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SETS OF PRIMES WITH INTERMEDIATE DENSITY

H. G. MEIJER

1. Introduction.

Let P denote the sequence of primes. A subsequence {g,} of P satisfy-
ing 3<¢;<¢y<... and

(1) g, £1(modgq;), 1=i<n, nx2,

will be called here a G-sequence. For a sequence 4 ={a,} we denote
by A(A4,z) the number of elements of 4 not exceeding z and we put

P(A»x) = Ha,.gz (l"an—l)_l’ A x) Zaﬂsw

In [2] S. W. Golomb pointed out the importance of G-sequences. He
especially studied their density and he proved that there does not exist
a constant 4 > 0 such that

A(G,z) > Axzflogx for all sufficiently large z .

In view of this property he said that the G-sequences are of “inter-
mediate density”’. A special example is the sequence (; defined induc-
tively by ¢,=3 and g, for n=2 is the smallest prime greater than ¢, _,
for which ¢, %=1 (modg;), 1 <¢<n. Erdos [1] proved for the sequence G,

(2 A(Gy,z) = (1+0(1))z(logz loglogz)-1,
(3) logloglogz —¢, < 8(G,,z) < logloglogz+¢, ,

for some constant c,.

Investigation of the equation kp(M)=M —1 where ¢ is Euler’s totient
function also leads in a natural way to the study of G-sequences; see e.g.
Lieuwens [4]. Numerical computations lead Lieuwens to conjecture in
[4] that

lim, P(G,x) < 3

for every G-sequence. We remark that Erdos result (3) implies that this
conjecture is false. In fact we have

(4) log P(G,z) = > —log(l—g¢;) > 3 ¢;7* = 8(G,2)
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and therefore by (3)

(5) P(G,,x) > cyloglogx for some constant ¢,>0.

In section 2 of this paper we give some notes on G-sequences and in
section 3 a generalization is stated.

2. G-sequences.

The computations in this section are based on the following lemma.

LemMMA. For every G-sequence
A(G,2)P(G,z) < cx(logz)~t for 23,

where ¢ 18 a constant independent of x and the sequence G.

Proor. Let N(@,x) denote the number of integers 1 <z =<z satisfying
20 (mod p;) for all primes p, £ Jx not occurring in G' and 20,1 (modg;)
for all primes ¢; < J/z occurring in G. It follows from the Brun-Selberg
sieve method (compare [1, lemma 2] and [3, p. 214, (7.25)]) that

N(G’x) = C3% Hpi§l/w (1 _Ir'ip't_l) ’

where r;=1 if p; does not occur in G, r;=2 if p; occurs in G and ¢; is a
constant. Therefore

N(G’x) = C3 ]._.[piéyz (1 "pi—l)ﬂ
c3xP(P, yx)-1P(G, yz)*
c;xP(P, Vx)‘lP(G,x)"l HVr<p§z Q=p)1,

where the last product is extended over all primes [z <p=<z. It is well-
known (see e.g. [5, p. 20]) that

IIA

(6) P(P,x) = cylogxz+0(1) as x > oo
for some constant ¢,. Therefore there is a constant c; such that
N(@,z) < c;z(logz)P(G,x)™.

If g, is a prime of G with yz<gq, <z, then ¢,=0 (modp,) for all primes
p; < Yz not occurring in @ and ¢, 0,1 (modg,) for all primes ¢; < y/z of G.
Hence

A(G,z) £ Yx+N(G,xz) £ Yz +czz(logz)t P(G,x)?

cz(logz)-1 P(G,x)!

IA 1A

for a suitable constant ¢. Since P(@,z)< P(P,z) the constant ¢ may be
chosen independent of G.
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The lemma enables us to sharpen the above mentioned result of
Golomb in the following sense.

TaEOREM 1. Let G be a G-sequence. There does not exist a constant 4 > 1
such that

Ax
7 A(G, —— l icient .
(7) (G,x) > Togw loglogs for all sufficiently large x

Proor. By (4) and the lemma we have

cx
S(G, logP(G,z) < log}——————1.
(©2) 3 logP(@2) 5 log o]
On the other hand we have by partial summation

G x) Znsx ( G n) A(G n— 1)) ZnszA(G’n)(n—l“(n“‘ 1)_1) .

Therefore we get

A(G,n)
8 < log}——+——1.
(8) zng” nn+1) = g{long(G,x)}

Suppose that (7) holds for some 4>1 and 22z, Then the right-hand
side of (8) is less than or equal to logloglogz +log(cA-1) for x 2, while
the left-hand side is greater than or equal to }(4+1)logloglogz if 2
is sufficiently large. This is a contradiction.

In view of theorem 1 and (2) one might suspect
A(G,x) £ (1+0(1))z(logz loglogz)-1

for every G-sequence. This, however, is not true as can be seen from the
following theorem.

THEOREM 2. There exists a G-sequence and a constant ¢ > 0 such that
9) A(G,z) > cx(logz)t
Jor infinitely many positive integers x.

Proor. We will construct a sequence of positive integers {z,} such
that 2=}z, <z, <iz,<z,< d23<23< ... and a G-sequence entirely con-

tained in UL, (3;,7,] such that (9) holds for this G-sequence and the
integers z,.
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Suppose that we have already chosen z;,. . .,z,_; (k2 2) and the primes
3=qy,...,q, of the sequence G contained in U¥~!(}x,,,]. The primes p
with
(10) p=1 (modg,) 1=i=zn

lie in (¢, —2) ... (g, —2) residue classes modg, . ..q,. Therefore the num-
ber of primes p <z satisfying (10) is asymptotically equal to (see e.g.
[5, p. 138])

x q;—2

n

loge “ = q,— 1"

Then we can choose an integer z; > 2x,_, such that the number of primes
p with 3z, < p <z, satisfying (10) is greater than

2

Ty q;—
I 20
-

1

logx;,

By (6) we have lim, , ,, ITj,<p<z(1—(»—1)"!)=1, where the product is
extended over all primes in (}x,z]. Hence we may choose z; so large that

(11) Hi¢k<pszg(1"(p—'1)_l) = l—g, with ¢ < k2.

Now we choose z;, so large that both conditions are satisfied and we con-
tinue the sequence G with the primes in (3x;,,] satisfying (10). Then

q:—2
g:—1

A(G,zy) > } J

Ty
logx,
and since, by (11), the product is convergent, the theorem follows.

ReEMARK. As a consequence of theorem 2 and (2) we conclude that
there exist G-sequences such that A(G,x)>A(Gy,2) for infinitely many
positive integers z.

In view of the difference between (2) and theorem 2 it is interesting
to remark that Erdos proof of the upper bound in (3) still holds for an
arbitrary G-sequence. We will give here, however, another proof follow-
ing the method of theorem 1.

THEOREM 3. There exist constants a and b such that for every G-sequence
the following inequalities holds for >3

P(G,z) = aloglogx
S8(G,z) =< logloglogz+b .
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Proor. By (4) we only have to prove the inequality for P(G,zx).
First we remark that for 0<¢< } we have —log(1—t) < 2t. Therefore we
get if y and z are integers satisfying 35y <z,

log P(@,2) —log P(@,y) = 3, cq<e —log(l—g;77)
S 23 cuss Ut
=2, cns, W HA(G,n)—A(G,n—1)) .

By partial summation we find

log P(G,2)—log P(G,y) < 2 zy<n5z—-1 AG,n)(nt—(n+1)"1)—
=2(y+1)rA(G,y)+ 2.1 A(G,2) £ 23, <, 2 A(G,0) + 2271 A(G,2)

Then the lemma gives the following inequality for P(Q,x)

(12) log P(G,2)—log P(Q,y) < 2¢ 3, n<; (nlognP(G,n)) 1+
+2¢(logzP(G,2))1 .
Put

(13) ¢g = max(2c,3(2 loglog3)-!).

Since P(G,3)=1 or $ we have

(14) P(G,3) = 3(2loglog3)-1loglog3 < cqloglog3 .
Choose a real number %> 1 such that

(15) logu > (log3)-! (loglog3)-!.
We shall prove

P(@,z) £ cquloglogx for all integers =3 .

Obviously this will prove the theorem.
Suppose that there exists an integer z>3 with

(16) P(G,z) > cquloglogz .

Then, by (14) there exists an integer y =3 such that

(17) P(G,y) £ cgloglogy ,

(18) P(@,n) > cgloglogn for all integers n with y<n=z.

From (16) and (17) it follows that the left-hand side of (12) is greater
than

logloglogz—logloglogy +logu .
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On the other hand by (13), and (18) the right-hand side of (12) is less
than or equal to

D y<nse (nlogn loglogn)-1+ (logz loglogz)—*
< logloglogz—logloglogy + (log 3 loglog3)-* .

By the choice (15) of u this is a contradiction.

REMAREK. It follows from (3) and (5) that the upper bounds of theorem
3 are best possible.

3. Generalization.

As a matter of fact the condition ¢, %=1 (modg,) in (1) can be replaced
by g¢,%a; (modg;) where {a;} is a sequence of integers such that a;%=0
(modg,) for every positive integer 3.

It is also easy to generalize to the case that with every prime from the
sequence a set of k sifting classes is associated. Then we get the following
situation. Let k be a positive integer. Let @ ={g,,} denote a sequence of
primes and

(@ n=1,2,...;h=1,.. .k}

a double sequence of integers such that for every n the integers 0,a,,,
..,y are incongruent modg, . Let moreover

k+2 =<9, <¢q3< ..
and
qn = a, (modg;) h=1,... ,k;1Z5i<n,n22.

It is easy to derive that the lemma had to be replaced by
A(Q,x)P*(Q,x) < cx(logx)! for x=3.

This implies that we get instead of theorem 1 that there does not exist
a constant 4 >k-! such that

A(Q,z) > Ax(logz loglogz)-! for all sufficiently large

and the sequence @ is of intermediate density following the definition
of Golomb. On the other hand, as in theorem 2, there exists a sequence
@ and a constant ¢ > 0 such that

A(Q,z) > cx(logz)?

for infinitely many positive integers x.
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Finally we get instead of theorem 3 that there exist constants @ and b
such that for >3
P(Q,x) < a(loglogx)Vk
8(Q,x) < k'logloglogz+b.

IIA
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