ON EXPONENTIAL RECURRING SEQUENCES

TORLEIV KLØVE

1.

A (polynomial) recurring sequence $\{z_n\}$ is an integral sequence satisfying

$$z_n = P(z_{n-1}, \ldots, z_{n-r})$$

for all $n \ge r$, where P is a polynomial in r variables with integral coefficients. Every such sequence is periodic from some point on modulo any integer m. In this paper we look at the more general situation where P is a function containing iterated exponentials as well, and we prove that the sequences are still periodic modulo any m.

2.

To make things more precise, we introduce some notations. Let $N = \{1, 2, ...\}$ be the set of natural numbers and $N_1 = \{2, 3, ...\}$. We define a set \mathfrak{F} of functions recursively as follows: \mathfrak{F} contains the following elementary functions:

E1.
$$f(x_1,\ldots,x_n)=a, a \in \mathbb{N};$$

E2.
$$f(x_1,...,x_n) = x_i$$
, $i = 1, 2,...,n$;

E2*.
$$f(x) = a^x$$
, $a \in \mathbb{N}_1$.

The set & is formed by the following composition rules:

C1. If
$$f,g \in \mathfrak{F}$$
, then $f+g$, $fg \in \mathfrak{F}$;

C2. If
$$f \in \mathfrak{F}$$
, then $x_i^f \in \mathfrak{F}$;

C2*. If
$$a \in N_1$$
 and $g \in \mathfrak{F}$, then $a^g \in \mathfrak{F}$;

C3. If
$$f(x_1, \ldots, x_n) \in \mathfrak{F}$$
, then

$$f(x_1,\ldots,x_{j-1},x_i,x_{j+1},\ldots,x_n) \in \mathfrak{F}$$
 for $i=1,2,\ldots,n$.

We see that every $f \in \mathcal{F}$ may be expressed in the form

$$(2.1) f = \sum_{k} a_{k} \{ \prod_{l} (q_{kl})^{f_{kl}} \prod_{\lambda} x_{\lambda}^{g_{k\lambda}} \}$$

where the q_{kl} 's are primes (not necessarily distinct), $a_k \in \mathbb{N}$, $f_{kl} \in \mathfrak{F}$, $g_{k\lambda} \in \mathfrak{F}$, and the f_{kl} 's consist of a single term which is product of nonconstant functions. Further, this representation is unique.

The subset of $\mathfrak F$ formed by choosing E1 and E2 as elementary functions and C1 and C3 as composition rules, is the set of all polynomials with positive integral coefficients. Let $\mathfrak F$ be the subset of $\mathfrak F$ formed by E1, E2*, C1, C2* and C3. For $f \in \mathfrak F$ we have $g_{k\lambda} \equiv 0$ in (2.1), and $f_{kl}(x)$ is either x_i for some i or is a product of functions from $\mathfrak F$.

An exponential recurring sequence $\{z_n\}$ is a sequence satisfying

(2.2)
$$z_n = F(z_{n-1}, \ldots, z_{n-r}) \text{ for } n \ge r$$
,

where $F \in \mathfrak{F}$. If $F \in \mathfrak{P}$, then we call the sequence a pure exponential recurring sequence.

We prove the following theorems.

Theorem 1. Every exponential recurring sequence is periodic modulo any integer m.

THEOREM 2. Every pure exponential recurring sequence has period 1 modulo any integer m.

3.

Before we go on to the proof of the theorems we define some further concepts.

Let φ be Euler's function. We define φ_k for $k \ge 0$ and Φ by

$$\begin{split} \varphi_0(m) &= m & \text{for } m \in \mathsf{N} \;, \\ \varphi_k(m) &= \varphi \big(\varphi_{k-1}(m) \big) & \text{for } k \geqq 1, \, m \in \mathsf{N} \;, \\ \varPhi(m) &= \mathrm{lcm}_{k \geqq 0} \big\{ \varphi_k(m) \big\} & \text{for } m \in \mathsf{N} \;, \end{split}$$

where lcm denotes least common multiple. We note that if $p^{\alpha}|\Phi(m)$, then $p^{\alpha}|\varphi_k(m)$ for some k. Hence

$$\varphi(p^{\alpha}) | \varphi(\varphi_k(m)) = \varphi_{k+1}(m) | \Phi(m).$$

For any $F \in \mathfrak{F}$ we define $\mathfrak{D}(F)$ as follows:

I. $F \in \mathfrak{D}(F)$.

II. If $f \in \mathfrak{D}(F)$ and we express f in the form (2.1), then

$$f_{kl}, (q_{kl})^{f_{kl}}, g_{k\lambda}, x_{\lambda}^{g_{k\lambda}} \in \mathfrak{D}(F)$$

for all k, l, λ .

III. If $F = F(x_1, ..., x_r)$, then the elementary functions defined by E2 (the projections) belong to $\mathfrak{D}(F)$ for i = 1, 2, ..., r.

For any $F \in \mathcal{F}$ we define h(F), the height of F, as follows:

$$\begin{split} h(a) &= h(x_i) = 0, \quad a \in \mathsf{N}\,; \\ h(a^f) &= h(x_i^f) = h(f) + 1 \quad \text{for } f \in \mathfrak{F} \text{ nonconstant}\,; \\ h(f+g) &= h(fg) = \max\left\{h(f), h(g)\right\}\,. \end{split}$$

An example may clearify these concepts. If

$$F(x,y,z,u) = 6^{2y+3^{yz}} + z^y = 2^y 2^y 2^{3^{yz}} 3^y 3^y 3^{3^{yz}} + z^y$$

then $\mathfrak{D}(F)$ consists of

$$F, x, y, z, u, 2^{y}, 2^{3^{yz}}, 3^{y}, 3^{3^{yz}}, 3^{yz}, yz, z^{y}$$
,

of heights 2, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, and I respectively.

Let
$$F = F(x_1, \ldots, x_r) = F(x) \in \mathcal{F}$$
. Let

$$\Phi(m) = \prod_{i} p_{i}^{\alpha_{i}}$$

be the product of $\Phi(m)$ as primepowers and put $v=v(m)=\max_i\{\alpha_i\}$. In the set N^r of r-dimensional vectors with elements from N we define a relation \sim_F , depending on F and m. It is easily seen to be an equivalence relation. We define

$$u \sim_F v$$

if and only if

- I. $f(u) \equiv f(v) \pmod{\Phi(m)}$ for all $f \in \mathfrak{D}(F)$.
- II. If $f(u) \neq f(v)$ for some $f \in \mathfrak{D}(F)$, then f(u) > v and f(v) > v for this f.

4.

To prove theorem 1 we first prove two lemmas.

Lemma 1. For each $F \in \mathcal{F}$ the equivalence relation \sim_F divides N^r into a finite number of equivalence classes.

PROOF. If d is the number of different functions in $\mathfrak{D}(F)$, then clause I divides \mathbb{N}^r into at most $\Phi(m)^d$ classes and clause II divides each of these into at most $(\nu+1)^d$ classes. Hence there are at most $\{(\nu+1)\Phi(m)\}^d$ equivalence classes.

LEMMA 2. If
$$(u_1, \ldots, u_r) \sim_F (v_1, \ldots, v_r)$$
, then
$$(F(u_1, \ldots, u_r), u_1, \ldots, u_{r-1}) \sim_F (F(v_1, \ldots, v_r), v_1, \ldots, v_{r-1})$$
.

PROOF. To simplify notations, we denote the vectors appearing in lemma 2 by u, v, u', and v' respectively, so that $u_1' = F(u)$ and $u_i' = u_{i-1}$ for i > 1 and similarly for v'. We must show that the clauses I and II are satisfied by u' and v'.

Clause I. We prove this by induction on h(f). Assume h(f) = 0. Then f(x) is a polynomial in x_1, \ldots, x_r . Since $u \sim_F v$ we have, by clause I, that

$$u_i' = u_{i-1} \equiv v_{i-1} = v_i' \pmod{\Phi(m)}, \quad i = 2, \dots, r,$$

 $u_1' = F(u) \equiv F(v) = v_1' \pmod{\Phi(m)}.$

Hence

$$f(u') \equiv f(v') \pmod{\Phi(m)}$$
.

Now let h(f) = h > 0. We divide the induction step into three cases.

CASE (A), $f = a^g$ where $a \in N_1$ and h(g) = h(f) - 1. Let $p_i \mid \Phi(m)$. Subcase (i), $p_i \nmid a$. By the induction hypothesis

$$g(u') \equiv g(v') \pmod{\Phi(m)}$$
.

In particular

$$g(\mathbf{u}') \equiv g(\mathbf{v}') \pmod{\varphi(p_i^{\alpha_i})}$$
.

Hence, by Euler's theorem

$$f(\mathbf{u}') = a^{g(\mathbf{u}')} \equiv a^{g(\mathbf{v}')} = f(\mathbf{v}') \pmod{p_i^{\alpha_i}}.$$

Subcase (ii), $p_i|a$. If $g(u') \neq g(v')$, then, by clause II,

$$g(u') > v \ge \alpha_i$$
 and $g(v') > v \ge \alpha_i$.

Hence

$$a^{g(\boldsymbol{u}')} \equiv a^{g(\boldsymbol{v}')} \equiv 0 \pmod{p_i^{\alpha_i}}$$
.

Case (B), $f(x) = x_j^{g(x)}$ where h(g) = h(f) - 1. If $p_i \nmid u_j'$, then, since

$$(4.1) u_{i}' \equiv v_{i}' \pmod{\Phi(m)}$$

we proceed as in case (A), subcase (i). If $p_i|u_j'$, let $p_i^{\beta}||u_j'$. If $\beta < \alpha_i$, then $p_i^{\beta}||v_j'|$ by (4.1) and we may go on as in case (A), subcase (ii). If $\beta \ge \alpha_i$, then $p_i^{\alpha_i}|v_j'|$ by (4.1) and hence

$$(u_i')^{g(u')} \equiv (v_i')^{g(v')} \equiv 0 \pmod{p_i^{\alpha_i}}.$$

Case (C), f is any function of height h. Then f is a sum of products of functions of the form considered in the cases (A) and (B). (Cf. (2.1).)

Hence

$$f(u') \equiv f(v') \pmod{p_i^{\alpha_i}}$$
.

Since this congruence is true for all $p_i^{\alpha_i}|\Phi(m)$, it must hold modulo $\Phi(m)$ as well.

Clause II. This is also proved by induction on h(f). h(f) = 0. Then f(x) is a polynomial. Suppose f(u') + f(v'). Then $u_i' + v_i'$ for at least one i, such that x_i appears in the polynomial f(x). Then, by clause I, $u_i' > v$ and $v_i' > v$. Hence $f(u') \ge u_i' > v$ and $f(v') \ge v_i' > v$.

h(f) = h > 0. Case (A), $f = a^g$ where $a \in N_1$ and h(g) = h(f) - 1. If $f(u') \neq f(v')$, then $g(u') \neq g(v')$. By the induction hypothesis g(u') > v and g(v') > v. Hence

$$f(u') = a^{g(u')} > a^{\nu} > \nu$$

and f(v') > v similarly.

Case (B), $f(\boldsymbol{x}) = x_j^{g(\boldsymbol{x})}$. If $u_j' = 1$, then $u_j' \leq \nu$. Hence, by clause II, $u_j' = v_j' = 1$ and so $f(\boldsymbol{u}') = f(\boldsymbol{v}')$. If $u_j' > 1$ and $f(\boldsymbol{u}') \neq f(\boldsymbol{v}')$, then either $u_j' \neq v_j'$ or $g(\boldsymbol{u}') \neq g(\boldsymbol{v}')$. Hence either $u_j' > \nu$ and $v_j' > \nu$ or $g(\boldsymbol{u}') > \nu$ and $g(\boldsymbol{v}') > \nu$. In either case $f(\boldsymbol{u}') > \nu$ and $f(\boldsymbol{v}') > \nu$.

Case (C), f is any function of height h. Then f is sum of products of functions f_i of the form considered in cases (A) and (B). If $f(u') \neq f(v')$, then $f_i(u') \neq f_i(v')$ for at least one i. Hence

$$f(u') \geq f_i(u') > v$$

and f(v') > v similarly. This completes the proof of lemma 2.

Put $z_n = (z_{n-1}, \ldots, z_{n-r})$. By lemma 1 there exist n_1 and n_2 such that $n_1 < n_2$ and $z_{n_2} \sim_F z_{n_1}$. By lemma 2 and (2.2) we have $z_{n_2+1} \sim_F z_{n_1+1}$, and applying lemma 2 repeatedly we obtain $z_{n_2+k} \sim_F z_{n_1+k}$ for all $k \ge 0$. In particular (putting $\mu = n_2 - n_1$) we get

$$z_{n+\mu} \equiv z_n \pmod{m}$$

for all $n \ge n_1 - r$. This is theorem 1.

5.

To prove theorem 2 we need two more lemmas.

LEMMA 3. If $F \in \mathfrak{P}$ is nonconstant and $\{z_n\}$ satisfies (2.2) then $f(z_n) \to \infty$ when $n \to \infty$ for all nonconstant $f \in \mathfrak{D}(F)$.

PROOF. The proof is by induction on h(f). First we prove that $z_n \to \infty$ when $n \to \infty$.

$$F(x) \ge (q_{11})^{f_{11}(x)} > f_{11}(x)$$

where $h(f_{11}) < h(F)$. Applying the same procedure to f_{11} we find a f'_{11} such that $f_{11}(x) > f'_{11}(x)$ and $h(f'_{11}) < h(f_{11})$. Applying the procedure repeatedly a finite number of times we arrive at a function of height 0, i.e.

$$F(x) > x_i$$

for some fixed i. By (2.2) we have

$$z_n > z_{n-i}$$
 for all $n \ge r$.

Hence $z_{n+ki} \ge z_n + k$, that is $z_n \to \infty$ when $n \to \infty$. If h(f) = 0 and f is non-constant then $f(x) \ge x_i$ for some i. Hence $f(z_n) \ge z_{n-i} \to \infty$ when $n \to \infty$. If h(f) = h > 0, then

$$f(x) \ge (q_{11})^{f_{11}(x)} > f_{11}(x)$$

where $h(f_{11}) < h(f)$. By the induction hypothesis $f_{11}(z_n) \to \infty$, hence $f(z_n) \to \infty$.

LEMMA 4. For all prime powers p^{α} and all $f \in \mathfrak{D}(F)$ we have

(5.1)
$$f(z_{n+1}) \equiv f(z_n) \pmod{\Phi(p^a)} \quad \text{for } n \gg 0.$$

PROOF. We prove lemma 4 by induction. Since $\Phi(1)=1$, (5.1) is true when $\alpha=0$. Our induction hypothesis is that (5.1) is true for all powers of all primes less then p and also for p^{β} when $\beta < \alpha$. We prove that it is true for p^{α} . If f is nonconstant, we have

$$f(z_n) = \sum_k a_k \prod_l (q_{kl})^{f_{kl}(z_n)}.$$

Fix k (we look at one term at a time). If $p = q_{kl}$ for some l, then

$$(q_{kl})^{f_{kl}(\boldsymbol{z_n})} \equiv 0 \pmod{p^{\alpha}} \quad \text{for } n \gg 0$$

by lemma 3. If $p \neq q_{kl}$, then

$$(q_{kl})^{f_{kl}(\boldsymbol{z}_{n+1})} \equiv (q_{kl})^{f_{kl}(\boldsymbol{z}_n)} \pmod{p^{\alpha}}$$

by Euler's theorem since

$$f_{kl}(\boldsymbol{z}_{n+1}) \equiv f_{kl}(\boldsymbol{z}_n) \pmod{\varphi(p^{\alpha})}$$
 for $n \gg 0$

by the induction hypothesis. Hence

$$f(z_{n+1}) \equiv f(z_n) \pmod{p^{\alpha}}$$
 for $n \gg 0$.

Further

$$\Phi(p^{\alpha}) = p^{\alpha} \prod_{q_i < p} q_i^{\beta_i}.$$

By the induction hypotehsis

$$f(\boldsymbol{z_{n+1}}) \equiv f(\boldsymbol{z_n}) \pmod{\Pi q_j^{\beta_j}} \quad \text{for } n \gg 0.$$

Math. Scand. 34 - 4

Hence

$$f(z_{n+1}) \equiv f(z_n) \pmod{\Phi(p^{\alpha})}$$
 for $n \gg 0$.

This completes the proof of lemma 4.

To prove theorem 2, fix $m = \prod p_i^{\gamma_i}$. By lemma 4 we have

$$z_{n+1} \equiv z_n \pmod{p_i^{\gamma_i}} \quad \text{for } n \gg 0.$$

Hence

$$z_{n+1} \equiv z_n \pmod{m}$$
 for $n \gg 0$.

UNIVERSITY OF BERGEN, NORWAY