ON EXPONENTIAL RECURRING SEQUENCES

TORLEIV KŁÓVE

1.
A (polynomial) recurring sequence \(\{z_n\} \) is an integral sequence satisfying
\[
z_n = P(z_{n-1}, \ldots, z_{n-r})
\]
for all \(n \geq r \), where \(P \) is a polynomial in \(r \) variables with integral coefficients. Every such sequence is periodic from some point on modulo any integer \(m \). In this paper we look at the more general situation where \(P \) is a function containing iterated exponentials as well, and we prove that the sequences are still periodic modulo any \(m \).

2.
To make things more precise, we introduce some notations. Let \(\mathbb{N} = \{1, 2, \ldots\} \) be the set of natural numbers and \(\mathbb{N}_1 = \{2, 3, \ldots\} \). We define a set \(\mathcal{F} \) of functions recursively as follows: \(\mathcal{F} \) contains the following elementary functions:

\[
\begin{align*}
E1. & \quad f(x_1, \ldots, x_n) = a, \quad a \in \mathbb{N}; \\
E2. & \quad f(x_1, \ldots, x_n) = x_i, \quad i = 1, 2, \ldots, n; \\
E2*. & \quad f(x) = a^x, \quad a \in \mathbb{N}_1.
\end{align*}
\]

The set \(\mathcal{F} \) is formed by the following composition rules:

\[
\begin{align*}
C1. & \quad \text{If } f, g \in \mathcal{F}, \text{ then } f + g, fg \in \mathcal{F}; \\
C2. & \quad \text{If } f \in \mathcal{F}, \text{ then } x_i^f \in \mathcal{F}; \\
C2*. & \quad \text{If } a \in \mathbb{N}_1 \text{ and } g \in \mathcal{F}, \text{ then } a^g \in \mathcal{F}; \\
C3. & \quad \text{If } f(x_1, \ldots, x_n) \in \mathcal{F}, \text{ then } f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) \in \mathcal{F} \quad \text{for } i = 1, 2, \ldots, n.
\end{align*}
\]

We see that every \(f \in \mathcal{F} \) may be expressed in the form

\[
f = \sum_k a_k \left(\prod_l (q_{kl})^{f_{kl}} \prod_n x_i^{g_{kl}} \right)
\]

Received February 22, 1973.
where the q_{kl}'s are primes (not necessarily distinct), $a_k \in \mathbb{N}$, $f_{kl} \in \mathscr{F}$, $g_{kl} \in \mathscr{G}$, and the f_{kl}'s consist of a single term which is product of non-constant functions. Further, this representation is unique.

The subset of \mathscr{F} formed by choosing $E1$ and $E2$ as elementary functions and $C1$ and $C3$ as composition rules, is the set of all polynomials with positive integral coefficients. Let \mathcal{B} be the subset of \mathscr{F} formed by $E1$, $E2^*$, $C1$, $C2^*$ and $C3$. For $f \in \mathcal{B}$ we have $g_{kl} \equiv 0$ in (2.1), and $f_{kl}(x)$ is either x_i for some i or is a product of functions from \mathcal{B}.

An exponential recurring sequence $\{z_n\}$ is a sequence satisfying

$$(2.2) \quad z_n = F(z_{n-1}, \ldots, z_{n-r}) \quad \text{for } n \geq r,$$

where $F \in \mathcal{F}$. If $F \in \mathcal{B}$, then we call the sequence a pure exponential recurring sequence.

We prove the following theorems.

Theorem 1. Every exponential recurring sequence is periodic modulo any integer m.

Theorem 2. Every pure exponential recurring sequence has period 1 modulo any integer m.

3.

Before we go on to the proof of the theorems we define some further concepts.

Let φ be Euler's function. We define φ_k for $k \geq 0$ and Φ by

$$\begin{align*}
\varphi_0(m) &= m \quad \text{for } m \in \mathbb{N}, \\
\varphi_k(m) &= \varphi(\varphi_{k-1}(m)) \quad \text{for } k \geq 1, m \in \mathbb{N}, \\
\Phi(m) &= \text{lcm}_{k \geq 0}\{\varphi_k(m)\} \quad \text{for } m \in \mathbb{N},
\end{align*}$$

where lcm denotes least common multiple. We note that if $p^a | \Phi(m)$, then $p^a | \varphi_k(m)$ for some k. Hence

$$\varphi(p^a) | \varphi(\varphi_k(m)) = \varphi_{k+1}(m) | \Phi(m).$$

For any $F \in \mathcal{F}$ we define $\mathcal{D}(F)$ as follows:

I. $F \in \mathcal{D}(F)$.

II. If $f \in \mathcal{D}(F)$ and we express f in the form (2.1), then

$$f_{kl}, (g_{kl})^{f_{kl}}, g_{kl}, x_\lambda^{g_{kl}} \in \mathcal{D}(F)$$

for all k, l, λ.

III. If \(F = F(x_1, \ldots, x_r) \), then the elementary functions defined by E2 (the projections) belong to \(\mathcal{D}(F) \) for \(i = 1, 2, \ldots, r \).

For any \(F \in \mathcal{F} \) we define \(h(F) \), the height of \(F \), as follows:

\[
\begin{align*}
 h(a) &= h(x_i) = 0, \quad a \in \mathbb{N}; \\
 h(a') &= h(x_i') = h(f) + 1 \quad \text{for } f \in \mathcal{F} \text{ nonconstant}; \\
 h(f+g) &= h(fg) = \max \{ h(f), h(g) \}.
\end{align*}
\]

An example may clarify these concepts. If

\[
F(x,y,z,u) = 6^{2v+3^{3v}} + z^v = 2^v 2^{2^{3^v}} 3^v 3^{3^v} + z^v
\]

then \(\mathcal{D}(F) \) consists of

\[
F, x, y, z, u, 2^v, 2^{3^v}, 3^v, 3^{3^v}, 3^{3^v}, yz, z^v,
\]
of heights 2, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, and 1 respectively.

Let \(F = F(x_1, \ldots, x_r) = F(x) \in \mathcal{F} \). Let

\[
\Phi(m) = \prod_i p_i^{e_i}
\]

be the product of \(\Phi(m) \) as primepowers and put \(v = v(m) = \max_i \{ x_i \} \). In the set \(\mathbb{N}^r \) of \(r \)-dimensional vectors with elements from \(\mathbb{N} \) we define a relation \(\sim_F \), depending on \(F \) and \(m \). It is easily seen to be an equivalence relation. We define

\[
u \sim_F v
\]

if and only if

I. \(f(u) \equiv f(v) \pmod{\Phi(m)} \) for all \(f \in \mathcal{D}(F) \).

II. If \(f(u) \neq f(v) \) for some \(f \in \mathcal{D}(F) \), then \(f(u) > v \) and \(f(v) > v \) for this \(f \).

4.

To prove theorem 1 we first prove two lemmas.

Lemma 1. For each \(F \in \mathcal{F} \) the equivalence relation \(\sim_F \) divides \(\mathbb{N}^r \) into a finite number of equivalence classes.

Proof. If \(d \) is the number of different functions in \(\mathcal{D}(F) \), then clause I divides \(\mathbb{N}^r \) into at most \(\Phi(m)^d \) classes and clause II divides each of these into at most \((v+1)^d \) classes. Hence there are at most \(\{(v+1)^d(m)\}^d \) equivalence classes.

Lemma 2. If \((u_1, \ldots, u_r) \sim_F (v_1, \ldots, v_r) \), then

\[
(F(u_1, \ldots, u_r), u_1, \ldots, u_{r-1}) \sim_F (F(v_1, \ldots, v_r), v_1, \ldots, v_{r-1})
\]
PROOF. To simplify notations, we denote the vectors appearing in lemma 2 by u, v, u', v' respectively, so that $u_1' = F(u)$ and $u_i' = u_{i-1}$ for $i > 1$ and similarly for v'. We must show that the clauses I and II are satisfied by u' and v'.

Clause I. We prove this by induction on $h(f)$. Assume $h(f) = 0$. Then $f(x)$ is a polynomial in x_1, \ldots, x_r. Since $u \sim_F v$ we have, by clause I, that

$$u_i' = u_{i-1} \equiv v_{i-1} = v_i' \pmod{\Phi(m)}, \quad i = 2, \ldots, r,$$

$$u_1' = F(u) \equiv F(v) = v_1' \pmod{\Phi(m)}.$$

Hence

$$f(u') \equiv f(v') \pmod{\Phi(m)}.$$

Now let $h(f) = h > 0$. We divide the induction step into three cases.

Case (A), $f = a^g$ where $a \in N_1$ and $h(g) = h(f) - 1$. Let $p_i | \Phi(m)$.

Subcase (i), $p_i | a$. By the induction hypothesis

$$g(u') \equiv g(v') \pmod{\Phi(m)}.$$

In particular

$$g(u') \equiv g(v') \pmod{\phi(p_i^{\alpha_i})}.$$

Hence, by Euler’s theorem

$$f(u') = a^{\phi(u') \equiv a^{\phi(v')} = f(v') \pmod{p_i^{\alpha_i}}}.$$

Subcase (ii), $p_i | a$. If $g(u') + g(v')$, then, by clause II,

$$g(u') > v \geq \alpha_i \quad \text{and} \quad g(v') > v \geq \alpha_i.$$

Hence

$$a^{\phi(u')} \equiv a^{\phi(v')} \equiv 0 \pmod{p_i^{\alpha_i}}.$$

Case (B), $f(x) = x_j^{\phi(x)}$ where $h(g) = h(f) - 1$. If $p_i | u_j'$, then, since

(4.1) \hspace{1cm} u_j' \equiv v_j' \pmod{\Phi(m)}

we proceed as in case (A), subcase (i). If $p_i | u_j'$, let $p_i^\beta | u_j'$. If $\beta < \alpha_i$, then $p_i^\beta | v_j'$ by (4.1) and we may go on as in case (A), subcase (ii). If $\beta \geq \alpha_i$, then $p_i^{\alpha_i} | v_j'$ by (4.1) and hence

$$(u_j')^{\phi(u')} \equiv (v_j')^{\phi(v')} \equiv 0 \pmod{p_i^{\alpha_i}}.$$

Case (C), f is any function of height h. Then f is a sum of products of functions of the form considered in the cases (A) and (B). (Cf. (2.1).)

Hence

$$f(u') \equiv f(v') \pmod{p_i^{\alpha_i}}.$$
Since this congruence is true for all $p_{i}^{\varphi}|\Phi(m)$, it must hold modulo $\Phi(m)$ as well.

Clause II. This is also proved by induction on $h(f)$. $h(f)=0$. Then $f(x)$ is a polynomial. Suppose $f(u')+f(v')$. Then $u_i'+v_i'$ for at least one i, such that x_i appears in the polynomial $f(x)$. Then, by clause I, $u_i'>v$ and $v_i'>v$. Hence $f(u') \geq u_i'>v$ and $f(v') \geq v_i'>v$.

$h(f)=h>0$. Case (A), $f=a^p$ where $a \in N_1$ and $h(g)=h(f)-1$. If $f(u')+f(v')$, then $g(u')+g(v')$. By the induction hypothesis $g(u')>v$ and $g(v')>v$. Hence

$$f(u') = a^{\varphi} > a^r > v$$

and $f(v')>v$ similarly.

Case (B), $f(x)=x_j\varphi(x)$. If $u_i'=1$, then $u_i' \leq v$. Hence, by clause II, $u_i'=v_i'=1$ and so $f(u')=f(v')$. If $u_i'>1$ and $f(u')+f(v')$, then either $u_i'+v_i'$ or $g(u')+g(v')$. Hence either $u_i'>v$ and $v_i'>v$ or $g(u')>v$ and $g(v')>v$. In either case $f(u')>v$ and $f(v')>v$.

Case (C), f is any function of height h. Then f is sum of products of functions f_i of the form considered in cases (A) and (B). If $f(u')+f(v')$, then $f_i(u')+f_i(v')$ for at least one i. Hence

$$f(u') \geq f_i(u') > v$$

and $f(v')>v$ similarly. This completes the proof of lemma 2.

Put $z_n=(z_{n-1}, \ldots, z_{n-r})$. By lemma 1 there exist n_1 and n_2 such that $n_1 < n_2$ and $z_{n_2} \sim_F z_{n_1}$. By lemma 2 and (2.2) we have $z_{n_2+k} \sim_F z_{n_1+k}$, and applying lemma 2 repeatedly we obtain $z_{n_2+k} \sim_F z_{n_1+k}$ for all $k \geq 0$.

In particular (putting $\mu = n_2 - n_1$) we get

$$z_{n+\mu} \equiv z_n \pmod m$$

for all $n \geq n_1 - r$. This is theorem 1.

5.

To prove theorem 2 we need two more lemmas.

Lemma 3. If $F \in \mathfrak{F}$ is nonconstant and $\{z_n\}$ satisfies (2.2) then $f(z_n) \to \infty$ when $n \to \infty$ for all nonconstant $f \in \mathfrak{D}(F)$.

Proof. The proof is by induction on $h(f)$. First we prove that $z_n \to \infty$ when $n \to \infty$.

By (2.1)

$$F(x) \geq (g_{11})^{f_{11}(x)} > f_{11}(x)$$
where \(h(f_{11}) < h(F) \). Applying the same procedure to \(f_{11} \) we find a \(f'_{11} \) such that \(f_{11}(x) > f'_{11}(x) \) and \(h(f'_{11}) < h(f_{11}) \). Applying the procedure repeatedly a finite number of times we arrive at a function of height 0, i.e.

\[
F(x) > x_i
\]

for some fixed \(i \). By (2.2) we have

\[
z_n > z_{n-i} \quad \text{for all } n \geq r.
\]

Hence \(z_{n+kt} \geq z_n + k \), that is \(z_n \to \infty \) when \(n \to \infty \). If \(h(f) = 0 \) and \(f \) is non-constant then \(f(x) \geq x_i \) for some \(i \). Hence \(f(z_n) \geq z_{n-i} \to \infty \) when \(n \to \infty \).

If \(h(f) = h > 0 \), then

\[
f(x) \geq (q_{11})^{f_{11}(x)} > f_{11}(x)
\]

where \(h(f_{11}) < h(f) \). By the induction hypothesis \(f_{11}(z_n) \to \infty \), hence \(f(z_n) \to \infty \).

Lemma 4. For all primepowers \(p^\alpha \) and all \(f \in \mathcal{D}(F) \) we have

\[
(5.1) \quad f(z_{n+1}) \equiv f(z_n) \pmod{\Phi(p^\alpha)} \quad \text{for } n \geq 0.
\]

Proof. We prove lemma 4 by induction. Since \(\Phi(1) = 1 \), (5.1) is true when \(\alpha = 0 \). Our induction hypothesis is that (5.1) is true for all powers of all primes less than \(p \) and also for \(p^\beta \) when \(\beta < \alpha \). We prove that it is true for \(p^\alpha \). If \(f \) is nonconstant, we have

\[
f(z_n) = \sum_k a_k \prod_l (q_{kl})^{f_{kl}(z_n)}.
\]

Fix \(k \) (we look at one term at a time). If \(p = q_{kl} \) for some \(l \), then

\[
(q_{kl})^{f_{kl}(z_n)} \equiv 0 \pmod{p^\alpha} \quad \text{for } n \geq 0
\]

by lemma 3. If \(p \neq q_{kl} \), then

\[
(q_{kl})^{f_{kl}(z_{n+1})} \equiv (q_{kl})^{f_{kl}(z_n)} \pmod{p^\alpha}
\]

by Euler’s theorem since

\[
f_{kl}(z_{n+1}) \equiv f_{kl}(z_n) \pmod{\varphi(p^\alpha)} \quad \text{for } n \geq 0
\]

by the induction hypothesis. Hence

\[
f(z_{n+1}) \equiv f(z_n) \pmod{p^\alpha} \quad \text{for } n \geq 0.
\]

Further

\[
\Phi(p^\alpha) = p^\alpha \prod_{q_j < p} q_j^{\beta_j}.
\]

By the induction hypothesis

\[
f(z_{n+1}) \equiv f(z_n) \pmod{\prod q_j^{\beta_j}} \quad \text{for } n \geq 0.
\]
Hence
\[f(z_{n+1}) \equiv f(z_n) \pmod{\Phi(p^n)} \quad \text{for } n \gg 0. \]

This completes the proof of lemma 4.

To prove theorem 2, fix \(m = \prod p_i^{r_i} \). By lemma 4 we have
\[z_{n+1} \equiv z_n \pmod{p_i^{r_i}} \quad \text{for } n \gg 0. \]

Hence
\[z_{n+1} \equiv z_n \pmod{m} \quad \text{for } n \gg 0. \]