SETS OF PRIMES WITH INTERMEDIATE DENSITY

H. G. MEIJER

1. Introduction.

Let P denote the sequence of primes. A subsequence $\{q_n\}$ of P satisfying $3 \le q_1 < q_2 < \dots$ and

$$q_n \equiv 1 \pmod{q_i}, \quad 1 \leq i < n, \ n \geq 2,$$

will be called here a G-sequence. For a sequence $A = \{a_n\}$ we denote by A(A,x) the number of elements of A not exceeding x and we put

$$P(A,x) = \prod_{a_n \le x} (1 - a_n^{-1})^{-1}, \quad S(A,x) = \sum_{a_n \le x} a_n^{-1}.$$

In [2] S. W. Golomb pointed out the importance of G-sequences. He especially studied their density and he proved that there does not exist a constant A > 0 such that

$$A(G,x) > Ax/\log x$$
 for all sufficiently large x.

In view of this property he said that the G-sequences are of "intermediate density". A special example is the sequence G_1 defined inductively by $q_1=3$ and q_n for $n\geq 2$ is the smallest prime greater than q_{n-1} for which $q_n \equiv 1 \pmod{q_i}$, $1\leq i < n$. Erdös [1] proved for the sequence G_1

(2)
$$A(G_1,x) = (1+o(1))x(\log x \log \log x)^{-1},$$

(3)
$$\log \log \log x - c_1 < S(G_1, x) < \log \log \log x + c_1,$$

for some constant c_1 .

Investigation of the equation $k\varphi(M) = M - 1$ where φ is Euler's totient function also leads in a natural way to the study of G-sequences; see e.g. Lieuwens [4]. Numerical computations lead Lieuwens to conjecture in [4] that

$$\lim_{x\to\infty}P(G,x)<3$$

for every G-sequence. We remark that Erdös result (3) implies that this conjecture is false. In fact we have

(4)
$$\log P(G,x) = \sum -\log(1-q_i^{-1}) > \sum q_i^{-1} = S(G,x)$$

Received August 16, 1972.

38 H. G. MEIJER

and therefore by (3)

(5)
$$P(G_1,x) > c_2 \log \log x$$
 for some constant $c_2 > 0$.

In section 2 of this paper we give some notes on G-sequences and in section 3 a generalization is stated.

2. G-sequences.

The computations in this section are based on the following lemma.

LEMMA. For every G-sequence

$$A(G,x)P(G,x) \leq cx(\log x)^{-1}$$
 for $x \geq 3$,

where c is a constant independent of x and the sequence G.

PROOF. Let N(G,x) denote the number of integers $1 \le z \le x$ satisfying $z \equiv 0 \pmod{p_i}$ for all primes $p_i \le \sqrt{x}$ not occurring in G and $z \equiv 0,1 \pmod{q_i}$ for all primes $q_i \le \sqrt{x}$ occurring in G. It follows from the Brun-Selberg sieve method (compare [1, lemma 2] and [3, p. 214, (7.25)]) that

$$N(G,x) \leq c_3 x \prod_{p_i \leq \sqrt{x}} (1 - r_i p_i^{-1}),$$

where $r_i = 1$ if p_i does not occur in G, $r_i = 2$ if p_i occurs in G and c_3 is a constant. Therefore

$$\begin{split} N(G,x) & \leq c_3 x \prod_{p_i \leq \sqrt{x}} (1-p_i^{-1})^{r_i} \\ & = c_3 x P(P,\sqrt{x})^{-1} P(G,\sqrt{x})^{-1} \\ & \leq c_3 x P(P,\sqrt{x})^{-1} P(G,x)^{-1} \prod_{\sqrt{x}$$

where the last product is extended over all primes $\forall x . It is well-known (see e.g. [5, p. 20]) that$

(6)
$$P(P,x) = c_4 \log x + O(1) \quad \text{as } x \to \infty$$

for some constant c_4 . Therefore there is a constant c_5 such that

$$N(G,x) \leq c_5 x (\log x)^{-1} P(G,x)^{-1}$$
.

If q_n is a prime of G with $\sqrt{x} < q_n \le x$, then $q_n \equiv 0 \pmod{p_i}$ for all primes $p_i \le \sqrt{x}$ not occurring in G and $q_n \equiv 0, 1 \pmod{q_i}$ for all primes $q_i \le \sqrt{x}$ of G. Hence

$$A(G,x) \leq \sqrt{x + N(G,x)} \leq \sqrt{x + c_5 x (\log x)^{-1} P(G,x)^{-1}}$$

$$\leq c x (\log x)^{-1} P(G,x)^{-1}$$

for a suitable constant c. Since $P(G,x) \leq P(P,x)$ the constant c may be chosen independent of G.

The lemma enables us to sharpen the above mentioned result of Golomb in the following sense.

THEOREM 1. Let G be a G-sequence. There does not exist a constant A > 1 such that

(7)
$$A(G,x) > \frac{Ax}{\log x \log \log x}$$
 for all sufficiently large x .

PROOF. By (4) and the lemma we have

$$S(G,x) \leq \log P(G,x) \leq \log \left\{ \frac{cx}{\log xA(G,x)} \right\}.$$

On the other hand we have by partial summation

$$S(G,x) = \sum_{n \leq x} n^{-1} (A(G,n) - A(G,n-1)) \ge \sum_{n \leq x} A(G,n) (n^{-1} - (n+1)^{-1}).$$

Therefore we get

(8)
$$\sum_{n \leq x} \frac{A(G,n)}{n(n+1)} \leq \log \left\{ \frac{cx}{\log x A(G,x)} \right\}.$$

Suppose that (7) holds for some A > 1 and $x \ge x_0$. Then the right-hand side of (8) is less than or equal to $\log \log \log x + \log (cA^{-1})$ for $x \ge x_0$, while the left-hand side is greater than or equal to $\frac{1}{2}(A+1) \log \log \log x$ if x is sufficiently large. This is a contradiction.

In view of theorem 1 and (2) one might suspect

$$A(G,x) \leq (1+o(1))x(\log x \log \log x)^{-1}$$

for every G-sequence. This, however, is not true as can be seen from the following theorem.

THEOREM 2. There exists a G-sequence and a constant c > 0 such that

$$(9) A(G,x) > cx(\log x)^{-1}$$

for infinitely many positive integers x.

PROOF. We will construct a sequence of positive integers $\{x_k\}$ such that $2 = \frac{1}{2}x_1 < x_1 < \frac{1}{2}x_2 < x_2 < \frac{1}{2}x_3 < x_3 < \dots$ and a G-sequence entirely contained in $\bigcup_{k=1}^{\infty} (\frac{1}{2}x_k, x_k]$ such that (9) holds for this G-sequence and the integers x_k .

40 H. G. MEIJER

Suppose that we have already chosen x_1, \ldots, x_{k-1} $(k \ge 2)$ and the primes $3 = q_1, \ldots, q_n$ of the sequence G contained in $\bigcup_{i=1}^{k-1} (\frac{1}{2}x_i, x_i]$. The primes p with

$$(10) p \equiv 1 \pmod{q_i} 1 \leq i \leq n$$

lie in $(q_1-2)\dots(q_n-2)$ residue classes $\operatorname{mod} q_1\dots q_n$. Therefore the number of primes $p \leq x$ satisfying (10) is asymptotically equal to (see e.g. [5, p. 138])

$$\frac{x}{\log x} \prod_{i=1}^n \frac{q_i - 2}{q_i - 1}.$$

Then we can choose an integer $x_k > 2x_{k-1}$ such that the number of primes p with $\frac{1}{2}x_k satisfying (10) is greater than$

$$\frac{1}{4} \frac{x_k}{\log x_k} \prod_{i=1}^n \frac{q_i - 2}{q_i - 1}.$$

By (6) we have $\lim_{x\to\infty} \prod_{\frac{1}{2}x< p\leq x} (1-(p-1)^{-1})=1$, where the product is extended over all primes in $(\frac{1}{2}x,x]$. Hence we may choose x_k so large that

(11)
$$\prod_{\frac{1}{2}x_k$$

Now we choose x_k so large that both conditions are satisfied and we continue the sequence G with the primes in $(\frac{1}{2}x_k, x_k]$ satisfying (10). Then

$$A(G, x_k) > \frac{1}{4} \frac{x_k}{\log x_k} \prod_{i=1}^n \frac{q_i - 2}{q_i - 1}$$

and since, by (11), the product is convergent, the theorem follows.

REMARK. As a consequence of theorem 2 and (2) we conclude that there exist G-sequences such that $A(G,x) > A(G_1,x)$ for infinitely many positive integers x.

In view of the difference between (2) and theorem 2 it is interesting to remark that Erdös proof of the upper bound in (3) still holds for an arbitrary G-sequence. We will give here, however, another proof following the method of theorem 1.

THEOREM 3. There exist constants a and b such that for every G-sequence the following inequalities holds for $x \ge 3$

$$P(G,x) \le a \log \log x$$

 $S(G,x) \le \log \log \log x + b$.

PROOF. By (4) we only have to prove the inequality for P(G,x). First we remark that for $0 \le t \le \frac{1}{2}$ we have $-\log(1-t) \le 2t$. Therefore we get if y and z are integers satisfying $3 \le y < z$,

$$\begin{split} \log P(G,z) - \log P(G,y) &= \sum_{y < q_i \le z} - \log(1 - q_i^{-1}) \\ &\le 2 \sum_{y < q_i \le z} q_i^{-1} \\ &= 2 \sum_{y < n < z} n^{-1} (A(G,n) - A(G,n-1)) \; . \end{split}$$

By partial summation we find

$$\begin{split} \log P(G,z) - \log P(G,y) & \leq 2 \sum_{y < n \leq z-1} A(G,n) (n^{-1} - (n+1)^{-1}) - \\ & - 2(y+1)^{-1} A(G,y) + 2z^{-1} A(G,z) \leq 2 \sum_{y < n \leq z} n^{-2} A(G,n) + 2z^{-1} A(G,z) \; . \end{split}$$

Then the lemma gives the following inequality for P(G,x)

(12)
$$\log P(G,z) - \log P(G,y) \leq 2c \sum_{y < n \leq z} (n \log n P(G,n))^{-1} + 2c (\log z P(G,z))^{-1}.$$

Put

(13)
$$c_6 = \max(2c, 3(2\log\log 3)^{-1}).$$

Since P(G,3)=1 or $\frac{3}{2}$ we have

(14)
$$P(G,3) \leq 3(2 \log \log 3)^{-1} \log \log 3 \leq c_6 \log \log 3$$
.

Choose a real number u > 1 such that

(15)
$$\log u > (\log 3)^{-1} (\log \log 3)^{-1}.$$

We shall prove

$$P(G,x) \leq c_6 u \log \log x$$
 for all integers $x \geq 3$.

Obviously this will prove the theorem.

Suppose that there exists an integer z > 3 with

(16)
$$P(G,z) > c_6 u \log \log z.$$

Then, by (14) there exists an integer $y \ge 3$ such that

$$(17) P(G,y) \leq c_6 \log \log y,$$

(18)
$$P(G,n) > c_6 \log \log n$$
 for all integers n with $y < n \le z$.

From (16) and (17) it follows that the left-hand side of (12) is greater than

$$\log\log\log z - \log\log\log y + \log u.$$

42 H. G. MEIJER

On the other hand by (13), and (18) the right-hand side of (12) is less than or equal to

$$\begin{split} \sum_{y < n \leq z} (n \log n \log \log n)^{-1} + (\log z \log \log z)^{-1} \\ &\leq \log \log \log z - \log \log \log y + (\log 3 \log \log 3)^{-1} \,. \end{split}$$

By the choice (15) of u this is a contradiction.

REMARK. It follows from (3) and (5) that the upper bounds of theorem 3 are best possible.

3. Generalization.

As a matter of fact the condition $q_n \equiv 1 \pmod{q_i}$ in (1) can be replaced by $q_n \equiv a_i \pmod{q_i}$ where $\{a_i\}$ is a sequence of integers such that $a_i \equiv 0 \pmod{q_i}$ for every positive integer i.

It is also easy to generalize to the case that with every prime from the sequence a set of k sifting classes is associated. Then we get the following situation. Let k be a positive integer. Let $Q = \{q_n\}$ denote a sequence of primes and

$$\{a_{nh}: n=1,2,\ldots; h=1,\ldots,k\}$$

a double sequence of integers such that for every n the integers $0, a_{n1}, \ldots, a_{nk}$ are incongruent $\text{mod } q_n$. Let moreover

$$k+2 \leq q_1 < q_2 < \dots$$

and

$$q_n \equiv a_{ih} \pmod{q_i}$$
 $h = 1, \ldots, k; 1 \leq i < n, n \geq 2$.

It is easy to derive that the lemma had to be replaced by

$$A(Q,x)P^k(Q,x) \leq cx(\log x)^{-1}$$
 for $x \geq 3$.

This implies that we get instead of theorem 1 that there does not exist a constant $A > k^{-1}$ such that

$$A(Q,x) > Ax(\log x \log \log x)^{-1}$$
 for all sufficiently large x

and the sequence Q is of intermediate density following the definition of Golomb. On the other hand, as in theorem 2, there exists a sequence Q and a constant c > 0 such that

$$A(Q,x) > cx(\log x)^{-1}$$

for infinitely many positive integers x.

Finally we get instead of theorem 3 that there exist constants a and b such that for $x \ge 3$

$$P(Q,x) \le a(\log \log x)^{1/k}$$

 $S(Q,x) \le k^{-1} \log \log \log x + b$.

REFERENCES

- 1. P. Erdös, On a problem of G. Golomb, J. Austral. Math. Soc. 2 (1961/62), 1-8.
- 2. S. W. Golomb, Sets of primes with intermediate density, Math. Scand. 3 (1955), 264-274.
- 3. H. Halberstam, K. F. Roth, Sequences vol. I, Clarendon Press, Oxford, 1966.
- E. Lieuwens, Do there exist composite numbers M for which kφ(M)=M-1 holds?, Nieuw Arch. Wisk. (3) 18 (1970), 165-169.
- K. Prachar, Primzahlverteilung, (Grundlehren math. Wissensch. 41) Springer-Verlag, Berlin, 1957.

UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS DELFT, NETHERLANDS