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ON EXPONENTIAL RECURRING SEQUENCES
TORLEIV KLOVE

1.
A (polynomial) recurring sequence {z,,} is an integral sequence satisfy-
ing
Zn = P(zp_y,- - -»2n)

for all n>r, where P is a polynomial in r variables with integral coeffi-
cients. Every such sequence is periodic from some point on modulo any
integer m. In this paper we look at the more general situation where P
is a function containing iterated exponentials as well, and we prove that
the sequences are still periodic modulo any m.

2.

To make things more precise, we introduce some notations. Let
N={1,2,...} be the set of natural numbers and N,;={2,3,...}. We
define a set ¥ of functions recursively as follows: § contains the follow-
ing elementary functions:

El. f(z,,...,2,)=a, a€eN;

E2. f(z,,...,2,)=2;, 1=12,...,n;

E2*. f(x)=a%, a€N,.

The set  is formed by the following composition rules:

Cl. If f,ge, then f+g, fge F;

C2. If fe g, then 2/ e §;

C2*, If ae N, and g € §, then a? € §;
C3. If f(xy,...,x,) € &, then

f@y,. %, %%y, ., %) €EF for 1=1,2,...,n.
We see that every f € & may be expressed in the form
(2.1) f=2xallli (gw)*TT: 24}
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where the g;;’s are primes (not necessarily distinct), a,e N, f,€ g,
Jrs € &, and the f;’s consist of a single term which is product of non-
constant functions. Further, this representation is unique.

The subset of ¢ formed by choosing E1 and E2 as elementary func-
tions and C1 and C3 as composition rules, is the set of all polynomials
with positive integral coefficients. Let P be the subset of § formed by
E1, E2#%, C1, C2* and C3. For f € B we have g,,=0 in (2.1), and fy(z) is
either x; for some 4 or is a product of functions from .

An exponential recurring sequence {z,} is a sequence satisfying

(2.2) 2, = Flz,4,...,2,,) for n2xr,

where F e . If Fe B, then we call the sequence a pure exponential
recurring sequence.
We prove the following theorems.

THEOREM 1. Hvery exponential recurring sequence is periodic modulo any
integer m.

THEOREM 2. Every pure exponential recurring sequence has period 1
modulo any integer m.

3.

Before we go on to the proof of the theorems we define some further
concepts.
Let ¢ be Euler’s function. We define ¢, for k>0 and @ by

@o(m) = m for me N,
Pr(m) = @(pg—s(m)) for k21, meN,
D(m) = lemy,o{pr(m)} for meN,

where lem denotes least common multiple. We note that if p*|®(m),
then p*|@,(m) for some k. Hence

@(@*) | p(@r(m)) = Prra(m)| P(m) .
For any F € § we define D(F) as follows:
I Fed(F).
II. If f € D(F) and we express f in the form (2.1), then

S (th)f g 7 € D(F)
for all £, 7, 4.
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III. If F=F(x,,...,%,), then the elementary functions defined by E2
(the projections) belong to ®(F) for ¢=1,2,...,r.
For any F € & we define A(F'), the height of F, as follows:
ka) = h(z;) = 0, a€eN;
k(a’) = h(z/) = B(f)+1 for fe & nonconstant;
hf+9) = k(fg) = max{h(f),h(9)} .
An example may clearify these concepts. If
F(x,y,z,u) = 62+ v — 2v2v23¥'3u3v3s¥* 4 ov
then D(F') consists of
F,x,y,2,u,2v,28" 3v, 33" 3vz yz ov |
of heights 2, 0,0, 0,0, 1, 2,1, 2, 1, 0, and 1 respectively.
Let F=F(x,,...,z,)=F(x)e F. Let
O(m) = [I. p

be the product of @(m) as primepowers and put »=»(m)=max;{nx,}.
In the set N7 of r-dimensional vectors with elements from N we define a
relation ~ 5, depending on F and m. It is easily seen to be an equivalence
relation. We define

U~pD
if and only if

L. f(w)=f(v) (modP(m)) for all fe D(F).
II. If f(u)=+f(v) for some f € D(F), then f(u)>» and f(v) >» for this f.

4.
To prove theorem 1 we first prove two lemmas.

LemMa 1. For each F € § the equivalence relation ~ p divides N' inio
a finite number of equivalence classes.

Proor. If d is the number of different functions in ®(F), then clause I
divides N7 into at most @(m)¢ classes and clause II divides each of these
into at most (v+1)? classes. Hence there are at most {(»+1)P(m)}¢
equivalence classes.

Lemma 2. If (uy,...,%,)~p(vy,...,v,), then

(Flug,. .. u,) 8, . sy y) ~p (Fg,. . 00,05, 0 .,0,4) .
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Proor. To simplify notations, we denote the vectors appearing in
lemma 2 by u, v, w’, and v’ respectively, so that «,"=F(u) and u;'=u;_,
for ¢>1 and similarly for v'. We must show that the clauses I and II
are satisfied by «’' and v'.

Clause I. We prove this by induction on A(f). Assume A(f)=0. Then
f() is a polynomial in z;,. . .,z,. Since u~ v we have, by clause I, that
' = Uy = v, =0/ (modP(m)), =2,...,r,

u," = F(u) = F(v) = v,/ (mod®(m)) .
Hence

f') = f(v') (mod®(m)) .
Now let A(f)=h>0. We divide the induction step into three cases.

CasE (A), f=a? where a € N, and h(g) =h(f)— 1. Let p;| D(m).
Subcase (i), p;t a. By the induction hypothesis

guw') = g(v') (mod®D(m)) .
In particular

g') = g(v') (mode(p;™)) -
Hence, by Euler’s theorem
f@) = a®) = a*®) = f(v') (modp;).
Subcase (ii), p;|a. If g(u’) £¢(v'), then, by clause II,

gu') >v 2« and g@)>rvza.
Hence
™) = @/ = 0 (modp,*) .

Case (B), f(x) =z, where h(g)=h(f)—1. If p;fu;, then, since
(4.1) u;’ = v;’ (mod®(m))

we proceed as in case (A), subcase (i). If p;|u;’, let pfllu;’. If f<uy,
then pf|lv;' by (4.1) and we may go on as in case (A), subcase (ii). If
B = a;, then p;*|v; by (4.1) and hence

(u)o*) = (v;/)7® = 0 (modp;™).
Case (C), f is any function of height . Then f is a sum of products of

functions of the form considered in the cases (A) and (B). (Cf. (2.1).)
Hence

f@) = f(v') (modp;™) .
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Since this congruence is true for all p,*|®(m), it must hold modulo @(m)
as well.

Clause 1I. This is also proved by induction on A(f). A(f)=0. Then
f(@®) is a polynomial. Suppose f(u') +f(v'). Then u,; +v,” for at least one 1,
such that x; appears in the polynomial f(x). Then, by clause I, »,">» and
v’ >». Hence f(uw') 2%, >» and f(v') 2 v, >».

h(f)=h>0. Case (A), f=a? where ae N, and A(g)=h(f)—1. If
f@')£f(v'), then g(u')+g(v’'). By the induction hypothesis g(u’') >» and
g(v’) >v». Hence

f@')y = a9 > @ > v
and f(v’) >» similarly.

Case (B), f(x)=2@. If w;/=1, then u;<». Hence, by clause II,
u/=v;/=1 and so f(u')=f(v"). If u;/>1 and f(u')+f(v'), then either
uy +v; or g(w')+g(v’'). Hence either u;'>» and v/’ >» or g(u’)>» and
g(v’) >». In either case f(u')>v and f(v') >».

Case (C), f is any function of height 4. Then f is sum of products of
functions f; of the form considered in cases (A) and (B). If f(u') +f(v’),
then f;(u') +f,(v') for at least one ¢. Hence

f@) 2 fu') > »

and f(v') >» similarly. This completes the proof of lemma 2.

Put z,=(2,_4,- . -,2,—,). By lemma 1 there exist n, and n, such that
ny<ny and 2,,~p#, . By lemma 2 and (2.2) we have 2, .1~ p2, 41,
and applying lemma 2 repeatedly we obtain 2, ,;~ p#y, 4 for all k= 0.
In particular (putting u=mn,—n,) we get

Znty = 2, (modm)

for all n=n,—r. This is theorem 1.

5.
To prove theorem 2 we need two more lemmas.

LemMmA 3. If F € P is nonconstant and {z,,} satisfies (2.2) then f(z,) — oo
when n — oo for all nonconstant f € D(F).

Proor. The proof is by induction on A(f). First we prove that z, —» oo
when n — oo,
By (2.1)
F@) 2 (g,)® > fi,()
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where h(fy,) <h(F). Applying the same procedure to f,; we find a f;;
such that fy,(x)>f,,(@) and A(f;) <h(fi). Applying the procedure re-
peatedly a finite number of times we arrive at a function of height 0, i.e.

Fx) > x;
for some fixed 7. By (2.2) we have
2, > 2, ; forallnzr.

Hence z,,;; 22, +, that is z, - oo when n - co. If A(f)=0 and f is non-
constant then f(x)=x, for some i. Hence f(z,)2>2,_; - o when n — co.
If A(f)=h>0, then

f@) 2 (qu)"® > fu(@)
where A(f;;) <h(f). By the induction hypothesis f},(z,) = o, hence

f(za) > co.

LeMuaA 4. For all primepowers p* and all f € D(F) we have
(5.1) fFus) = f(2,) (modd(p) for n>0.

Proor. We prove lemma 4 by induction. Since @(1)=1, (5.1) is true
when «=0. Our induction hypothesis is that (5.1) is true for all powers
of all primes less then p and also for p? when f <«. We prove that it is
true for p*. If f is nonconstant, we have

f(zn) = 2w TL (@)™ .
Fix k (we look at one term at a time). If p=g,; for some [, then
(¢)®*» = 0 (modp®) for n>>0
by lemma 3. If p+gq,, then
(@) H®m+0 = (gj)"* (mod p*)
by Euler’s theorem since
fia(Bas1) = fua(z,) (mode(p) for n>>0
by the induction hypothesis. Hence

f(Zp41) = f(2,) (modp*) for n>>0.
Further

o(p*) = p* Tly<p 9" -
By the induction hypotehsis
f(®ns1) = f(#,) (modllgfi) for n>0.
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Hence
f(zn+l) = f(z'n) (m0d¢(p“)) for n>>0.

This completes the proof of lemma 4.

To prove theorem 2, fix m =I]p”. By lemma 4 we have

Zp41 = 2, (modp;”) for n>>0.
Hence
Zp41 = 2, (modm) for n>>0.
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