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THE AMALGAMATION PROPERTY, THE UNIVERSAL-
HOMOGENEOUS MODELS, AND THE GENERIC MODELS

MITSURU YASUHARA

In the mid 1960’s, the possibility of applying the notion of forcing to
model theory must have occurred to and been developed by various
people. For instance, in [13] G. Reyes established a substantial body of
knowledge in connexion with topological spaces on classes of models.
Certainly, a series of papers, which appeared a few years later, by A.
Robinson is the main stimulus for the writer’s as well as many others’
interest in this field. Soon after it was observed by several people that
M-universal-homogeneous structures and their elementary substructures
are generic, where M is the class of all models of a given theory 7' (cf.
[21], [2]). The present paper originates in trying to see if the converse is
true. It is, if there are arbitrarily large M-universal-homogeneous struc-
tures. To guarantee the existence of such structures, Jonsson assumed
various properties on the class M, of which some are automatically
satisfied when M is the class of all models of a theory, but the amalgama-
tion property, the joint embeddability property, the inductiveness of
the theory, and an assumption on cardinal arithmetic are not fulfilled
gratuitously. The inductiveness of the theory is harmless for our purpose,
since it is needed for constructing generic structures anyhow. (Robin-
son’s device in [15] of considering all substructures of models instead of
models only amounts to considering another theory which is inductive.)
So we try to circumvent the other three assumptions and arrive at the
classes of x-objective and x-subjective models, where x is an infinite
cardinal. (In view of 2.10.1 below and a comment after it, these are
really generalized universal-homogeneous and homogeneous models,
respectively. However we wanted short names and have chosen ‘“‘ob-
jective” and “subjective”.) The answer to our original question is given
by the combination of 2.5 and 3.2.2:

If the theory T ts inductive, then a model of T is generic if and only if
1t 18 an elementary submodel of an R;-objective model.

In the first section we study the amalgamation property and amal-
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gamative models; in the second section we define x-objective and x»-sub-
jective models and investigate them in terms of universality and injec-
tivity; and in the last section the connexion of the generic models with
x-objective models, etc., is considered. In the process, the amalgamation
property and the amalgamative models came to play a dominant role.
The following three results are easy to state and may be worth quoting
here. They are that if the theory is inductive then every model can be
extended to an amalgamative model (1.7); that no non-amalgamative
model has an amalgamative envelope (a kind of the smallest amalga-
mative extension) (2.12); and that an inductive theory has the amalga-
mation property if and only if there are enough R,-weak injectives (2.11).
The last may appear to be an extension of Pierce’s result (cf. [12])
that an equational class has the amalgamation property if there are
enough injectives. However, weak injectivity, which is introduced by
Simmons ([17], [18]), is not really a weakened version of injectivity, and
so our result does not imply Pierce’s. Nevertheless, it is an algebraic
characterization of the amalgamation property, and may not be without
merit as the converse of Pierce’s result is false. (The class of lattices has
the amalgamation property [8], but there is no non-trivial injective
lattice [5].)

Assumptions, conventions, and terminology.

We assume that a theory 7' under consideration is formulated in a
countable language L, and has infinite models. From time to time, we
consider substructures of models which may not be models. “Structures”
is used in this sense, while “systems” is used to talk about relational
systems of an appropriate similarity type. We notice here that the class
of structures is the class of models of a new theory T, that consists of
universal sentences in L provable from the given theory 7. Given a
system 8, L(S) is the language of S, that is, L augmented with new con-
stants denoting members of §; and Dg(S) is the diagram of S. Notations
like “p € Z,” and “p € XZ,(S)” express that ¢ is (logically equivalent to)
an existential formula in L and in L(8), respectively. Similar conventions
apply to X, and I7,(S), etc. A bold face lower case letters like @ denote
a sequence — finite, usually — of constants, and @ € 8 means that a
is a sequence of constants denoting members of the universe of the sys-
tem S. For a system C, cd (C) denotes the cardinality of the universe of C,
and the cofinality of a cardinal x is denoted by cf (x), and »* is the smallest
cardinality larger than ». In most cases we use the same capital letter
to denote a system and its underlying set (that is universe). When it is
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advisable to do so, we denote by ‘| M|’ the underlying set of the system M.
All mappings we consider are into isomorphisms, and hence we use the
word ‘“map’ in this sense. ‘“Embedding”’, “injection” and ‘“inclusion
map’’ are used also for emphasis and qualification. A map f: 4 - B is
considered to be a set of ordered pairs, and hence when C' 2 B we have
no hesitation in considering f as a map of A4 to C as well. By an isomor-
phism, we mean an onto map, and use notations like ‘“‘f: A~B”.
“4: A - B” always means the inclusion map of 4 to B. Given a map
f: A > B and a sentence g(a) € L(4), by ¢(f(a)) we denote the sentence
of L(B) that is obtained from ¢ by replacing the new constants of L(4)
by those that denote the image under f. Given classes K and C of sys-
tems, we say C is cofinal in K if for each K € K there is a C € C such that
C2K. When C is included in K in addition, we also say that there are
enough C in K. For instance, the class of models and that of structures
(in the above sense) are cofinal in each other, and there are enough
models in the structures. Often we denote by ‘CK’ the intersection of
the classes C and K. We use ‘G’ and ‘E’ to denote the classes of generic,
and of existentially closed structures. We use the abbreviations ‘AP’,
‘JE’, and ‘LST’ for ‘the amalgamation property’, ‘the joint embeddability
property’, and ‘the Lowenheim—Skolem theorem in the sense of [22],
respectively.

There are two obvious directions of generalization. The first is to con-
sider languages of higher cardinalities, and the second is to consider
those maps that preserve the truth of, say, V3-sentences, in place of
injection, which preserves the truth of open sentences. We refrained from
these generalizations because no new difficulty or gain is anticipated.

A model 4 of T is called amalgamative, in symbols 4 € A, if for any
two given injections f,g of A to models M,N there exist injections f;
and ¢, of M and N, respectively, to a model K such that f,f=g,g.

A .M
g lfl
N—" K

An extension model 4’ of 4 is an amalgamator of A, in symbols 4’ e
A(A), if any two injections f and g of 4 can be amalgamated, provided f
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and g can be factored through A’, that is, there are maps f' and ¢’ of 4’
such that f=f'oi and g=g'ot where 7 is the inclusion map of 4 into 4'.
The following propositions are trivial consequences of the definitions:

ProrosiTIONS.

1.1.1. 4 model is amalgamative if and only if it is its own amalgamator.

1.1.2. If A’ is an amalgamator of A and f is a map of A', then f(A4’) 18
an amalgamator of f(A). Hence, an isomorphic image of an amalgamative
model is amalgamative.

1.1.3. 4 model B is an amalgamator of A in the class of models if and
only if it is so in the class of structures.

1.1.4. A theory has the amalgamation property if and only if all models
are amalgamative.

Because of 1.1.3, when we talk of amalgamatives and amalgamators,
we shall not always specify whether we are considering them in terms of
models or in terms of structures. The next one can also be proved easily
from the definitions.

ProposITIONS.

1.2.1. Each extension of an amalgamator of a model is an amalgamator
of the model.

1.2.2. An amalgamator of a structure is an amalgamator of any substruc-
ture of the structure.

1.2.3. Each extension of A is an amalgamator of A, if it is amalgamative.

Here we prove only 1.2.2, because a proof of 1.2.1 will be given after
the next theorem as an illustration, and 1.2.3 follows immediately from
1.2.2 and 1.1.1.

Proor or 1.2.2. Let B’ € A(B) and 4 < B. We are to show B’ € A(4).
For given maps f: 4> M and g: A —> N, assume that there are
f''B'>-M and g':B’'-> N such that f=f'oi and g=g'o¢ where
t:4->B'. We let ¢,: A - B and ¢,: B—> B’, and let f,=f'oi, and
g1=¢ oiy. Then since B’ € A(B) there are maps f, and g, on M and N,
respectively, such that fyof, =g,0¢,, hence fyof 01, =g,0g;01;. But

J10ty = (f'oip)oiy = f'o(igoty) = floi = f,
and similarly g,0%,=¢. Thus fyof =g,0g, and so B’ € A(4).

For later purposes, various characterizations of the relation “A4’ is an
amalgamator of 4” will be useful. So we formulate and prove:



THE AMALGAMATION PROPERTY ... 9

THEOREM 1.3. The following four are equivalent:

(i) A’ is an amalgamator of A.

(ii) For any two existential sentences p(a) and w(a) of L(A) if each 18
consistent with T + Dg(A"), then T + Dg(A) + ¢(a) +y(a) is consistent.

(iii) Any existential sentence @(a) of L(A) which is consistent with
T+Dg(A’) is also consistent with T+ Dg(M) for any extension M of A’.

(iv) For any two universal formulas ¢ and y of L, any existential formula
£, and any sequence a € A, if AE{(a) and

(* T FVa(l(x) > @) v p(x))
then there is an existential formula & such that A’k &(a) and
(**) either T FVax(&(@) > p®)) or T FVa(i(x) > p)) .

Proor. We show the equivalence of (i) and (iv) only, since (ii) and
(iii) can be shown similarly and much more simply to be equivalent to (i).

Assume that (i) is false. Hence there are two maps of 4 that can be
factored through 4’ but cannot be amalgamated. By replacing isomorphic
images whenever necessary, we can assume f, g, f' and ¢’ in the above
definition to be inclusion maps. Thus our assumption gives that there
are extensions M and N of A’ such that the inclusion maps of 4 into M
and N cannot be amalgamated. This happens exactly when 7'+ Dg(M) +
Dg(N) is inconsistent, where Dg(M) and Dg(N) are written in such a
way that the constants common to them are exactly those that denote
members of A. (Thus members of A'—A4 are denoted differently in
Dg(M) and Dg(N).) Hence there are three finite sets

{' e Dg(4), ¢ < Dg(M)—Dyg(4), o' < Dg(N)-Dyg(4)
such that Tu{{’,¢’,¢'} is inconsistent, or
THE — =@V —yy,

where {,, ¢, and y, are conjunctions of members of ¢’, ¢’ and o', res-
pectively. By replacing new constants by variables, quantifying uni-
versally, and using the predicate calculus, we have g, € II; and { € X,
such that

T FVa(i(@e) > @) v px)) .

From the way in which constants were chosen in writing the diagrams,
we know that the variables @ are replacing constants of L(A4). Since {
comes from {'<Dg(A) by conjunction and existential quantification,
we have 4 k {(a) for some a € A. Since ¢ comes from—e, by universal
quantification, and ¢'<Dg(M), we have Mk —@(a). Similarly Nk
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—p(a). Now take any & € 2| and assume A’ &(a). Then since M 24’,
we have M £ &(a). So, were it true that

TE Vm(&(w) —- (p(w)) ,

then M { ¢(a), as M is a model of 7. But this is impossible because
ME —p(a). Similarly,

T X Va(£x) - p(x)) .
Thus (iv) is false.

Conversely, assume (i), and take ¢, v, @,  as in (iv). We show first
that either 7',Dg(A’)Fe(a) or T',Dg(4’)Fy(a). For, otherwise there are
models M and N that are extensions of A’, and ME —¢(a) and
Nk —y(a). The inclusion maps of 4 to M and to N are certainly fac-
tored through the amalgamator A’. Hence there are a model K and in-
jections f;: M - K and g,: N - K that coincide on 4. By taking iso-
morphic images, we may assume that f; and g, are the identity on A4.
Thus K is a model of f,(Dg(4")), g,(Dg(A4")), —p(a) and —y(a), as these
are all existential sentences. On the other hand, since 4 k {(a) and

T FVa(l(x) > pl) v ()

by assumption, we have Kk ((a), hence K k ¢(a) or K k y(a). This
contradiction shows our claim above. So, for instance, assume that
T,Dg(A’)F¢(a). By taking the conjunction of an appropriate finite sub-
set of Dg(A4’), changing constants to variables and quantifying them,
we have a £ € X, such that 4'F&(a) and

T FVax(&x) > p)) .

RemMaRrk. Condition (iv) reduces the question: “if N is an amalgama-
tor of M”, and hence “if M is amalgamative’, to the question about the
truth of sentences in X2,(M) which is relatively easy to check. As an
example of such application, we prove 1.2.1 in detail; and further on
we dismiss similar proofs by saying ‘“by condition (iv)”, or some such
phrase.

Proor or 1.2.1. Let 4’ € A(4) and B2A4’, and for given ¢,y € I1,,
(e, and ae M assume that AE((a) and (*) in 1.3, (iv). We are to
find a £ € 2] such that BEé&(a) and (**). But since 4’ € A(4) there is
indeed a &€ X, such that A'k&(a) and (**). Since B2 A4’ and £ is exis-
tential, we have BEé&(a). Condition (**) naturally holds as it is about
provability from 7', and thus is independent of the models in question.

As immediate consequences of 1.3, we can characterize the class 4 in
the infinitary language L, ..
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ProOPOSITION 1.4. Given a theory T formulated in L, there is an infini-
tary sentence P in the vocabulary of L such that a model of T' is amalgamative
if and only if @ is true in it.

Proor. For ¢,p € Il; and (€2 such that 1.3, (iv), (*) holds, let
S{p,,) be the set of those & € X, whose free variables are included in
those of ¢, v and ¢, and for which 1.3, (iv), (**) holds. Let & be the in-
finitary sentence

”\w, v va(C(w) g WS((p,‘lp, C)) ’

where the initial infinite conjunction runs over all triples ¢, v, ¢ for
which (*) holds. From the equivalence of (i) and (iv) of 1.3, we know that
for any model M of T, M ® exactly when M is its own amalgamator,
that is, amalgamative by 1.1.1.

The following proposition will be proved in the manner of the proof
of the Main Theorem of [3].

ProposiTiON 1.5. Every model M has an amalgamator of power
cd(M)+R,.

Proor. Given a model A4, let 4 be a set of L(A4) sentences such that
Dg(4)c A< (A4), 4 is consistent with 7', and is a maximal such set.
(The existence of A follows from Zorn’s lemma.) Let A'-T + 4 and
cd(A)=cd(4)+R,. We show 1.3, (iv) for 4 and 4’. Take ¢, v, { and a
as in 1.3, (iv), and assume that AF{(a) and (*). First we show that
T,Atgp(a) or T,Aty(a). For otherwise, T',4—gp(a) and T,4—y(a) are
consistent. Since —g(a),—y(a) e Z;(4) and 4 is maximal, —p(a) and
—p(a) are both in 4. Hence

A"k —(p(a)vy(a) .

Since 4’24, we have A’k {(a), whence

A’k g(a) v y(a)

by (*), causing a contradiction. Thus a £ as required can be obtained
from 4.

ProPOSITIONS.

1.6.1. Qiven an ascending chain of structures (M. ),.., if M,., 18 an
amalgamator of M, for each x <x, then M=U__ M, is an amalgamative
structure.
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1.6.2. The union of an ascending chain of amalgamative structures is an
amalgamative structure.
1.6.3. An existentially closed structure is amalgamative.

Proor oF 1.6.1. For any given @ € M and { € X, such that M {(a)
and 1.3, (iv), (*) in terms of T, there must be an « such that Mk {(a).
Since M, ,, € A(M,) there is a &€ 2, such that M,  E&(a) and (**).
But then M &(a) also.

A proof of 1.6.2 can be obtained from 1.2.3 and 1.6.1.

Proor or 1.6.3. Given an existentially closed structure M, take
N € A(M). But since Nk implies Mg for all N2 M and all p € Z,(M),
we can conclude that M € A(M) from 1.3, (iv).

THEOREM 1.7. Every model M can be extended to an amalgamative model
of power cd(M)+ R, provided the theory is inductive.

Proor. From 1.5 we obtain an ascending chain of length w of models
of the same cardinality, each being an amalgamator of the previous
members. The union is a model of the same cardinality, and is amalga-
mative by 1.6.1.

A kind of dual question to this result is whether every model in-
cludes an amalgamative submodel. The negative answer can be given by
a simple modification of Kimura’s example cited in 9.4 [4]. Let T'x be
the theory of semigroups with four constants, say, 0,1,2,3. The axioms
of Ty say, besides that models are semigroups, that these four constants
denote four different elements and the product of any two is always the
element denoted by 0. Then the semigroup consisting exactly of these
four elements is a prime model of 7'x and is non-amalgamative, and hence
has no amalgamative submodel.

Given a model M, and extension N of M is called an existential;extew
sion, in symbols N € E(M), if for each ¢ € 2y(M), M p whenever Nk g.

Lemma 1.8. A model M is amalgamative if it has an existential extension
which is an amalgamator of M.

Proor. Let NeA(M) and NeE(M). For each ae M, (el),
@,y € I1, such that M((a) and 1.3, (iv), (*), there is a & € X such that
NE&(a) and 1.3, (iv), (**), since N € A(M). But then M E&(a) because
N eE(M). Thus M € A(M), or M e A.
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PRroPOSITIONS.

1.9.1. An elementary submodel of an amalgamative model is amalga-
mative.

1.9.2. No reduced power of a structure is amalgamative, unless the struc-
ture 18 amalgamative.

1.9.3. 4 theory T has the amalgamative property if and only if the theory
T, has it. Here, T, is the theory consisting of the sentences in II, that are
logical consequences of T'.

Proor or 1.9.1. Immediate from 1.8 and 1.2.3.

1.9.2. A map f: 4 — B and the canonical injection ¢:4 - A!|# can
be amalgamated by f': A/ — BI|# and j: B— B!, where f’ is indu-
ced from the association of a function g:I - 4 to fop. Consequently, if
AllF is amalgamative, so is 4.

1.9.3. We recall that for any system M, Mk Tva iff N&T for some
N € E(M). Thus the ‘if’ direction is trivial, and the ‘only if’ direction
follows from 1.8.

It will be useful to grasp a model as the union of an ascending chain of
“smaller’’ submodels. For a model M of uncountable power, it is easy to
do so by using LST. In more detail, we call a sequence (M), ., a ladder
to M, where cd(M)>R, and x=cf(cd(M)), if for all x<f<x, M,
M,c M, cd(M,)<cd(M), and M=U,_ M,. For a countable model the
second condition is too much to ask, and so we require the theory to be
convex. Recall that a theory is called convex when the intersection of
two submodels of a model is again a model, unless it is empty, and that
a convex theory is inductive [14], whence a finitely generated — which
will be abbreviated as ‘f.g.” — model makes sense. When M is a countable
model of a convex theory, a sequence (M, >,., is called a ladder to M if,
forall msn<w, M,cM,csM, M, is f.g., and M=U, _,M,.

The following is nothing but rewriting, in our context, the proof of [8],
Lemma 2.5 and its modification.

LeMMma.

1.10.1. Every uncountable model has a ladder to it. Moreover, any sub-
model of smaller power can be taken as the first term of the ladder.

1.10.2. Every countable model of a convex theory has a ladder to it. More-

over, any finitely generated submodel can be taken as the first term of the
ladder.

Proor. 1.10.1. Given a model M, let » be the cofinality of cd(M).
Hence there is an increasing sequence (S,),., of infinite sets such that
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cd(S,)<cd(M) for each a<x, S,=U,_, S, for a limit ordinal A<z,
and U,_, S, is the universe of M. We define a ladder (M), _, as follows:
Take an M, <M such that Sy M, and cd (S,) =cd (M,). Such M, exists
by LST. Given M, take an M, such that My, , <M, M, ,2 Mzu8,,,
and

cd(Mg,,) = max(cd (M), cd(Ssyy)) -

Note that M., is of smaller power than M and M;< M,,. For a limit
ordinal A<x, let M,=U__,M_. M, is a submodel of M since it is the
union of an elementary chain of submodels; cd(M,) < cd (M) by the choice
of »; and M,=8, because S,cM, for each <A and 8,=U__,S,.
Clearly M is U,_, M,. We note that this ladder is an elementary chain.
When a small submodel D is specified in advance, let S, be |D| and let
M, be D. For each x < w, let M, ., be M, above. The construction of M,
is the same as above for &= w.

1.10.2. Let {@,)pc, be an enumeration of the elements of the given
model M. Let M, be the given f.g. submodel. Assume M,<c M is al-
ready constructed. If M, =M, let M, ,=M,. If M,+ M, let a, be the
first element ¢ M, and let M, ,, be the submodel generated by a, and
the finite generators of M. Clearly, M=U,_,M,.

Now we shall characterize an amalgamative model in terms of its
smaller submodels. The first group is:

THEOREM.

1.11.1. 4 model M is amalgamative if and only if each finite subset of
| M| i included in a countable and amalgamative submodel of M.

1.11.2. All submodels of a model M are amalgamative if (and only f)
all countable submodels of M are amalgamative.

Proor or 1.11.1. The ‘only if’ direction comes immediately from
1.9.1 and LST. To show the ‘if’ direction, we use 1.3, (iii). Hence let
N2M and ¢(a) € 2y(M), and assume that @(a) is consistent with 7'+
Dg(M). By the assumption, there is a B M such that @ € B, cd(B) <X,
and B € A. Then certainly ¢(a) is consistent with 7'+ Dg(B), and hence
with 7+ Dg(N) because B& N and Be A(B). Consequently, M is its
own amalgamator, and so M is amalgamative.

1.11.2. That M € A follows easily from the above, and the same argu-
ment works for any submodel N of M because a countable submodel of
N is also a countable submodel of M.
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For a convex theory, ‘finite subset’ in 1.11.1 and ‘countable’ in 1.11.2
can be replaced by ‘finitely generated’. (Refer to the proof of 1.13.2,
below.) But we do not know if ‘countable’ in 1.11.1 can be replaced by
‘f.g.’. So we define a model of a convex theory as having the finitely
generated amalgamation property, FGA in short, if each f.g. submodel is
included in an f.g. and amalgamative submodel. We also say that a class
of models has FGA when each member does. Note that a convex theory
has AP if and only if each model has FGA.

THEOREM.

1.12.1. An uncouniable model is amalgamative if and only if it has a
ladder consisting of amalgamative models.

1.12.2. Assume that the theory is convex. A countable model has FGA
if and only if it has a ladder consisting of amalgamative models.

Proor. 1.12.1. The sufficiency is a special case of 1.6.2. The necessity
comes from 1.9.1 and the proof of 1.10.1

1.12.2. The necessity follows from the definition of FGA referring to
the manner of constructing ladders in the proof of 1.10.2. The sufficiency
is an immediate consequence of the fact that a f.g. submodel must be
included in a term of the given ladder.

ProPoSITIONS.

1.13.1. A theory has the amalgamation property if [and only if] all
countable models are amalgamative.

1.13.2. A convex theory has the amalgamation property if [and only if]
all finitely generated models are amalgamative.

Proor. The first proposition follows from 1.11.2 and 1.1.4. For the
second, we use 1.10.2 and 1.12.2 to conclude that every countable model
has FGA, hence is in A. Thus the question is reduced to the previous case.

This proposition tells us that for the question of if the given 7' has
AP, it suffices to watch only countable models. In contrast to this, the
finite and the infinite models behave differently as to being amalgama-
tive. For instance, let 7' be the theory that demands its model to be a
semigroup and all models with more than five elements to be groups.
There is a non-amalgamative model with four elements (Kimura’s
example), but each model with more than five elements is amalgamative
due to the celebrated result of Neumann, [11]. On the other hand, when
we consider the theory of infinite semigroups, its finite models are all
amalgamative vacuously. But Kimura’s example can be stretched easily
to an infinite and non-amalgamative semigroup.
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We know that there are enough amalgamative models when the theory
is inductive (1.6), and that for some theory all models are amalgamative.
Here we consider the question of “how many’’ non-amalgamative models
there can be.

PROPOSITION.

1.14.1. If M s an infinite and non-amalgamative model, then for any
infinite cardinal x there is a model N such that cd(N)=x, Nc M or M N,
and no model between M and N is amalgamative.

1.14.2. For an algebraic theory (that is without relation symbols), there
are enough non-amalgamative models, provided

(a) there is one mon-amalgamative,

(b) to each model a stable element can be adjoined unless there is one
already, and

(c) the class of models is closed under the formation of direct product.

(We call an element of a model stable if the singleton of that element
is a subsystem of the model.)

Proor. 1.14.1. If x=cd(M), take N =M. If »>cd (M), then take an
N such that cd(N)=x and N>M by the upward part of LST. Note
that, P € E(M) if P is between M and N. Thus by 1.8, P ¢ A(M), hence
P ¢ A by 1.2.3. Assume, finally, x <cd (M). It follows from 1.11.1 that
there is a finite set S < |M| such that no countable submodel including §
is amalgamative. Let P<M be of power X, and include S, using LST.
Then as above no model between P and M is amalgamative. Choose N
of power » among these.

1.14.2. First note that if N ¢ A and N+ is obtained from N by adjoin-
ing a stable element then N+¢ A also. For, suppose f: N - B and
g: N — C could not be amalgamated. Then f+: N+ -~ B+ and g+: N+ —» O+
can not be amalgamated, where f+ and g+ send the stable elements to
the stable — adjoined or not — elements, because otherwise we shall
have the following commutative diagram and so N € A.

B—S B+
AN
N————>N+

NIV

C—=—C+
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Thus, using the assumptions (a) and (b) we may assume that there is
an N ¢ A that contains a stable element. We assume that a model M
with a stable element is given. (Otherwise we adjoin one.) Suppose
f: N > Bandg: N - C can not be amalgamated. Let f+: Nx M -~ Bx M

be such that
[r(n,mp) = {f(n),m),

and define g+ similarly. These f+ and g+ cannot be amalgamated, because
we can embed, say, N to N x M, as M has a stable element, in such a
way as to obtain the above commutative diagram. Since the given M
can be regarded as a submodel of N x M due to the presence of stable
element in N, we can conclude the assertion.

Referring back to the example in connexion with 1.13, we notice here
the assumption in 1.14.1 that M ¢ A is infinite is necessary to obtain
the conclusion. The assumptions in 1.14.2 are all satisfied in the classes
of semigroups and of modular lattices, and so there are enough non
amalgamatives in these classes. Indeed, (a) is fulfilled by Kimura’s
example and by a result of Gritzer—Lasker—Jonsson [7], and (c) is ob-
viously met because these are equational classes. As to (b), we can adjoin
a unit element to a semigroup, if necessary, while each element of a
lattice is stable.

2.

In this section we consider the classes of universal and homogeneous
models and related classes of models. For the convenience for later work,
we modify the notions of universality and homogeneity so as to tie them
to a given cardinality, taking suggestions from [6] and [20]. Whenever
we consider the denumerable models in such a context, we automatically
agsume that the given theory is convex and regard a finitely generated
model as having a small power. To smooth over the distinction between
the countable and the uncountable cases, we introduce the modified
power of a model M, in symbols cd* (M), with the understanding that it
is cd(M) when it is >R,, and cd*(M)< X, exactly when M is finitely
generated. (Hence, cd (M) = R,.)

We say a model M is x»-universal, in symbols M € U,,, if any model N
can be embedded in M, provided ed* (N)<x. A model M is said to be
x-homogeneous, in symbols M € H,, if cd (M) = » and for any submodels
A< Bc M such that cd*(4)<x and cd*(B) <» and any map f: 4 - M
there is a map g: B - M such that g=f. (Thus our x-homogeneity coin-
cides with local x-homogeneity of [6] and is in the spirit of homoiogeneity
of [1].)

Math. Scand. 34 — 2
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ProPoSITIONS.

2.1.1. A4 x-universal model is also p-universal for any u < x.
2.1.2. A x-homogeneous model is also u-homogeneous for any u < x.
2.1.3. If a model is x-universal and x-homogeneous, then it is x+-universal.,

Proor. The first two propositions are obvious from the definitions.

2.1.3. Let M e U,, M € H,, and let B be of power ». Using 1.10, let
(B.)s<cixy P& @ ladder to B. We recall that cd*(B,) < x for each « < cf (x).
By induction, we define an ascending chain of injections f,: B, -~ M.
Let f, be a map of B, to M, which exists because M € U,. When f, is
already obtained, we pick a g: B,,; - M. Since g(B,) and f,(B,) are
isomorphic submodels of M and M € H,, there is an h:¢(B,.,) > M
that extends this isomorphism. Let f,,; be hog. Then f,,, maps B,_,,
to M, extending f,. For a limit ordinal 4, let f;=U,_,f,. Then the union
of all f,, x <cf(x), is a map of B to M.

Thus for a model of power x, if it is in our U, and H,,, it is universal
in the sense of [8]. Also it will be shown later (2.14.5) that if M € H,
and cd(M)=x, then an isomorphism between submodels of power <z
can be extended to an automorphism of M. Thus our definition coincides
with that in [9] and [20]. When the discussion applies to x»-universality,
ete., for an arbitrary »x, or some fixed x is considered throughout, we shall
often omit the subscript and/or prefix “x»-”, to simplify the notation.

Using 2.1.3, one can show the following proposition by a similar argu-
ment as that in [21] or [2].

ProprosITiON 2.2. If @ model is x-universal and x-homogeneous for
some %, then it is generic, hence existentially closed and amalgamative.

Neither x»-universality nor x-homogeneity alone is sufficient to ensure
that the model even be amalgamative. To see this, let K be an enlarge-
ment to the cardinality » of Kimura’s example of & non-amalgamative
semigroup; namely the semigroup with 0 on » generators such that the
product of any two elements is 0. This is not amalgamative as the argu-
ment in [4] works with little modification. On the other hand, K is
x-homogeneous, because any one-one function of a subset of |K| into | K|
can be regarded as an injection into K. Given a x-universal semigroup U,
the direct product U x K is not amalgamative as was noted in connexion
with 1.14.2, although it is still »-universal according to the definition.

Since our universal and homogeneous models are more inclusive than
the usual ones, their existence follows from the usual assumptions, which
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include JE and AP. (For the existence question, see further 2.5 and 2.10.1
below.) On the other hand, the existence of even the weakest universal
and homogeneous models entails these properties.

THEOREM.

2.3.1. If there is a x-universal model for some x, then the theory has the
joint embeddability property.

2.3.2. If there is a model that is x-universal and x-homogeneous for some
%, then the theory also has the amalgamation property.

Proor. 2.3.1. For »>R,, the assertion can be shown as in [10,
Theorem 4.1]. For x=RX;, we use the standing convention that the theory
is convex, as exemplified in the next proof.

2.3.2. We prove the more complex case that »=8,. By 1.13.2 and
1.3. (ii), it suffices to show that for every finitely generated model M
and Jxp(x), Jyyp(y) € 2 (M) if each is satisfied in extensions P and @
of M, respectively, then their conjunction is consistent with 7'+ Dg(M).
We may assume P to be finitely generated, because the submodel gen-
erated by the generators of M and those @ € P such that PEg(a) is a
model of Jxp(x). Similarly, @ can be assumed to be finitely generated.
Let U € UH, (the subscript R, is omitted) which exists by assumption.
Then P and @ are embeddable into U. By identifying isomorphic copies,
we may assume U2 P and g: @ -~ U is an embedding. Then g-!g(M)
is a map of g(M) to U. Since g(M)c U, ed*(g(M)) < ¥y, and cd*(9(Q)) < R,
this map can be extended to an A:g(Q) -~ U. Thus hog maps @ to U
and- ~

(hog) P M =id,, .

Therefore U is a model of the above sentences as well as 7'+ Dg(M).

The contrapositive of this theorem says that for those theories that
lack AP, no universal model can ever be extended to a homogeneous
model even in our sense, much less in the sense of [9]. So, for instance,
there is no universal and homogeneous model in classes of semigroups,
rings, or modular lattices. As we shall see below, 2.9.1 and 2.10.1 in
combination with 2.5, if an inductive theory has JE (JE and AP) then
there are enough x-universals (x-universal and x-homogeneouses) for
any x». Thus, 2.3 implies that if U, (UH) is non-empty for one x, then
there are enough U, (UH) for all x.

The above theorem shows that when we do not assume AP, we should
look for a weaker notion than universal-homogeneity. Note that if M
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is such a model of cardinality », M has the following injective property:
Given injections f: A -~ B and ¢g: 4 - M, if ed*(4)<x and cd*(B)<x
then there is an injection A: 4 — M such that g=hof.

A—' B
g h
| i

M o<

(And this can be taken as the definition of universal-homogeneity if 4
is allowed to be empty.) A possible weakening of the notion would be
to require that 4 have some additional properties; we find being amalga-
mative a suitable one. (Another possible weakening is to restrict maps f,
g and k; this approach is extensively investigated by Simmons in [18].)
Thus, we say that a model M is x-objective, in symbols M € O,,, if

(a) cd(M)2x,

(b) M e A, and

(c) for any f: A -~ B and ¢g: A -~ M there is an h: B - M such that
g=nhof, provided cd*(4)<x, cd*(B)<x and 4 € A.

(We call the data A4,B,F,g a x-quadruple for brevity. Often f is an in-
clusion map, and we call 4,B,g a x-triple.) A similar consideration on
x-homogeneity leads to x-subjectivity. A model M is called x-subjective,
in symbols M € S, if (a), (b) above, and

(¢') for any submodels A< B< M and any map f: 4 - M, f can be
extended to a map k: B — M, provided cd*(4) <%, cd*(B)<xand 4 € 4.

(The data A4,B,f is called a x-triad.) Obviously 0,<0O, and S,c8S, if
Hu=x.

ArorocY AND ExPLANATION. It is freely admitted that “‘objective”
and “subjective’ are chosen for a bit of fun. A more standard way may
be to use phrases like ‘“‘weakly universal-homogeneous” and ‘“‘weakly
homogeneous although amalgamative”, in view of later results. But
these are awfully long and yet do not really indicate what is weakened
and how. Since our starting point was the injective property of universal-
homogeneous models, some kind of “jective” is called for. Our objective
models take into consideration all models of smaller cardinalities, while
subjective models concern submodels only. Thus certainly the first is
more objective and the second more subjective!

Although the above modification and Simmons’ in [18] started from
different view points, there is some connexion. Indeed, O, and x— WJ,
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in [18] are the same class of models. We recall that a model M was
defined to be in »— WJ,, where x> R, (in our context), if for any injec-
tions f: 4 - B and g: 4 - M there is an injection h: B — M such that
g="hof, provided cd(B)<x and g preserves the truth of sentences in
Z(4). (In Simmons’ terminology, g is <;-like.) Note that such a model
is of power =, and is existentially closed hence in A. Naturally, we can
extend the definition to include the case x =X, by requiring 4 and B to
be finitely generated, M € 4, and cd (M) = X,. (These last two conditions
do not seem to follow from the first, unlike the case » > X,.)

PROPOSITIONS.

2.4.1. For any =, a x-objective model is in x— WJ,.
2.4.2. A model in »-WJ, is x-objective, if x> R,.

Proor. 2.4.1. Let M € O,, f: A — B an injection, g: 4 - M a <,-like
injection, and cd*(A4), cd*(B) < x. Then, as in the proof of 1.8, we have
A4 € A. Hence by (c), there is an h: B - M such that g=~hof. So M is
in x— WdJ,.

24.2. If M isin x— WJ, then M has (a) and (b), as noted above.
Given f: A - Band g: A - M where cd(B)<x and 4 € 4, take a C<M
such that C2f(A4) and cd(C)<x. Since 4 € A, there are p: C - D and
¢: B — D such that pog=gqof, and ed (D) < ». Hence thereisan b: D -~ M
such that hop=1¢: C - M. Then observe that g=10g=(hog)of.

A—f 0t .M

14
Bt .p

Thus many results in [18] can be used for the investigation of the
x-objective models, although we shall not always avoid duplications,
as we are interested in developing results about O, and S, in parallel.
However, we make good use of Simmons’ work for the following:

TrEOREM 2.5. (Essentially Simmons) Assume that the theory is induc-
tive. Then for each cardinality x, an infinite model M of power u can be
extended to a x-objective model of power u*x. Here,

wtx is S s QEf % z:.s re.;gula,r and >X,;,
© if 18 singular or x=X, .
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Indeed, for the case x>R,, the theorem comes directly from
[18, Theorem 2.8], in conjunction with 2.4.2. For the case x=R,, it
follows from the existence of X;-objective models, since 0, < O, if x> pu.
Since R, is regular, it is worth considering why u*®, is not u=3, . u*
As we shall see in 2.10.1, if the theory has JE and AP, then O,=U, nH,
for all x> ®,,. Hence, if there are more than countably many isomorphism
types among finitely generated models, then X,-objective models must
be of power > R,. So, in particular, for the case u =R, u*X, must be > u.

We shall make a few easy observations about relations among O, U,
ete. For this purpose, it is convenient to recall Simmons’ class »— WI,.
A model M is in x— W1, exactly when for any maps f: A -~ B and
g: A — M there is a map h: B — M such that g=hof, provided cd*(4) < »
and cd*(B) < ». In a way parallel to the class x— WJ,, we can show that
M is of power 2x and M e A if M ex— WI, and »>R,. For the case
x=R, we build these properties into the definition of X,— WI,. Since
this is the only class we borrow from [18], we denote it as I, and refer
to its members simply as x-injective.

ProPOSITIONS.

2.6.1. If a model is x-universal and x-homogeneous then it is x-injective.
© 2.6.2. If a model is x-universal and x-homogeneous then it is x-subjective.

2.6.3. If .a model is x-injective then it is x-objective. ‘

2.6.4. If a model is x-injective then it is x-homogeneous and amalgamative.

2.6.5. If a model is x-universal and x-subjective then it is x-objective.

2.6.6. If a model s x-objective then it 18 x-subjective.

2.6.7. If a model is x-homogeneous and amalgamative then it is x-sub-

Jective.

Proor. The last proposition is a trivial consequence of definitions, and
80 2.6.2 follows from 2.2. Similarly, 2.6.3, 2.6.4, and 2.6.6 follows easily
from definitions. To prove 2.6.1, let M e UH, f: A > B, g: A > M, and
ed*(A4), ed*(B) < ». Since M € U, there is a map p: B - M. Let B'=p(B)
and A’'=pof(4). Note that A’'cB'c M, and that gof-lop114’ is a
map q: A’ - M. Since M € H,, there is an r=2¢q which is a map of B’
to M. Since g=gopof, h=rop is a map of B to M such that g=hof.
We can prove 2.6.5 in a similar fashion.

The following diagram summarizes relations among various classes.
We use ‘>’ in place of ‘<’.
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UH — I HA
v l
US o S

Notice that 2.6.1 is a little stronger than [18, Theorem 6.6] because our
»-homogeneity is weaker than that in [18]. Of course the proofs are essen-
tially the same. We also remark that H and S are incomparable classes.
Already we have seen that Hg A in some cases, hence H& S. On the other
hand, consider the class R of rings. The ring consisting of 0 and 1 is a
prime model and is amalgamative, and R has JE but lacks AP. By the
next proposition 2.7.2, the subclass O of R coincides with US. Thus O
and H are disjoint by 2.3.2, and hence S¢ H as OcS.

Now we consider the influence of the theory having prime models, AP,
ete., on the above relations among various classes.

ProPOSITIONS.

. 2.7.1. If the theory has a prime model, then a model is x-universal and
x-homogeneous exactly when it is x-injective. .

2.7.2. If the theory has a prime model which is amalgamaiive, then a
model is x-universal and x-subjective exactly when it is x-objective. Hence,
if the theory is inductive in addition, it has the joint embeddability property.

Proor oF 2.7.2. (2.7.1 can be shown similarly.) Since USSO<S by
2.6.5 and 2.6.6, to show the first half it suffices to show O U. Let
M € 0O, and let 4 € A be the given prime model. Note that cd*(4) <.
Take an arbitrary model B such that cd*(B)<x. Then there are maps
fiA->Bandg: A~ M as A is prime. Since M € O and 4 € A, there is
an h: B —> M such that g=hof. Thus M € U. The second half follows
from 2.5 and 2.3.1.

PROPOSITIONS.

2.8.1. If the theory has the amalgamation property, then a model is -
objective exactly when it is x-injective, for any x.

2.8.2. An inductive theory has the amalgamation property, if the classes
I, and O, coincide for some x.

Proor. 2.8.1. That I'< O is already shown in 2.6.3. The other implica-
tion is trivial since every model is amalgamative.
- 2.8.2. From 2.5, we know every model can be extended to a member
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of O, hence of I by the assumption. By 1.13, it suffices to show that
f: 4> Band g: 4 - C can always be amalgamated where 4, B, and C
are all finitely generated, in case the theory is convex. (For the non-
convex case, a similar consideration taking countable models works
equally well.) Let M 2.4 be in I. Let 7 be the inclusion map of 4 into M.
Since M €1, there are p: B~ M and q: C - M such that pof=i=goq
amalgamating the given f and g.

A—L B

AN
g \‘C p
l i
[o o M

We note here that 2.8.1 is already in Theorem 6.3, [18], and 2.8.2
gives a partial converse to it.

PROPOSITIONS.

2.9.1. If a theory has the joint embeddability property, then a model is
x-objective if and only if it 18 x-universal and x-subjective. (FGA is assumed
on the x-objective models, when »=R,.)

2.9.2. An inductive theory has the joint embeddability property, if the
class O, s the intersection of U, and S,, for some x = R,.

Proor. 2.9.1. By 2.6.2 and 2.6.3, it suffices to show O<U. Take
M € 0. By using 1.9.1 or FGA, take an A< M such that 4 €4 and
cd*(4) <, and take a model N of modified power <x. By JE, there
are Band f: A - B and g: N - B, and we can assume cd*(B) < ». Then
A,B,f,i constitute a »-quadruple of M where ¢: AS M. Hence there is
an h: B— M. So hog is an injection of N into M showing that M is
x-universal.

2.9.2. By 2.5, O is not empty, a fortiori nor is U by the given assump-
tions. Thus 2.3.1 concludes the proof.

PROPOSITIONS.

2.10.1. If a theory has the joint embeddability property and the amalgama-
tton property, then a model is x-objective if and only if it is x-universal and
x-homogeneous, for any x.

2.10.2. An inductive theory has the joint embeddability property and the
amalgamation property, if the class O, 18 the intersection of U, and H,.
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Proor. 2.10.1. Since AP implies that every model has FGA and
H=S, we have UH=US =0 by 2.9.1.

2.10.2. As in the proof of 2.9.2, the non-emptiness of UH implies AP
and JE by 2.3.

The above four groups of propositions may be summarized schematic-
ally as follows:

P+©O = I=UH, PA 4+ O = O =US,
AP < 0 =1 JE < O0=US, AP &JE <« O = UH.

Here P is the clags of prime models. For the ‘<=’ direction, the theory
is assumed to be inductive, and when »=8, FGA is assumed here and
there. Similarly we can show that

AP = (HA=S & UH=US) and JE = UH=1.
As to the converse direction, if the theory is inductive then
JE & US=UH) = AP and (AP & I=UH) = JE.

The influence of the existence of the model companion will be considered
in the next section.

The class I has a close relation with AP as shown in 2.8. As a matter
of fact, it can be used to give an algebraic characterization of AP for
an inductive theory.

THEOREM 2.11. An tnductive theory has the amalgamation property if
and only if the class of x-inductive models is cofinal in the class of models.

Proor. The ‘only if’ direction follows from 2.5 and 2.8.1. The ‘if’
direction holds for any theory, and is an obvious consequence of the
fact that a submodel of an injective model is amalgamative. To show
this, we use 1.11.2 and the accompanying comment about convex theo-
ries. So let Mel, AcM and cd(4)<R, (cd*(4)<R, for a convex
theory); we are to show that 4 € A. For this, we use 1.3, (ii). Thus as-
sume ¢(a),y(a) € X,(4) and each is consistent with 7'+ Dg(4). Let B
and C be models ot 7'+ Dg(A) + ¢(a) and T+ Dg(A4)+y(a), respectively.
We can take B and C to be countable (f.g. for a convex theory). Since
M eI and x> R, (x= X, for a convex theory), B and C can be embedded
into M keeping A4 fixed. Thus

ME T+ Dg(4)+ p(a) +y(a) .
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A x-objective model is a rather large, amalgamative model in the sense
that any other model of power < » can be embedded into M once it shares
an amalgamative model with M. Interestingly, this largeness excludes
the existence of small amalgamative models. Given a model B, call its
extension C' an amalgamative envelope of B if C € A and for any model
D € A any injection f: B — D can be extended to an injection of C to D.
If the given B itself is in 4 then B is its own amalgamative envelope,
and so an amalgamative envelope is a small extension to a member of A.

THEOREM 2.12. If the theory is inductive, no non-amalgamative model
possesses an amalgamative envelope.

Proor. Given B ¢ A, we know from 1.3, (iii) that there are C2B,
D2 B, and ¢=g(b) € Zy(B) such that Ck¢ and T + Dg(D)+F—g¢. By 1.7
we may assume C € 4, and by 2.5 we can extend D to an M € O, with
%>cd(C)+8,. Had B an amalgamative envelope E, cd (&) < cd(B)+ R,
So there should be f: E — C and g: E — M such that f} B and g B are
both inclusion maps. Further, £,C,f,g, constitute a x»-quadruple of M
by the choice of ». Hence there is an A: C -~ M such that g=hof. Since
fIB and g'B are inclusions, so is h}B. Thus, ®(h(b)) = p(b) =@. Since
Cto@ and this truth is preserved by the injection h, we have Mk .
On the other, hand, as M +T + Dg(D) and T + Dg(D)F—g, it must be
the case that Mk —¢. This contradiction with MEg shows the non-
existence of the amalgamative envelope K.

C
AN
c/ T'J, N\
/ "\
B E—2 M
\\c C//'

/

By the standard back and forth argument, we can show that maps of
small submodels of objective models, for instance, can be extended to
larger submodels.

D

THEOREM 2.13. Given models M and submodels Ac B M and C< N
such that cd*(4)<x, cd(B)=cd(C)=x, any map f: A > M can be ex-
tended to a map g such that
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Bcecdm(@g M and Cgcrglg) s N,

provided that any one of the following conditions is satisfied:
2.13.1. M and N are both x-injective.
' 2.13.2. M and N are both x-objective (and have FGA when »=R;), and
A s amalgamative.
2.13.3. M =N and is x-homogeneous.
2.13.4. M =N and is x-subjective (and has FGA when x=R,), and A is
amalgamative.

Proor. Since all proofs are parallel, we prove only 2.13.2 in detail.
Let (P,),<, and {@.),, be ladders to B and C, where u=cf(x). We
are to construct other ladders (B,) and (C,), and two ascending se-
quences of maps {f,> and {g,) such that

(*) BaQPa, Ca——:‘)'Qa’ BaeA’ anA’ fa:BaQOa’ ga: Oa_—)Ba-t-l a’nd
fSfaS9a7 S fara for all a<pu.
Let B, be AUPy< Byc M, B, A and cd*(B,) < » by using LST or FGA.

Then 4, B,,f is a x-triple of N, hence there is an f,: B, -~ N extending f.
Let C, be

foB)UQy s Cos N, Cyed

and cd*(C,) < %. Then fo(B,), Cy.fo™ is a x-triple of M, hence there is a
go: Cy = M extending f,1.

A—=—B,—S—g(C) inM

f fo go

F(A) == fo(By) ——C, in N

The construction of B, ,, Cy1; fx+1 and g, from the previous data goes
similarly by using ¢,(C,), and g,~! in place of 4 and f. For a limit ordinal
AZpu, we let B;, C,, f; and g, simply be the unions of the previous data.
The requirement (*) is obviously met at each stage of construction, and
fuisamap of U,_,B, onto U,_,C, which include B and C, respectively.

When M and N are injective or homogeneous, the inductive construc-
tion can be performed without assuming B, and C, to be in 4, and thus
the hypothesis A € 4 is unnecessary in 2.13.1 and 2.13.3.
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COROLLARY.

2.14.1 (2.14.2). There 1s at most one x-homogeneous (x-surjective) and
x-universal model of power x (that has FGA when x =R,), up to isomorphism.

2.14.3 (2.14.4). Let M and N be in I, (0,) of power x and A< M. Then
a map f: A - N can be extended to an isomorphism of M onto N, provided
that cd*(A) <x (and A € A, and M and N have FGA in case x=R,.)

2.14.5 (2.14.6). An isomorphism between two submodels of a x-homogene-
ous (x-subjective) model M of power » can be extended to an automorphism
of M, if the submodels are of modified power < x (and amalgamative. Also,
M s assumed to have FGA, if x=R,).

Proor. The last four assertions follow immediately from 2.13 by
taking B=M and C=N.

2.14.1 (2.14.2). Let M and N be of power » and in UH (US). Take an
A< M such that cd*(4) <« (and 4 € A). Then there is an f: 4 - N as
N e U. Since M and N are in I (in O) by 2.6.1 (2.6.5), this f can be ex-
tended to an isomorphism by 2.14.3 (2.14.4).

We remark here that 2.14.3 is Theorem 5.3 of [18], and that 2.14.4
slightly extends Theorem 5.1 in that A4, and B, there need not be ele-
mentary submodels of M and N — to be in A4 is sufficient.

Another use of ladders is to loosen the restriction of cardinality <x
to <x*, here and there. One instance is already given in 2.1.3. The
second is that it M e U ,nS, and N € A4 is of power <x»+ then N is em-
beddable into M. Hence, in particular, if the theory is inductive then
M is x*+-universal, due to 1.7 — FGA is assumed on N in case x=X,.
The third is that in the definition of x-objective models the condition
‘cd*(B)’ <%’ can be changed to ‘cd*(B)<xt+ and B € A (and B has FGA
when »x = R,..)’. (Of course, B € A4 is unnecessary if the theory is inductive.)
This answers partially to the question raised by Simmons in connexion
with his Theorem 5.7, [18]. The possibility of similar changes in the defini-
tions of H, and S, are already shown by 2.13.3 and 2.13.4.

Now we consider the preservation of the truth of sentences by maps
between models belonging to various classes.

THEOREM 2.15. Let M and N be two models, A a submodel of M with
cd*(4) <x, and f a map of A into N. For any sentence ¢(a) in the language
of L(A), p(a) holds in M if and only if ¢(f(a)) holds in N, under any one
of the following conditions.

2.15.1-2.15.4. M and N are x-objective, and A is amalgamative unless



THE AMALGAMATION PROPERTY ... 29

M and N are both x-injective. When x=8;,, M (N) is assumed to have
FGA unless it is x-injective.

2.15.5-2.15.8. M 1is x-objective and is a submodel of N, N is either
x-homogeneous or x-subjective, and A is amalgamative unless M 18 k-injec-
tive and N is x-homogeneous. When » =R, FGA is assumed on M (N) unless
it 18 x-injective (x-homogeneous).

2.15.9 (2.15.10). M and N are the same and x-homogeneous (x-subjective
and A is amalgamative. Further, when x=R,, FGA is assumed on M =N.)

Note. The following table summarises various assumptions.

M (with FGA?) N (with FGA?) AeA?

I § I

2. | I o yes yes
3.1 0 yes I § yes
4. | O yes o yes yes
5 | 1 S H

6. | I € S yes yes
7. | O yes c H yes
8. 10 yes c S yes yes
9. | H = H

10. | § yes = S yes yes

‘Yes’ means the condition in question is assumed (when x==x,), and the
blank implies that it is not.

Proor. We use induction on the formation of ¢(a). If ¢(a) is atomic
or its major connective is Boolean, the aasertion follows from the defini-
tion of an injection and the induction hypothesis. Thus, we assume ¢(a)
is day(a,x). We prove only the fourth, the seventh, and the ninth cases,
as typical examples.

2.15.4. If Mk @(a) then there is an m € M such that M Ey(a,m). Take
a B M such that A< B, me B, Be A and cd*(B)<x, using 1.9.1 or
FGA of M. Since NeO and A€ A, f: A > N can be extended to a
g: B~ N. Then by the induction hypothesis, Nky(g(a),g(m)), hence
NEg(f(a)) as gt A =f. The converse direction can be shown in the same
way by starting from f-! in place of f.

2.15.7. Assume M kp(a). Take a B as above. Since M < N € H, we can
extend f to a g: B — N. Thus Nk ¢(f(a)) as above. Assume, conversely,
Ny(f(a),n) for some ne N. Take a BSN such that f(4)c B, ne B
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and cd*(B) < x. Since M € O and f(4) € A4, there is a g: B — M extending
f1. Extend g(B) to a C< M such that C € A and cd*(C)<x applying
1.9.1 or FGA of M. Since N € H, g~! can be extended to an h: C - N.
The induction hypothesis applies to these C, & and y(a,g(n)) as fcg-1<h.
Hence, M ky(a,g(n)) or M t¢(a), because N ky(h(a), (g(n)))

2.15.9. Assume M Ey(a,m) for some m e M. Extend 4 to a model
Bg M such that A< B, m e B and ed*(B)<x. Since M =N € H, we can
extend f to a g: B - N. By the induction hypothesis, N &y(g(a),g(m)).
Thus N E3zy(f(a),x) as grA=f. The converse direction can be proved
in the same way by using f-1.

COROLLARY.

2.16.1. A map between two x-objective models is elementary. (When
x=2R,, both models are assumed to have FGA.)

2.16.2. Given a x-objective model M and its extension N which is either
x-subjective or x-homogeneous, then M is an elementary submodel of N.
When x=R,, M (N) is assumed to have FGA wunless it is x-injective
(%-homogeneous).

Proor. 2.16.1. Let g: M -~ N be the given map where M,N € O.
Given ¢(a)e L(M), take an A<M such that ae 4, ed*(4)<x, and
A € A. Taking g1 4 as f, we have M ¢(a) iff Nt¢(g(a)) from the fourth
case of the theorem. Thus g is elementary. 2.16.2 can be shown similarly.

3.

We recall a few facts about infinite forcing. This notion is formulated
with respect to a given class of relational systems; that is, given two
classes C and K, a system M € CnK and a sentence ¢ in L(M), ¢ may be
forced in M with respect to C but not with respect to K. However if C
and K are cofinal in each other, a sentence is forced in M with respect to
C if and only if it is with respect to K. Thus, when we are considering
the class of all models of a theory and the class of all substructures, we
can say unambiguously that a sentence is forced in a model.

The class G of generic structures is the unique subclass of all struc-
tures that satisfies:

(a) Every structure can be extended to a member of G,
(b) if M N and M,N € G then M <N,
(c) if M<N and N € G then M € G.

Thus, if the theory 7' has the model companion 7*, then G is exactly
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the models of T'*; and conversely if G is the class of all models of some
theory 7'; then 7', is the model companion of 7'. Also, if the theory is
inductive, all generic structures are models. But, in general, a generic
structure may not be a model. However, we have a weaker result about
the class of models: For any infinite model M there is a model N2 M
such that cd(N)=cd (M), and for each sentence ¢ € L(M) either ¢ or
—¢is forced in N. (We say that N is generic over M.) The reason is simple:
M can be extended to a generic structure G and G is a substructure of
a model N. By using (c¢) above and LST, we may assume that M, G and N
are of the same cardinality. Naturally, if V is generic over M then any
extension of N is generic over M ; if M < M, and N is generic over M,
then N is generic over M ; and, if f: N~ N’ where f is the identity on M
then N’ is generic over M iff N is. We also note that a model is generic
if and only if it is generic over each of its countable submodels (f.g.
submodels for a convex theory).

Simmons introduced in [19] the operation ¥ on classes of models.
Given a class K, let M € 4(K) exactly when for each Ne K if Mc N
then M <N. To exclude freak cases, we assume K to be cofinal when it
appears in the context of Z(K). Also we introduce the operation £ with
the definition that M e Q(K) if and only if M <N for some N € K.
Obviously, 2 is idempotent and monotone. It is shown in [19] that
9 (K)=9(Q(K)) = 2(K). We note that 2.16.2 can be reformulated as:

(**) If a cofinal class K is included in S,UH, then %(K) includes O,.
(When x=R,, FGA is assumed on S,.)

ProrosrTioN 3.1. Assume that K is a cofinal class, M,N € 9(K), and
McN. Then M is an elementary substructure of N.

Proor. There is a K € K such that N < K, because K is cofinal. Then
M<K and N<K, because M,N € 4(K). Thus M<N.

TEHEOREM 3.2. Assume that O, is a cofinal class. (When =Ry, FGA is
assumed on S,,.)

3.2.1. For every cofinal subclass K of S,UH,, Q(%9(K)) is the class of
generic models.

3.2.2. For a cofinal subclass K of O,, 2(K) s the class of generic models.
In particular, if there is a x-universal and x-homogeneous model, then a
model 18 generic exactly when it i3 an elementary submodel of a member of
U,nH,.

3.2.3. The theory of the class O, 13 the forcing companion.
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Proor. 3.2.1. By (**), 9(K) has (a) of G; and by 3.1, it has (b). By
[19, Theorem 3.5], (%(K)) has all three properties and hence it is G.

3.2.2. By (**) and 2.6.6, O < 9(K). Thus by the nature of ¥ and Q,
we have

Q0) s AY(K)) = QLK) = A(K) < 20).

Hence these are all identical with Q(¥(K)), which is G by 3.2.1. If UH
is not empty, then the theory has JE and AP by 2.3. Thus UH= 0 by
2.10.1. So the second part follows from the first by taking UH as K.

3.2.3. By the above, Th(0O)=Th(G) which is the forcing companion
by definition.

The above gives a ‘“‘global’”’ characterization of the class of generic
models, while the following gives some ‘“local’”’ information.

THEOREM.

3.3.1. An elementary submodel of a x-objective model M is generic.
(When x=R,, FGA 1s assumed on M.)

3.3.2. If M is x-universal and x-subjective, then every generic model of
power = x t8 tsomorphic to an elementary submodel of M.

Proor. 3.3.1. It suffices to show M € G, because of (¢) of G. Take an
A< M such that cd*(4) <min (x,8,) and 4 € A by the given assumption
or by LST and Oc A. Let B2 4 be countable and generic over 4. Then
either by the definition of O when x> X, or by a remark after 2.14 and
Be Gg A when x=R,, there is an h: B - M extending the inclusion
i: A - M. Thus h(B), hence M 2k(B) also, are generic over 4. We can
conclude that M € G because M is generic over each of its countable
(when x> R,) or finitely generated (when »=R;) submodels.

3.3.2. Take a @ € G such that ¢d (@) = x. Since G< A, we have a map
f: G - M by a remark after 2.14. By taking isomorphic copies, we may
take f to be an inclusion map. Because M € G by virtue of 2.6.5 and 3.3.1,
we have G<M by (b) of G.

In 3.3.2, the assumption M € US can not be weakened to M €O
meaningfully. For, if there is one such objective model M, then the
theory has JE and hence US =0 by 2.9.1. Indeed, any two existential
sentences of L, each being consistent with 7', are true in generic structures
(not necessarily models of 7') due to (a) of G. These can be embedded in
M, hence the sentences are jointly consistent. Thus the theory has JE.

In the previous section, the relation among O and U, etc., was studied.
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Now we turn our attention to the relation between O and saturated
models.

THEOREM.

3.4.1 (Simmons). If the given theory has the model companion, then all
x-objective models are x-saturated.

3.4.2. If there is a x-universal and x-subjective model which is x-satur-
ated, then the theory has the model companion.

Proor. The first proposition follows immediately from [18, Theorem
4.7], in view of 2.4. To show the second, assume M € US and x-saturated.
So the theory has JE as U+®@. By 2.6.5 and 3.3.1, we have M € G,
hence M is existentially closed. Since M is x-saturated, it is *-saturated
in the sense of [17]. Hence, from Theorem 5.3 there, we can conclude
that the model companion exists.

As a corollary, it follows from 2.6.5 that US is either included in the
class of saturated models or disjoint from it, according as the model
companion exists or not. E. R. Fisher kindly informed me that US can
not be replaced by O in 3.4.2.

Now we study the nature of amalgamative models in terms of cotinal
classes of structures. Given a class K and a model M, we say that K is
n-equivalent over M when, for any C and D in K and any sentence

€ 2, (M), if C and D are extensions of M then Ct ¢ iff DEg. A class K
is said to be an n-class if it is m-equivalent over each member ot K.
Note that if m <n, then ‘“n-equivalence’ implies ‘“m-equivalence’’, hence
an n-class is an m-class also.

LeMMA.

3.5.1. If a model M is amalgamative, then each cofinal class K of struc-
tures is n-equivalent over M whenever it is an n-class and s closed under
isomorphism.

3.5.2. If a model M is not amalgamative, then no cofinal class K of
structures is n-equivalent over M, for any n=1. Further, if K i3 cofinal in
power, in the sense that each infinite structure can be extended to a member
of K of the same power, then there are structures C and D in K of power
cd(M)+R, and a sentence ¢ € Xy(M) such that Ck e but D —g.

Proor or 3.5.1. Let C,D € K be extensions of M. Since M € A and
K is cofinal, there is an N e K and f: C - N and ¢g: D — N such that f
and g coincide on M. Since K is an n-class and closed under isomorphism,

Math. Scand. 34 — 8
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for each p € X, (M), Cko iff NEf(p), and D iff NEg(e). But f(p) and
g(p) are indeed the same formula because all new constants are taken
from M. Thus Cke iff DEg.

3.5.2. We prove the second assertion. Since M ¢ A4, by 1.3, (ii), there
are sentences ¢,pe X (M) such that each of 7T +Dg(M)+¢ and
T+ Dg(M)+ vy has a model, but 7'+ Dg(M) + ¢ + v has not. These models
can be taken to be of power cd(M)+R,. By assumption these can be
extended to C,D € K of the same power. Since ¢ and p are existential,
Ckg@ and DEy. Were DEg also, then 7'+ Dg(M)+¢+y would have a
model contrary to the assumption, since D is a substructure of a model.
Thus Ck g and Dt —g.

The first part of the lemma is an immediate consequence of the second.

As an application, we have a characterization of amalgamative models.
Here the classes O, G and E are taken to be classes of structures, and
hence are cofinal classes.

THEOREM 3.6. The following are equivalent:

(a) M is amalgamative.

(b) The class O is n-equivalent over M, where n= 1. (When x=R,, FGA
18 assumed on O,.)

(¢) Each cofinal subclass of G is n-equivalent over M, where n> 1.

(d) Each cofinal subclass of E is 1-equivalent over M.

Proor. Equivalence of (a), (¢) and (d) are immediate from 3.5, be-
cause the class of generic structures is an w-class, and that of existen-
tially closed structures is a 1-class. Since O is a cofinal subclass of G by
2.5 and 3.3.1 considered in terms of 7', it is an w-class. Thus (a) and (b)
are equivalent also.

Since a structure is in A iff it is pregeneric (cf. [23, Theorem 2]), the
above result extends Theorem 6.2 of [15]. Using condition (d), we can
show a sort of converse to 2.13.2, also.

THEEOREM 3.7. A structure M of power < x1is amalgamative if and only if
Jor structures A, B, C, and D such that McCc A, McD<B, A and B
are x-objective, and cd (C)=cd(D)==x, there s a map f such that

Ccdm(f)c 4, Dcrg(f)c B
and f t8 the identity on M. (When x=R,, O, 18 assumed to have FGA.)
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Proor. The ‘only if’ part is a special case ot 2.13.2. To show the other
direction, assume M ¢ A. From 3.6, we know that there are C,D e E
and g(m) € 2 (M) such that C2 M, D2 M, and CkEe(m) but Dk —gp(m).
By the cofinality in power of E and LST, we may assume cd(C)=
cd(D)=x. Applying 2.5 in terms of 7', we have 4,B € O, including C
and D, respectively. As p(m) e 2 (M) and M =C<c 4, we have AEp(m).
As D e E and Dc B, we have Bt —¢(m). Take a structure P such that
McPcB, PeA and cd*(P)<x, by using LST or FGA on B. Were
there a map f as in the statement of the theorem, let g be fIP.
Then, by 2.15.4 we have Bkg(g(m)) because Akp(m). But grM=
SN M =idy,. So, BEg(m), which contradicts B —¢@(m).

REFERENCES

1. J. L. Bell and A. B. Slomson, Models and Ultraproducts, An Introduction, North-
Holland Publ. Co., Amsterdam, London, 1969.

2. M. Boffa, Modéles universels homogénes et modéles génériques, C. R. Acad. Sci. (Paris),
Sér. A 274 (1972), 693-694.

3. C. C. Chang, Omatiing types of prenex formulas, J. Symb. Logic, 32 (1967), 61-74.

4. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. II, (Mathe-

matical Surveys 7), Amer. Math. Soc. Providence, Rhode Island, 1967.
5. A. Day, Injectives in mon-distributive equational classes of lattices are trivial, Arch.
Math. (Basel) 21 (1970), 113-115.
. E. R. Fisher, Homogeneous universal models revisited, (1970), unpublished.
. G. Gratzer, H. Lasker, and B. Joénsson, The amalgamation property in equational
classes of modular lattices, Pacific J. Math. 45 (1973), 507-524.

. B. Jénsson, Universal relational systems, Math. Scand. 4 (1956), 193-208.

. B. Jénsson, Homogeneous universal relational systems, Math. Scand. 8 (1960), 137-142.

10. M. Morley and R. Vaught, Homogeneous jversal models, Math. Scand. 11 (1962),
37-57.

11. B. H. Neumann, An Hssay on Free Products of Groups with Amalgamations, Philos.
Trans. Roy. Soc. London Ser. A, 246 (1954), 503-554.

12. R. 8. Pierce, Introduction to the Theory of Abstract Algebras, Holt, Rinehart and Win-
ston, London, 1968.

13. G. Reyes, Typical and generic relations in a Baire space for models, Doctoral Disserta-
tion, University of California, Berkeley, 1967.

14. A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra,
North-Holland Publ. Co., Amsterdam, London, 1963.

15. A. Robinson, Infinite forcing in model theory, J. E. Fenstad (Editor), Proceedings of
the second Scandinavian logic symposium, 317-340, North-Holland Publ. Co.,
Amsterdam, London, 1971.

16. A. Robinson, On the notion of algebraic closedness for nonc tative groups and fields,
J. Symb. Logic, 36 (1971), 441-444.

17. H. Simmons, Existentially closed structures, J. Symb. Logic, 37 (1972). 293-310.

18. H. Simmons, The use of injective-like structures in model theory, to appear.

19. H. Simmons, Notes on forcing in model theory, unpublished note.

[N

©




36 MITSURU YASUHARA

20. D. B. Smith, Universal homogeneous algebras, Algebra Universalis, 1 (1971), 254—-260.

21. L. Stanley, Some Topics in Model Theory, Senior Thesis, Princeton University, 1971.

22. A. Tarski and R. Vaught, Arithmetical extensions of relational systems, Compositio
Math. 13 (1957), 81-102.

23. M. Yasuhara, The generic structures as a variety, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys. 20 (1972), 609-614.

PRINCETON UNIVERSITY, NEW JERSEY, U.S.A.



