the other. For, if x is a non-zero element of $\operatorname{rad} A$, then $x \in I$; but $x \notin A$, while if $h \in H$, $h \neq 1$, then h - 1 is in A, but not in I.

Now let us suppose that a) and b) are satisfied. If the characteristic

of k does not divide the order of G, then every AG-module is (G,1)-projective, by [4]. Since A is uniserial, it has only a finite number of indecomposable modules M_1, \ldots, M_n , and all indecomposable AG-modules are among the direct summands of M_1^G, \ldots, M_n^G . By the Krull-Schmidt Theorem, AG is of finite representation type. If the characteristic p of k divides the order of G, A = k, and the p-Sylow subgroup of G is cyclic, then AG is of finite type, by Higman's Theorem. This completes the proof.

COROLLARY. Let A be a commutative, Artinian ring and let G be a finite group. Write $A = A_1 \times \ldots \times A_n$, where each A_i is local. Then AG is of finite representation type if and only if

- a) Each A_i is serial and
- b) if the characteristic of $A_i/\operatorname{rad} A_i$ is a prime divisor p of the order of G, then A_i is a field and the p-Sylow subgroup of G is cyclic.

REFERENCES

- R. R. Colby, On indecomposable modules over rings with minimum condition, Pacific J. Math. 19 (1966), 23-33.
- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics 11), 2nd. ed, Interscience, New York, London, 1966.
- S. E. Dickson and G. M. Kelly, Interlacing methods and large indecomposables, Bull. Austral. Math. Soc. 3 (1970), 337-348.
- 4. W. Gustafson, Remark on relatively projective modules, Math. Japon. 16 (1971), 21-24.
- A. Heller and I. Reiner, Representations of cyclic groups in rings of integers I, Ann. of Math. 76 (1962), 73–92.
- D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.
- G. J. Janusz, Indecomposable representations of groups with a cyclic Sylow subgroup.
 Trans. Amer. Math. Soc. 125 (1966), 288-295.
- G. J. Janusz, Indecomposable modules for finite groups. Ann. of Math. 89 (1969), 209-241.
- F. Kasch, M. Kneser and H. Kupisch, Unzerlegbare modulare Darstellungen endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Arch. Math. (Basel) 8 (1957), 320-321.
- A. V. Roiter, Unboundedness of the dimensions of the indecomposable representations of an algebra which has infinitely many indecomposable representations (Russian).
 Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1275-1282.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON INDIANA, U.S.A.