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Introduction (by V. Brun).

After discussion with N. G. Wrigley in 1972 on some mathematical
problems in virology, he asked me to explore the mathematical back-
ground to a diagram he had worked out (see fig. 2). By introducing new
letters z, y, z (see equation 6) it was easy to transform the problem into
diophantine form, and as I knew that my friend W. Ljunggren was much
more capable of solving this problem, I asked him if he would try. After
some weeks, shortly before his death in January 1973, he gave me the
manuscript which we present below, with necessary virological explana-
tions before and after Ljunggren’s deduction.

Virological background (by N. G. Wrigley).

Virus particles are invariably enclosed by shells of protein subuntis,
and these are packed geometrically according to strict symmetry rules,
because of the chemical properties of the protein. Helical virus particles
are found in nature, and also “spherical” or isometric particles. In 1962
Caspar & Klug [1] stated of the latter that: ... there has accumulated
a large body of evidence thaticosahedral symmetry is preferred in spherical
virus structure. Indeed no well-established examples exist at present of
isometric viruses which are not icosahedral.” This remains true to-day,
though other classes of polyhedra have been considered theoretically, for
example by Goldberg [2] and by Brun [3], [4]. All known examples are
close-packed with each subunit surrounded by six neighbours, except the
twelve vertices which have five neighbours.

The total number of nearly identical subunits which may be regularly
packed in this way on the closed icosahedral surface is given [2] by:

(1) N = 10(a®+ab+b?) +2
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where a and b may take any non-negative integral values. This gives the
numbers: N = 12,32,42,72,92,122,132,. . . .

Of course, without upsetting the icosahedral 5,3,2 symmetry, the above
subunits may be considered as spaces, and the spaces as subunits, and
the subunits may themselves be further subdivided into symmetrical
groups. However this does not alter the general applicability of equa-
tion (1).

Now, an icosahedron has 30 axes of twofold symmetry, 20 of threefold
symmetry and 12 of fivefold symmetry. Therefore the subunits on the
surface of an icosahedral virus may be thought of as divided into 30
identical groups each having twofold symmetry, 20 groups with threefold
and 12 groups with fivefold symmetry. I have discussed this extensively
[5] in relation to certain viruses which I found actually collapsed into
these groups. Other examples have since been found by myself [6] and
by Stoltz [7, 8]. The groups, shown in fig. 1 are called “symmetrons”;
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Fig. 1. Diagram showing the construction of linear, triangular and pentagonal symme-
trons, with the numbers of subunits they contain. Di- and trisymmetrons may be absent
altogether, leaving a ‘‘minimum’’ shell of 12 subunits.

the 30 Disymmetrons contain d, subunits, the 20 Trisymmetrons con-
tain ¢, subunits, and the 12 Pentasymmetrons contain p,, subunits, so
that:

(2) N = 30d,+ 20t,+ 12p,,
where
(3) d, = u—1
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(4) t, = v(v—1)/2
(5) Do = L+ 5w(w—1)[2

in which u, v and w can independently take the values 1,2,3,4,5,. ...

For each allowed value of N from equation (1) the number f(N) of
solutions of equation (2) were calculated by computer, using (3), (4) and
(5). This number f(N) corresponds to the number of theoretically pos-
sible ways of making a virus with N subunits, but with different com-
binations of symmetrons. For example, f(42)=1, that is:

42 = 30-1420-0+12-1,

which is a unique solution of (2). Another example is f(72)=3, which
means that (2) has three solutions, viz.:

72 = 30:24+20-0+12-1
or 30:04+20-3+12-1
or 30:04+20-0+12-6

As expected f(IV) increases linearly with N (fig. 2), but it was surprising
to find that (i) this increase is bi-modal, and that (ii) the points are
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Fig. 2. Diagram showing the bi-modal distribution of the number f(N) of solutions of
equation (2) for each N. The upper line has twice as many points as the lower. I am grate-
ful to Dr. P. M. Bayley for the computer calculations in this work.
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distributed in the proportion 2:1 between the two modes. It was for an
explanation of observations (i) and (ii) that I consulted Viggo Brun, and
here follows:

W. Ljunggren‘s analysis.

Inserting in (2) the values of d,,, t, and p,, from (3), (4) and (5), and
putting x=2v—1, y=2w—1, z=u—1 and N=10M+2, where M=
a®+ab +b? we get:

(6) 224+ 3y2+122 = 4M .
Y

The problem is now to find all odd, positive integers z, ¥ and all non-
negative integers z, satisfying (6) for given values of @ and b. However,
there is no simple formula for the exact number of triples (z,y,2) in
question. We may use the following known result [9]:

Let A, B, n, x, y denote natural numbers. Further, let T',(4, B) denote
the number of different pairs (z,y) satisfying the inequality

Az?+By* < n.
Then:
n 0 VZ+ Vﬁ

7 T.(A,B) = —— —
@ (4, 5) 4VAB VAB

Yn, 0<6<1.

Equation (6) may be written:

22+ 3y%+ 122 = 4(a®+ab+b?)

(8) = (a+ 2b)%+ 3a?

= (2a+b)%+3b%,
or
(8") [22— (20 +b)%] +3(y2—b%) + 122 = O .

By (8’) it follows that z2— (2a + b)? is divisible by 3, or
(9) z = (2a+b)e+34,, e=+1, 4,integer.

Inserting this value for z in (8’) and dividing by 3, we obtain:

(10) 24,(2a+b)e+ 342 +92— b2+ 4z = 0,
or

(10" y2—(b—A,e)*+44.2+42+44,ae = 0,
hence

(11) y =b—A4,6+2B,, B, integer.
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Inserting the values for x and y from (9) and (11) respectively in (8)
we find by simple calculations that:

—2=A*—A,B,e+B2+A,ae+B;b, 220.

The original problem is now transformed into the following: Determine
all odd positive integers x,y, such that

224+ 3y < 4M, x=(2a+b)e+34,.

Now we can use formula (7).

We have to distinguish between two cases: firstly (b —a) divisible by
3, and secondly (b—a) indivisible by 3. In the first case x and M are
both divisible by 3, and N=10M +2 is of the form 3C+2, C integer.
In our counting we must delete the pairs (z,y) where z is not divisible
by 3. In the second case we have to delete the pairs where z is divisible
by 3. Our first conclusion is therefore: For NV divisible by 3 the number
of solutions is approximately double the number of solutions for the case
N =3C+2. The case N=3C+1 gives no solutions.

We now confine ourselves to discussion of the second case, since the
first case can be dealt with similarly. We count the pairs (z,y), z, ¥ both
odd numbers and z indivisible by 3. For the number of solutions we get
approximately:

bbb - T

4V3 18
Here we have used the first term in (7). From the total number we must
subtract the number of pairs where z is even and y is even. Then we
have added the number of pairs where both z and y are even numbers
(1—3-%+1). Now we have subtracted the number of pairs (z,y), where
 is divisible by 3 (—$}). Then we must add the numbers of pairs (z,y),
where 2z is even and divisible by 3, and the number of pairs (x,y) where
y is even and z divisible by 3 (3 + ). Finally we have to subtract the
number of pairs where both = and y are even, x divisible by 3 ().

Introducing N for M we find the dominant term in our counting is

n/3N /180. Denoting by f(N) the total number of solutions of (6), we
have:

nV/3N
180

f) = +k, VN .

Here k, is bounded, independently of N. Furthermore
limy_, . f(N)/N = =V/3/180 = 0.03.
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The curve y=kx+k,)/z, k=0.03, is a branch of the parabola
(y—kx)2—k2x = 0.

The axis is parallel to the line y = kx, its vertex is situated in a bounded
domain around the origin, and the parameter is also bounded.

Thus the conclusion is: The points (x,y) all lie in the neighbourhood of
the two lines y=0.03z and y=0.015z (in the first case k=4%-0.03=0.015).
(See fig. 2.)

Ljunggren concluded his manuseript with the words: “I have tried
to give an ‘elementary’ explanation. It is possible to give better bounds
for the difference

T,(A,B)—an/4VAB .”

Virological implications (by N. G. Wrigley).

The relevance of this beautiful explanation of the numerical facts to
the problem of virus structure is this: The protein subunits which form
penta- tri- and disymmetrons have to assemble themselves ingide a living
cell into a closed shell of a particular volume determined by the contents
of the virus. The statistical chance of errors in this assembly process is
significant, particularly if NV is large. A virus might have a choice, for
example, of making an N =1472 shell or an N =1482 shell. These alter-
natives are nearly identical in volume, but there are only half as many
ways to make the N = 1472 shell (fig. 2), and therefore double the statis-
tical chance of success in the assembly process. This would be a substan-
tial reason for Evolution to choose this alternative.

The large viruses studied by Wrigley [5, 6] and by Stoltz [7, 8] very
probably fall on the lower curve of figure 2. However, too little is known
about the assembly process of viruses to say whether this result shows
the hand of Evolution at work. Further evidence is required from the
discovery of other large viruses. The only other viruses whose structure
is known at present are much smaller (N < 300), and they tall on both
lines of figure 2. The virological relevance of this mathematical study is,
therefore, extremely speculative. Moreover we have only considered the
class of symmetrons which are pentagonal, triangular or linear in out-
line. It is quite possible to have symmetrons which retain five-, three-
or twofold symmetry but have different shapes from those we have con-
sidered, and one example (adenovirus) of non-triangular trisymmetrons
is known.
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