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SOME PROPERTIES OF COMPACT NATURAL SETS
IN SEVERAL COMPLEX VARIABLES

OLLE STORMARK

1. Definitions and preliminaries.

In this paper we present some results concerning compact natural sets
(also called holomorphically convex sets or holomorphic sets). In C»
these are defined as follows: If K is a compact set in C* we let O(K) be
the ring of germs of holomorphic functions on K and we denote by
H(K) the uniform closure of O(K) in C(K), where C(K) is the algebra of
continuous functions on K with the supremum norm. Then H(K) is a
uniform algebra and has a maximal ideal space M y,. K is said to be
natural if and only if K =M g ,.

This notion can be generalized in the following way (cf. [3], [4], [14],
[15] and [16]): Let 4 be an algebra of continuous complex-valued func-
tions on a Hausdorff space S. We suppose that 4 contains the constants,
that the topology in A is given by uniform convergence on compact
subsets and that the topology in 8 is the weakest under which all fune-
tions in 4 are continuous. Furthermore it is assumed that every continu-
ous homomorphism of 4 into C is given by evaluation at a point of S.

For an open set U in S we define O (U) as the algebra of all A-holo-
morphic functions on U, that is, all continuous functions on U which
locally are uniformly approximable by functions from 4. We give to
0 ,(U) the topology of uniform convergence on compact subsets and
then we can define the spectrum U , of O 4(U) as the space of all non-zero
continuous complex-valued homomorphisms of O ,(U).

If K is a compact subset of S, we let

0 ,(K) = ind limy - £04(U),

where {U} runs over a fundamental system of open neighborhoods of K.
0 4(K) is given the inductive limit topology and then we define its spec-
trum K , in the usual way. Note that each germ in O 4,(K) by restriction
gives rise to a continuous function on K. Finally we let H ,(K) be the alge-
bra of all continuous functions on K which can be uniformly approximated
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on K by functions from O ,(K). Then H ,(K) is a uniform algebra and it
has a maximal ideal space which we denote by My (k). We say that K
is natural precisely when K =My  x).

In particular, 4 could be the algebra of all polynomials in n complex
variables and then § =C", which means that we have the case considered
at first. Another interesting example is when S is a Stein space with 4
as its algebra of holomorphic functions; we refer to [1] for the details.

Since each function in A by restriction may be considered as an ele-
ment in the various spaces O (U), O 4(K) and H ,(K) we get a mapping =
from U ,, K, and My Lz to 8. 7 is defined by taking the restriction of
the homomorphisms in U ,, K , and M L (x respectively to 4 ; since each
continuous homomorphism of 4 is given by a point in §, = is a mapping
into S.

For each function f in H (K) we define its Gelfand transform f on
M H 4(K) by

fl@) = o(f) forallge Mg k) -

We endow My ,(x) with the weakest topology making the functions f
continuous and then obviously w: Mg ) — S is continuous.

The following theorem is presumably well-known, although we have
not been able to find it in the literature in this form. For the case that
S =Cn it is treated in [2] and for another variant we refer to [9].

THEOREM 1. Suppose that S s a metric space and that K is a compact
subset of S. Then K is natural if and only if K=N,n(U,), where {U,}
runs over a fundamental system of open meighborhoods of K and U,<U,,
Jor n>m.

Proor. Let K be a natural set and suppose that N, 7(U,) 2 K. Then
there exists for all » a homomorphism

Pn: 0 4( U, —C
such that for some compact set K, <U,,

lealH)l = Ifllx, forall feO(U,)

and such that n(p,)=«, ¢ K with «, - &, ¢ K. We may assume that
K,<K,, for n>m.

Since S is metric, K can be given a metric and then C(K) is separable.
It follows that there is a countable subset {f;};° of O ,(K) which is dense
in the supremum norm. By the definition of O ,(K) there exists for every
f; a number m; such that the germ f; is represented by a function in
0,U,) for all nzm,.
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For every 1 we thus obtain a sequence {p,(f;)} for n=m,; and

Palfl = 1fillgms -

By the usual diagonal procedure we may then pick out a subsequence
{n;} of all n such that

¢(fz) = limnj»m(pn](fi)

exists for all 4. Since K, | K it follows that @ defines an element in the
spectrum K, of O,(K). But K, is equal to M &) a8 the following
argument from [9] shows. Suppose there exists a germ fe O ,(K) with
Ifllg<1 and @(f)=1. Then (1—f)~* € O4(K), which implies that

1 = (1) = B[(1—f)"(1-f)] = B[(L—f)-0 = 0,

a contradiction. Hence every element in K , can be lifted to a homomor-
phism of H ,(K) and trivially we can go in the other direction too. So
in fact K ;=M (& and especially @ € My -

As noted earlier, each function in A can be considered as an element
in H 4K), O 4K) and in O 4(U,). From the construction of @ we se that

limn,‘—->oo |¢(f) ""‘Pni(f)l =0

for all fin 4. This means that «, =n(gp,) — #(P), since the topology in
8 is determined by the functions in 4. But K is natural and therefore
@ =n(P) is a point in K, that is, xy=n(P) € K, a contradiction. Hence
K=N,x(T,).

Conversely, assume that K=N,n(U,). Every ¢ € My ) defines by
restriction an element in each U,, and hence n(p) € K, that is, 7(M g ,x))
= K. So to finish the proof we need the following theorem, which is proved
in [3] and [4].

TrEOREM 2. If (M y ) =K, then K is natural.

Proor. Since the argument in [4] is very short, we reproduce it here.
We have to prove that the fibers in My ) over points in K each con-
tains only one point. To see this we consider an arbitrary germ g € 0 4(K)
and define §(z)=g(n(x)) for all xe My, &) (this is possible since
(Mg ) =K). As n is continuous it follows that § is H (K )-holomor-
phic on My k). Hence the uniform algebra generated by H ,(K) and §
has the same Shilov boundary as H ,(K) (see [6]) and this is situated
in K. But g=§ on K, so g=§ on all of My ). Since K =My &),
My () must then be equal to K. This proves theorem 2 and hence also
theorem 1.
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If U is an open set in C*, U = U (that is U is ‘“natural”’) precisely when
U is a domain of holomorphy as is shown in [8]. Now theorem 1 can be
reformulated to make sense also for open sets. Namely, a compact set K
is natural if and only if for every open neighborhood W of K there exists
a smaller open neighborhood V such that n(¥) = W. But this statement is
in general false for open sets. Consider for instance the open Reinhardt set

U= {zeC?: |z|<|z|<1}.

U is a domain of holomorphy and has a fundamental system of open
neighborhoods {U,} which are Reinhardt sets too. Since every U, con-
tains the origin, each U, contains the unit polydisc (we assume that
U, >> U).Because n(U,)=U,, we see that #(U,,) is not close to U for any
U,,.— In passing we have showed that U is not natural, that is, the closure
of a relatively compact domain of holomorphy need not be a natural set.

On the other hand, if a compact set K in C" is an intersection of open
domains of holomorphy, then it follows immediately from theorem 1
that K is natural (this was originally proved by Rossi in [17]). That not
all natural sets in C arise in this manner was shown by means of an ex-
ample in [4]. So we see that although the theories of open domains of
holomorphy and of compact natural sets clearly are related to each other,
the relation is not too close.

With this general set-up we can now discuss some problems which
have been posed by Jan-Erik Bjork and have been solved with his very
generous assistance. For more facts about compact natural sets we refer
to his papers [3] and [4] and also to [19].

2. A Levi problem.

We say that a C2 real-valued function p(z) in C* (here z=(2,,...,2,))
is plurisubharmonic at a point z, if there is a neighborhood W of 2z, such

that the Hessian of p,
0%p "
EXN
ziaZj 1,)=1

is positive semi-definite for all z in W. If the Hessian is positive definite,
p is said to be strictly plurisubharmonic at z,.

A domain D in C» is called (strictly) pseudoconvex if there is a C2-
function p(z) defined and (strictly) plurisubharmonic in a neighborhood
W of D’s topological boundary bdD such that

DnW = {ze W: p(z)<0}.
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These notions can then be carried over to complex manifolds; we refer
to [8] for the details.

It has become known as Levi’s problem to show that a domain which
is pseudoconvex (in some sense) is a domain of holomorphy or at least

is holomorphically convex. Grauerts solution of this problem goes as
follows (see [8]):

TueoreM 3. If D is a relatively compact and strictly pseudoconvex
domain in a complex manifold, then D is holomorphically convex.

We now give a theorem for compact natural sets which bears a slight
resemblence to theorem 3.

THEOREM 4. Let K be a compact natural set in C" and let L be a subset
of K with the following property: there exists a C? real-valued function p(z)
defined in a neighborhood of K such that

L ={zeK: pz)20}

and such that p(2) is plurisubharmonic on L. Then L is natural.

Proor. According to theorem 1 it is enough to prove the following:
For a given open neighborhood W of L in C” there always exists a smal-
ler open neighborhood V of L such n, (V)< W, where 7;,: ¥ — Cn is given
by restricting each element ¥ to the polynomials in C. So let us fix an
open neighborhood W of L in C».

That p(z) is plurisubharmonic on L really means that p(z) is plurisub-
harmonic in some neighborhood of L since plurisubharmonicity is a local
property. Shrinking W if necessary we may hence suppose that p(z) is
defined and plurisubharmonic on W.

Being a continuous function, p(z) assumes a minimum on the compact
set K\ W. Suppose that the minimum value is 24; then J is a positive
number according to the definition of L. This means that the set
{z € C*: p(z) >4} is a neighborhood of K\ W in C". It is then clear that
we can choose an open neighborhood U, of K and a positive number ¢
such that

Lc{zeU,: plr)<e} = W.

Due to the fact that K is natural there exists an open neighborhood U
of K in C» such that iy (0)< U,; here 7y : U — C* is defined by restric-
tion to the polynomials. As is shown in [8], 7y, is a local homeomorphism
which gives to U an analytic structure so that U becomes a Stein mani-
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fold. By means of n;; we can explain how to differentiate functions on U.
Namely, we set

-1
pifia) = 0 ()
%
if the latter expression exists. Here a is a point in U and f is a function
defined near a.

We now define a function p* on U by p*(x)=p(ny(z)) for all ze U.
Since 7;;(U) is close to K we can assume (shrinking the neighborhood
U, of K a little if necessary) that p(z) is defined on this set, and then p*
is well-defined on U. With derivation as above we see that p* is pluri-
subharmonic at « € U if and only if p is plurisubharmonic at 7y (x) € C".

U being a Stein manifold, there exists a real-valued function y € ()
which is strictly plurisubharmonic on U and has the following property:

{xel: ya)<r} =< U for every r e R+
(see [10]). Let M =|ly||; (under the identification U g U') and define
@(x) = sup {p*(x),p(x)—M -1} forallzin U .

Let V,={xe U: ¢p(x)—e<0} with ¢ as before. Due to the function y’
V, is then a relatively compact subset of U. Since ¢ <0 on L, we see that
L<V,. Forevery zin V,, p*(x)=p(ny(x)) < ¢ and furthermore 7y (x) € U,
since V,< U. This means that 7 (V,)< W and hence p* is plurisubhar-
monic on V,. Being the supremum of two plurisubharmonic funections
@ is also plurisubharmonic on V,.

With N = lylly,, we put a(x)=(¢/4N)y(x) and define

Vo={zeV,: p(x)—tc+ax(x)<0}.

From the fact that |||, < }¢ we see that L= V< < V. Furthermore the
function ¢(z)+ «(x) — 4 is strictly plurisubharmonic on V,. Hence ¥V is
a strictly pseudoconvex and relatively compact domain in the Stein
manifold U. So now we can use theorem 3 to infer that V, is holomor-
phically convex. As a subset of a Stein manifold ¥V is then a Stein mani-
fold itself.

Next we define V as VynU. Then V is an open neighborhood on L
in C* and we want to prove that 7, (V)< W.

The mapping 7, : V — C* can be factored as follows. If « is a homo-
morphism in V we first take its restriction to the algebra O(0)<O(V).
Since U is a Stein manifold this new homomorphism is a point 7,(x) in U.
Then restricting this homomorphism to the algebra of polynomials in the
coordinate functions for C® we get a point ny(m,(x)) € C*. Clearly
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7y om,(x) =mp(x) as the latter mapping is obtained by taking the restric-
tion of = to the polynomials at once. It might be helpful to visualize
this result in a commutative diagram:

V-2 0

1|
ay |ay
N

Vv —=S-Cn

Now V is a subset of ¥V, and as V, is a Stein manifold, 7,(V)< V,,.
But V,< V, and, as shown before, 7,(V,) < W. Hence (V) =y om, (V)
=W, so V is the sought for neighborhood of L. This proves our theorem.

3. The union of two compact natural sets.

In [3] it was proved that an intersection of natural sets always is
natural. But of course it is generally not true that a union of natural
sets is natural. We will now discuss a case where this actually is true.

Let A and S be as before. We say that a subset V of § is an 4-ana-
lytic variety in 8 if for every x in S there exists a neighborhood U,
of z in § such that the set ¥nU, consists of the common zeros for some
family (which may be infinite) of functions that are defined and are
A-holomorphic in U,. V is then obviously a closed set in §.

THEOREM 5. Let K, be a compact subset of an A-analytic variety V in S,
let K, be a compact natural set in S and set K=K,UK,. Suppose further-
more that

(i) KnV is natural;
() H (K)|KnV is dense in H, (KnV);

(iii) H (K)| K, ts dense in H 4(K,).

Then K is a natural set.

ProoF. Put D= My )\ K and suppose that D + . The mapping

n: My )~ 8

is continuous so 2= D\ zn-Y(¥) is an open subset of My ). We assume
that Q+0.
1f bd Q2 is the topological boundary of 2 in Mg ) we let

L = HullHA(K)(bd.Q)
={reMy,x: 1f@)| 2 Iflpa o VS € Ha(K)}
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(here and in the following we in general do not distinguish between a
function and its Gelfand transform). We define the algebra B as the uni-
form closure of H ,(K)|Q in C(2). Then QcL=Mpc My, x and from
Rossi’s local maximum modulus principle we infer that

0 € bd2 < aY(V)u (K ,\ V),

where 0 is the Shilov boundary of B.

Now 0y is the closure of the set of strong boundary points for B.
Suppose that all these points are situated in (K,\ V)~ (the bar denotes
closure). Then 0z < (K,\ V)~ and consequently every point in 2 has a
minimal support in K,. If x € 2 has the support ¥, < K, it follows that
l2(f)| £Ifllz, < fllz, for all fe H,(K). Because H ,(K)|K, is dense in
H ,(K,),  can then be lifted to a homomorphism of H ,(K,). But K, is
natural, so x must be a point in K,, which contradicts the fact that
x el

Hence there exists a strong boundary point § for B such that
dex Y (V)N (Ky;\ V)~ and 6 € bd2. Then n(d) belongs to V. We let U
be an open neighborhood of #(d) in S such that

VnU
= {x €8 : f,(x)=0, where the f,’s are defined and 4-holomorphic in U} .

For z e U there exists a neighborhood N, of # in U and functions
{f,, n} =4 such that

limn—>oo ”fa—'fa,n”Nz =0.

The Gelfand transform of f, , is f, ,o7. Since

limn—mo“faon _fa,non”n—l(Nx) = limn—wo”fu—fa,n“Nx =0,

we see that f ox is H (K)-holomorphic on #~}(U) (note that this argu-
ment was used already in the proof of theorem 2, although it was not
written out in detail there).

Let U, be an open neighborhood of 6 in My, such that
Upn(Ey\V)-=0 and Uy<zn—(U). From the fact that ¢ is a strong
boundary point for B it follows from a lemma of Rickart (see the proof
of lemma 3.1 in [14]) that there is a neighborhood U, of § with U,< U,
and such that all functions which are H ,(K)-holomorphic on Uyn Mg
and vanish on Uynz—Y(V)=Uynbdf2 also vanish on U,nM . In par-
ticular, this is true for the functions f,om. Now Q< My and since
8 € bd 2 there are points z, in £2 converging towards d. For » large enough,
z, € U,, that is, f,on(x,)=0 for all . But this means that z, € z-1(V)
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when » is sufficiently large which is a contradiction. Hence 2=¢ and
D=n"YV)\V.

The topological boundary bdD of D in My, is situated in KnV.
For otherwise there exists {y,} <D with

Ypo—=>yebdDn(K\V).

7 being continuous it follows that n(y,) - #(y)=y. But n(y,) e V and V
is closed, so y € V too, which is a contradiction.

From the local maximum modulus principle it now follows that
[2(f)| £1|fllgay for every x € D and for all f e H ,(K). Since H (K)|KnV
is dense in H/(KnV) every x €D therefore defines an element in
H_ (KnV). Due to the fact that KnV is natural, x must then be a
point in KnV. Hence D=0, which proves the theorem.

Conversely, if K is natural it follows from a theorem of Rickart
(theorem 3.2 and lemma 1.1 in [14]) that KnV also is natural, so condi-
tion (i) is necessary.

Suppose now that § is a Stein manifold and that A4 is its algebra of
holomorphic functions. For this case it was shown in [9] that theorems
A and B of Cartan are valid for coherent analytic sheaves on compact
natural sets. As a direct consequence of this every element in O (KnV)
is the restriction to ¥V of an element in O 4(K), if V is an analytic variety
in S. So then also condition (ii) in theorem 5 is necessary.

As Rickarts theorem is very easy when S is a Stein manifold, we give
a proof here for that special case.

ProrosiTioN. Let K be a compact natural set ¢n a Stein manifold S and
let V be an analytic variety in S. Then KNV s a natural set.

Proor. Theorems A and B imply that
KnV ={xekK: f(x)=0 for f,e 04(K)},

that is, KnV is globally defined. Since 4 =0(S)gH(K)gH(KnV) and
K is natural, we can in the usual way define mappings making the dia-

gram
MHA(KnV)
n'[ Tnl

S K My 0
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commutative. According to theorem 2 it suffices to show that
My gar)=KnV, and from the diagram we see that it is even suf-
ficient to show that 7,(M g,k .p)=KnV.

The functions f; € H ,(K) defining KNV can be considered as elements
in H,(KnV), and their Gelfand transforms on Mg & oy, are fiom,. Let
x be an arbitrary point in Mg oy Then |2(f)| 2 |Ifidlcar=0, that is,
fi7y(x)) =2(f;) =0 for all . Hence m,(x) € KnV, which proves the pro-
position.

In order to see that theorem 5 may fail if not all of the conditions (i),
(ii) and (iii) are satisfied, we consider the following example in C2. Let

K, ={zeC?: 2,=0, b= |z|=d},
K,={2eC?: 05|2|=Za, b<c=|z|=d},
V ={eC2: 2,=0}

and set K=K,UK,.

For b>0 all conditions in theorem 5 are fulfilled and K is natural.
If 5=0 condition (i) and (ii) are still valid, but condition (iii) is no longer
satisfied. For instance, the function 2z, belongs to H(K,) but cannot be
approximated with functions from H(K). In this case

Myg) = {2€C?: 05|zy|Sa, 052y sd} 2 K.

We also give an example which indicates the difficulty in generalizing
theorem 5 to give a positive answer to the following question: If K,, K,
and (K,UK,)nV are natural, is then also K,UK, natural? Let

K,={2eC?: 05|2|=Za,|2|=b}u
UfzeC?: 2,=0,b=|2,| =d},
K,={zeC?: 02|z, Zaq, |25 =€} U
U{zeC?: 2,=0,c< |2 <€},
where 0<b<c<d<e and let V={ze C?:2,=0}. Then
Myg,ry = (2€C¥: 0=|2|Sa,b=(2)Se} 2 K, UK,,

so K,UK, is not natural.

4. Holomorphic mappings of compact natural sets.

As was hinted at in section 1, it makes sense to talk about compact
natural sets in Stein spaces. Actually, of course, a compact set in an ana-
lytic space is nothing but a compact set in some analytic variety in
some Cn,
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If F: X > Y is a proper, surjective, holomorphic and finite mapping
from an analytic space X to a Stein space Y, it is well-known that also
X is Stein (see [7] for instance). Now an analytic space X is Stein precisely
when X is equal to the spectrum of the algebra O(X) of holomorphic
functions on X (see [1]). Therefore it is natural to ask whether the inverse
image under F' of a natural set is natural. As an easy consequence of
theorem 1 we obtain the following result.

THEOREM 6. Let X and Y be Stein spaces and let F: X — Y be a proper,
holomorphic and surjective mapping. If K is a compact natural set in Y,
then the compact set F-1(K) tn X 1s natural too.

Proor. The holomorphy of F means that we have an injection
0(Y) 5 O(X) given by O(Y) o fi»foF. So we can consider O(Y) as a sub-
algebra of O(X).

Let {U,} be a fundamental system of open neighborhoods of K in Y.
If V is an open neighborhood of F-1(K) in X, the topological boundary
bd ¥V of V is closed, and hence also F(bd V) is closed since F is proper.
Because of the fact that KnF(bd V)= (here it is important that F-1(K)
is an inverse set), there is an open neighborhood U of K in Y such that
UnF(bdV)=0 and then F-Y{K)<F-Y(U)<V. We set V,=F-YU,) and
infer that {V,} is a fundamental system of open neighborhoods of
F-YK) in X (cf. lemma 4D on p. 292 in Whitney [18]).

Fix an « for a moment. The restriction ¥, of F to Vi3 a holomorphic
mapping F,: V,— U, and hence we have an injection O(U,)5O(V ).
If ¢ is a homomorphism in 7, we can restrict it first to O(X) and then
to O(Y); obviously we obtain the same result by first taking the restric-
tion to O(U,) and then to O(Y), that is, we have the commutative diagram

7, R
"Val l"Ua
x .y

where R, (p)=¢|0(U,). To prove that F-'(K) is natural we need, ac-
cording to theorem 1, only to show that for a given open neighborhood
W of F-1(K) there exists an « such that 7y ( V, )< W. But since K is
natural there exists an « such that

thuoRa(Va) < nUa(Ua) c W ’
where W' is a neighborhood of K such that F-Y(K)< F-}(W')< W. From

Math. Scand. 33 — 24
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the commutativity in the diagram it then follows that sy ( V)W,
which proves the theorem.

A natural question now is the following: Suppose that K is a compact
set in X such that the compact set F(K) in Y is natural. Does it follow
that K also is natural? We give an example which shows that this is
not true in general. Namely, let

X ={zeC3: (23—2,)(23+2,)=0} = X, U X,,
where X, and X, are the components of X, let
Y = {zeC3: 2,=0}

and let F: X - Y be the restriction to X of the projection C3 — C2
taking (2;,2,25) t0 (24,25). Then F has all the properties required in the
theorem. Let D be the closed unit polydisc in ¥ and put K=K, UK,,
where K,=F-Y(D)nX, and

K, =FYD\{zeY: 0=z, |2 <3} n X, .

Then F(K)=D, D is natural, but clearly K is not.

In [13] Remmert and Stein prove the following theorem: Let X and Y
be connected normal analytic spaces and let F: X -~ Y be a proper,
discrete, surjective, holomorphic mapping. Then X is Stein precisely
when Y is and X is holomorphically convex precisely when Y is. For a
related result we refer to [11]. Using the methods of Remmert and Stein
we can prove the following analogue for natural sets.

THrOREM 7. Let X,Y be Stein spaces and suppose that Y is normal as
well. Let the mapping F: X — Y be proper, holomorphic, surjective and be
such that each irreducible component of X is mapped onto an irreducible
component of Y. If K is a compact set in Y such that F-Y(K) is natural,
then K is natural.

ReEMARK. The condition that ' maps each irreducible component of X
onto an irreducible component of Y is used only to ascertain that the
inverse image of the set of singular points in Y is a not too big set in
any component of X as is seen from the proofs of Satz 2 and Satz 3 in
[18]. So, for instance, if the singular set in Y is empty, this condition is
superfluous.

Proor. We observe firstly that F is automatically finite since X is a
Stein space and hence has point separating holomorphic functions. So
F:X - Y is proper, finite, holomorphie, surjective and maps each ir-
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reducible component of X onto an irreducible component of ¥; to sim-
plify the notation we say that a mapping with these properties is ad-
missible. Let (X*,£) be the normalization of X. Then & is admissible
and it follows that X* is Stein. We can now use Satz 2 in [13] to infer
that there exists a proper holomorphic mapping F*: X — ¥ such that

the diagram
X*
5[ Fx

» +
X—>Y

commutes. From the properties of the normalization it follows that F*
i9 admissible and that

EYFY(K)) = (F*)X(K) .
To prove the theorem it suffices to show the implications:
F-1(K) is natural
= §YF-YK)) = (F*)~Y(K) is natural
= K is natural .

The first implication follows from theorem 6 and the second from the
lemma, below.

Lemma. Let X,Y be normal Stein spaces and let F: X — Y be an ad-
missible mapping. If K is a compact set in Y such that F-Y(K) is natural,
then K is natural.

Proor. Let {U,} be a fundamental system of open neighborhoods of
K in Y and set V,=F-YU,). Then {V,} form a fundamental system of
open neighborhoods of F-}(K) in X. Define F,: V, - U, as the restric-
tion of F to V,. Then clearly all the F',’s are admissible and V,, U, are
all normal analytic spaces.

We now fix an « and as in the proof of theorem 6 we obtain a commu-
tative diagram:

Vﬁ ——IEE-—) 3
x- T,y

We claim that R, is a surjective mapping. Indeed, Satz 3 in [13]
shows that the triple (V,,F,,U,) is an analytic covering and then it
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readily follows that O(V,) is integral over the subalgebra O(U,). Let
@:0(U,) - C be an arbitrary element in U,. Due to the integral de-
pendence this homomorphism can be lifted to a homomorphism
@:0(V,) - C (see [5] for instance), and we only have to prove that @
is continuous. To see this we recall from [13] how the integral dependence
is explained.

If p is the number of sheets of ¥, over U, we set for every fe O(V,):

Pfa) = (z—fwy). .. (2= f(w,)
=22 +a;,2° 1+ ... +a,,
where (w,,...,w,) are the points (not necessarily distinct) over we U,.

Then the functions @, can be considered as elements in O(U,) and ob-
viously P/(f)=0. For every ¢ € U, there exists a compact set L<U,
such that |p(g)| = |lgll. for all g € O(U,). Then

12(F)] = Iflpaq forallfeO(V,),

that is, @ is continuous. For suppose not. Using the multiplicative struc-
ture of O(V,) there then exists a function fe O(V,) such that

Iflp-iy =1 and |D(f)] = 4,

where A can be chosen as large as we want. Then |®P(a;)| < |la,/l, < p for
every ¢, and hence

D7(f) + P(ay) PPHf) + ... +Dla,) = 0

cannot possibly be true if 4 is large enough. Hence R, is surjective.
To finish the proof we fix an open neighborhood W of K in Y. Then
there exists an & such that 7y ( V,)<F-YW) and since R, is surjective,

ny (U,) = ng oR(V,) = Fomy (V,) = W.

This proves the lemma and with it the theorem.

Also in this case it is tempting to ask the following: Let F: X - ¥
be as in the theorem. Then if K is a compact natural set in X, is it true
that F(K) is natural? The following example shows that the answer in

general is no.
Let D be the polydisc

D=1{2eC%: 05|y|<2,0=|2 <2, 0=z <1}

Let
X = {zeC3: (23—2)(23—2,) =0}
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and set K =DnX. Clearly D is natural and the theorem of Rickart which
we have used already in section 3 shows that K is natural too. Let ¥ =
{ze C3: 2z;=0}and let F: X - Y be the restriction to X of the projection
C3 > C2 Then

F(K) = e ¥: 05|l S2I\fee T 1 1<z, |l <2}

and hence is not natural.
Finally we remark that M. van Kuilenberg in [12] independently has
obtained some results in connection with theorems 6 and 7.

Note ApDED IN PROOF. Theorem 3 is valid if the strictly plurisub-
harmonic function p(z) is merely upper-semicontinuous as is shown by
Narasimhan in The Levi problem for complex spaces II, Math. Ann. 146
(1962), 195-216. This implies that theorem 4 is true under the assump-
tion that p(z) is a continuous (and not necessarily C2) plurisubharmonic
function (alternatively this result can be achieved by regularization of
the function ¢ appearing in the proof).
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