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AN APPROXIMATE TAYLOR’S THEOREM FOR R(X)

JAMES LI-MING WANG

1. Introduction.

Let X be a compact subset of the complex plane C. We denote by C(X)
the algebra of all complex-valued continuous functions on X, by Ry(X)
the subalgebra of C(X) consisting of the (restrictions to X of) rational
functions having no poles on X, and by R(X) the uniform closure of
Ry(X). In this paper, we give some answers to the question: What can
be said about the behaviour of the functions in B(X) near a point x € X,
beyond the obvious property of continuity ? Of course, if z is an interior
point of X, each f € R(X) is analytic in a neighbourhood of z, so the func-
tions in the unit ball of R(X) are equicontinuous at z, and even satisfy
a uniform Lipschitz condition at x. On the other hand, if « is a boundary
point of X, no such equicontinuity or Lipschitz condition is possible,
because there are peak points in any neighbourhood of x. However, it
turns out that we can obtain some satisfying results by using the notions
of approximate continuity, approximate Holder condition, ete. For in-
stance, at almost all points of X which are not peak points for R(X),
every function in R(X) satisfies an approximate Holder condition of
order « at x for every « <1, and the condition is uniform on the unit
ball of R(X).

We investigate also the consequences of the existence of bounded
point derivations. We say that there exists a bounded point derivation
of order p on R(X) at « € X if there exists a bounded linear functional
D,? on R(X) such that DPf=f®(x)[p! for all fe Ry(X). Wermer [7]
constructed an X with R(X)# C(X) such that there existed no first order
bounded point derivations at any point of X. In the opposite direction,
Hallstrom [3] constructed an X with empty interior such that bounded
point derivations of all orders exist at almost all points of X. If there
exists a sequence {r,} in X, converging to x, such that

lim (f(2,) —f(@))/ (2, — ) = Lf

exists for all f € R(X), then L is a bounded linear functional (by the uni-
form boundedness principle), and so L=D,'. No example of a bounded
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point derivation at a boundary point x of X has ever been constructed
by exhibiting such a sequence, to our knowledge, but we show that in
fact every bounded first order point derivation does arise in this way,
and higher order bounded point derivations are the corresponding limits
of higher order difference quotients.

Surprisingly little attention has been paid in the past to our basic
question. We are aware only of Browder’s result of 1967 asserting the
equi-approximate continuity of the functions in the unit ball of R(X)
at a non peak point, and the recent work of O’Farrell [4, 5, 6], involving
“non-tangential approach’ to a boundary point.

The rest of the paper is in two parts. Section 2 contains, besides nota-
tion and terminology, the measure theoretic machinery; Section 3 applies
this machinery to obtain the results on R(X) mentioned above, and some
others.

2. Measures and potentials.

Throughout this paper, z will denote the identity function on C, and
m will denote two-dimensional Lebesgue measure. By a measure, we
understand a complex Borel measure. For fe C(X), we write |f| for
maxy|f|. If x4 is a measure on X, we denote by |u| the associated total
variation measure; then |u|(X)=||u/|=norm of u as a continuous linear
functional on C(X).

Fix x € C. We say that a set £ =C has full area density at x if

llmnewm(EnAn)/m(An) =1,

where 4,={yeC: |[y—z|<n-1}. Let F be a function defined on X,
z € X. We say that a is the approximate limit of F at z, and write

a'Pthy»xF(?l) =a,
if there exists a subset £ of X having full area density at z, such that

limy—m:F(y) =a.
yel

If applim,_, .(F(y) — F(x))/(y — ) exists, we call it the approzimate deriv-
ative of F at x. We say that F is approximate continuous at x if

applim,_, . F(y) = F(x) .
We say that F' admits ¢ as modulus of approximate continuity at x if
IF(y)—-F()| = o(ly—=l)
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for all y in a set having full area density at «; here ¢ is a positive function
on (0,0) with lim,_ ,¢(r)=0. We say that F satisfies an approximate
Hglder condition of order « at « if F admits Cr* as modulus of approxi-
mate continuity at z, for some constant C.

DerFINITION. Let g be a positive non-decreasing function on (0, ). For
each compactly supported measure u, we define the y-potential of u,
Uy, by

1’3 b

Uy = S_dl_ﬂl_,
w(lz—y)

If y(|2])-? is locally summable with respect to m, an application of
Fubini’s theorem shows that U,’ is locally summable; in particular,
UyY<oo ae. (m)

The next important case is y(r)=r; in this case, we denote U,* by f.
We define fi(y)={(z—y)*du for all y € C where fi(y) < co.

For each 6 >0, we set

Er0) = {yeC: y(ly—=)U.(y) <4}
and

E0) = {yeC: ly—=|a(y)<d}.

DerFiNiTION. We say that ¢ is an admissible function if

a) @ is a positive, non-decreasing function defined on (0, 0), and
b) the associated function y, defined by y(r) =r[p(r), is non-decreasing,
with 9(0+)=0.

Examples of admissible functions are

i) p(r) = r*, with 0Sa<1;
i) @(r) = rlog(r-1®  for O<r=r,
rolog(ry 1y  for rzrg,

where > 1 and ry>0 is sufficiently small.

ReMARK. If ¢ is an admissible function, then ¢(r) < ¢(r;) + ¢(r3) when-
ever r=r,+r,, since

@(r) £ ry+ry) = (ry+r)fp(ry+73)
< ryfp(ry) +rofp(ra) = @(ry) +@(ry) -

Lemma 2.1. Let y be a positive non-decreasing function on (0,c0), and
for each positive integer n let m,, be a positive measure on 4, such that
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i) p(n Uy, (y)<C forall yeC, all n;
ii) p(n1)m,] - 0 for n > co.

Then for every compactly supported measure o with o({x})=0,

Sv(ly—=2)U (y)dm,(y) > 0 .

Proor. Let F,(w)=§ [y(ly—|)/w(ly— w|)]dm,(y). Then
F,(0) £ p(n 1)U}, (0) = C forallw,
and for w=+x we have for large n
Fu(0) = pn)y(lo—z|—n1)Ym,|| >0 for n—oo.

Thus {F,} converges boundedly to 0 a.e. (o), so { F,d|a| - 0, and apply-
ing Fubini’s theorem we have the desired conclusion.

Lremma 2.2. Let E be a measurable subset of C, and define g, by ng, 2=
m(4,\E). Set m,=np,'m|(4,\ E). Then

§v(ly—2) U (y)dm,(y) > 0
Sfor any yp associated to an admissible function, and any compactly supported
measure o with o({x})=0.
Proor. We show that v and m,, satisfy the hypotheses of Lemma 2.1.
Let D,, be the disk with center x and raduis g, . Then

dm
g P(2—Yl)

dm
vinnen™ Spn )

P UL, (@) = pinme, |

IIA

on

= pnng, 2w | pir)yrar
0

on

y(n1)ng, 127 S @(r)dr
0

I

IA

y(n~)ng, ™" 21, P(0n)
2anp(n—p(n1) = 2r .

IA

(The first inequality above used only that y was positive and non-
decreasing; compare [2, p. 151].) Thus hypothesis a) of Lemma 2.1 is
satisfied. Next,
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p(nY)m,|| = p(n)ng,ng,? < wy(n=t) >0,

8o hypothesis b) is satisfied as well. The lemma follows.

LeMmA 2.3. Let v be the function associated to some admissible function,
and let o be a compactly supported measure with o({x})=0. Then E_*(5)
has full area density at x for every 6> 0.

Proor. Taking E to be the empty set in Lemma 2.2, we obtain

m(4,)7? SA,,W(l?/—xI)Ua"’(y)dm(y) -0 for n—> .
Now
m(A,\NE(3)) £ 071, w(ly—2|)U (y)dm(y),

so the conclusion follows.

REMARK. Suppose that the support of ¢ lies in a compact set X which
satisfies a “‘cone condition” at z, that is, there exist r,>0 and an open
interval I such that the sector

{y: O<|y—z|<ry, arg(y—x)el}
is disjoint from X. Let J be a closed interval contained in I, and put
C,={y: 0O<|y—z|Se argly—=)eJ}.
We assert that, under the hypotheses of Lemma 2.3, C,<E_¥(d) for
&> 0 sufficiently small. To see this, we observe that if 0<r,<7,, and k
is a sufficiently large positive integer, we have |y—x|<kly—o| for all
weX, yel, . Now
v(ly—2)Uy) = (Yo, +$xp)0(ly — ) p(ly —2))dlo|
where D, is the disk of center z and radius r. Using the remark following
the definition of admissible functions, we have
w(ly—=l) = plkly—ol) = ky(ly—wl)

for all yeC,,, o e X. Choosing r<r, so that |o|(D,)<d/2k, and then
£>0 so that y(c) < 3dy(r)/||ol|, we obtain

w(ly—2DU () £ klo|(D,)+yteyp(r) ol < &
for all y € C,, thus verifying the assertion that £,(0)>C,.

We remark that Lemma 2.3 also holds when y(r)=7* (1 << 2), though
¥ is not admissible. We shall not make use of this fact.
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LemMma 2.4. Let ¢ be an admissible function, p a non-negative integer,
and u a measure on X satisfying §[|z—z|Pe(|z—x|)]1d|u| < oo . Set

I = plz—2)4  (05j<p),

_ W
|z — (P ¢(|2 —|)
Then

(i) for any F € C(X), y € C, we have

(Fz—y)tdu = 30, (y—x)/ 2 {FdA;+(y—2)? (F (2 —y)~1dA,,
and
(i) ly —=lAp(y) < @(ly—=)w(ly— =) U, W) + |y — 2|5(y)]

for all y € C, where v is the function associated to ¢.

Proor. Since 4;=(z—x)i;,, for 0<j=<p, we have

(F(z—y)tdd; = (F(z—2)(z2—y)ddy,
= (Fdij+(@y—2) (F(z—y)dAy, ,

from which (i) follows easily. We also have

1,(y) = §p(le—2|)z—y|-1do
§p(lz—y) +o(ly—2)]lz—y|-2 do

U y)+¢(ly—=l)o(y) ,

oA

from which (ii) is obtained on multiplying by |y —«|.

ProrosiTiON 2.5. Let ¢ be an admissible function, p a non-negative
integer, and u a compactly supported measure such that u({x})=0 and
§[1z—x|Pp(|z — z|)]-2d|u| < 0. Let >0, and E=E,(8). Then

m(d,\E) = o(p(n-1)2n-2r-2)
Proor. Let y be the function associated with ¢. Let ¢ and 4; (0 <j < p)

be defined as in Lemma 2.4. Applying conclusion (i) of that lemma, we
have

sup{|{ F (z—y)~'du| : F e C(X),|F||=1}
Py =zl tAl + |y —=zP A, (y)
C+ly—=[P2,(y)

Ay)

IA 1A
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for y € 4,. Now applying (ii) of Lemma 2.4, we get
ly—=li(y) = Cly—a|+ly—=zPe(ly —2)y(ly — =) U (y) + ly — z(5(y)] .
Define g,, by np,2=m(4,\ E), and put m, =ng,"m|4,\ E. We have

m(d,\E) £ 671, \g ly—2|f(y)dm
= gn(6n)1 § |y —2|i(y)dm,
or

p(n) o,

7g,? = C(0n)'m(4, \E) + Fvali B v(ly—=)U,*(y)dm,(y) +

§ [y —15(y) dm (y)]
so for large n

20(n-1
7o S D (§ 1y — 2, g)dm )+ § Iy — 2l5(0) 3]

Applying Lemma 2.2, we obtain

en = o(gp(n~"n-r1),

and the proposition follows on squaring both sides.

We remark that the hypothesis u({x})=0 is needed only for the case
p=0, (0+)>0, when the proposition reduces to Lemma 2.3.

DrriniTIoN. We say that the admissible function g is nice if {§o(r)-1dr
< oo.

The examples previously given of admissible functions are nice. Nice
admissible functions will be our favoured candidates for moduli of ap-
proximate continuity.

LEmMA 2.6. Let p be a compactly supported measure with u({x})=0.
Then there exists a nice admissible function @, with ¢(0+)=0, such that

§ p(lz— ) 1dlul < oo.

Proor. Let D,={yeC:|y—z|<r} and let M(r)=|u|(D,). Since
M(0+)=0 by regularity, we can choose r; so that M(r,)<1, and then
select inductively 7,,7;,..., so that M(r;)<j3 and r;<min{}r,_,,j-3%}
for j> 1. We define ¢ in [r;,;,7;] to be the linear function having values
1/(j+1) and 1/j at r;,, and r; respectively, and set ¢(r)=1 for r 2 r,. It is
clear that ¢ is a continuous non-decreasing function on (0,cc), and that



350 JAMES LI-MING WANG

@(0+)=0. To see that ¢ is admissible, we must check that the associated
function y is increasing. Since y has the form r/(4 + Br) on each interval
[r541,7;], it suffices to check that p(r;,;) <y(r;), that is that

p(r)lr; < @lrj)lri -
But ¢(r;)/@(r;41)=(j+1)[j £2<r;/r;,;. Thus p is increasing, and since
y(ry)=jr;<j~% we have 4(0+)=0. Thus ¢ is admissible. Furthermore,
Sfl _di_ é ;o r]-—rj+1
b @(r) @(7541)
< 20 1ile(rin) < 27 (+1)j7° < o0,

80 @ is nice as well.
Finally,

dlul

{ el
g(lz—2])

DDy, (12— )
S llell+ 237 My g(ry)
< el + 27 (G+1)j7° < oo,

= lule\D)+37 |

and the proof is concluded.

3. The approximate Taylor’s formula.

We call the measure u on X a representing measure for x € X if {fdu=
f(@) for all f € R(X), an annihilating measure if §fdu=0 for all f e R(X).
We observe that if 4 is a representing measure for x, then 4(y)=1/(x —y)
for all y ¢ X, since 1/(z—y) € R(X), and if x is an annihilating measure,
then fi(y) =0 for y ¢ X, for the same reason. Our main tool is the following
simple lemma of Bishop:

Lemma 3.1. Let u be an annihilating measure. If fi(y) is defined and +0,
then fi(y)~Y(z—y)'u 18 a representing measure for y.

Proor. If fe Ry(X), then f=f(y) + (2 —y)g for some g € R (X), whence
§fz—y)tdu = f)iy)+§g9du = fW)iy) -
COROLLARY 3.2. Let u be a representing measure for x. Let

oy) = §e—2)(e—y)tdu = 1+(y—2)i(y) .
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Then c(y)~Y(z—x)(z—y)~1u is a representing measure for y, whenever c(y)
18 defined and +0, in particular for y e E,(1).

ProOF. (z—z)u is an annihilating measure.

The next lemma, generalizing Lemma 3.1, was first published by
Wilken [8].

Lrmma 3.3. Suppose there exists a representing measure p for x and a
positive integer p such that §|z—x|-Pd|u|<oo. Let c¢;=§(z—x)7du
(0=j=p) and define ug,py,. . ., 1, by:

Bo = Hy  pj = pE—2)T =y ; Ci gty -
Then D,j exists, and D, Jf=\fdu; for all fe R(X), 0<j<p.

Proor. We proceed by induction on j. For j=0, there is nothing to
prove. Suppose D *f={fdu, for k<j, where j>0. We observe that, for

all g e Ry\(X)
Sg(z - x)j“dﬂj = s g(z—x)du— qu‘ Cj—kak[(z —z)itlg]l = 0,
§(z—aydu; = Sdu—3u; i DM(z—2)] = 1,
and for k<j,
§(e—2)dp; = c;_—Jucs ¢ Dz —a)

= C"_k"c"__k == 0 .
Hence for any f e Ry (X) we can write

f = Zloo DH)e—2)+(2—2)+lg
with g € Ry(X), and conclude

§fau; = Do (DFf) § (z—aYedp;+§ (z— )Y+ gdy,
= D/jf,

thus completing the induction.

REMARK. It is even easier to see that conversely, if D,? exists, then
there exists a representing measure u for z such that § |z —z|-Pd|u| < c.
For let » be a measure representing D.?, that is D2f={fdy for all
fe R(X) (such » exists by the Hahn-Banach and Riesz representation
theorems). Put u=(z—x)?»; then {fdu =D ?[(z—2)?f]=f(x) by Leibniz’
rule, and

{le—2l-Pdlul = PIXN\{&}) < oo.
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We are led to the following definition:

DeriniTION. Let ¢ be a positive real number. We say that there exists
a t-th order bounded point derivation on R(X) at x if there is a represent-
ing measure 7 for x satisfying

§ e —a|tdlu] < oo.

In view of Lemma 3.3 and the following remark, this definition agrees
with the previous one for ¢ a positive integer.
We now come to the principal theorem of this paper.

THEOREM 3.4. Let ¢ be an admissible function and p a non-negative
integer. Suppose there exists a representing measure u for x such that
u({x}) =0 and

(

2 — [P g(|2 —z[)

Then for every e> 0 there exists a subset E of X having full area density
at x, such that for every f € R(X),

(i) f =200 DJjf)z—ayY+R
where R € R(X) satisfies
(ii) [B(y)| = ely—xPo(ly—2DIfll forall yeE,
and
(i) applim, . Ry) -
|y —|? ¢(ly — =)

Proor. Since §|z—x|~?d|u| < o, Lemma 3.3 applies and tells us that
D,j exist for 0<j < p. Let R be defined by equation (i). Then R € R(X),
D,JR=0 for 0=j<p, and |R|| £ C||f|| for some constant C.

Let 4;=(z—x)7u, 0sj<p, and o=¢(]z—2|)"|4,]. By Lemma 3.3,
A; is a linear combination of measures representing D,* (0<k<j), so
{RdA;=0 for 0<j<p.

Let 6=¢/(2C +¢), and set £ =K ,(6)nE,(0)nE,*(S), where y is the func-
tion associated with ¢. Then E has full area density at « by Lemma 2.3,
and E <X since E,(8)=X. We observe that ¢(y) =1+ (y—x)d(y) is well-
defined and +0 for y € &, in fact |c(y)| 21— 6. By Corollary 3.2, we have,
for ye K,

R(y) = c(y) {[R(z—2)/(z—y)ldu
= ¢o(y)~! {R[1+ (y—2)/(z—y)]du
= o(y) ™ y—2) { [B/(z—y)]du
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since R(x)=0. Applying Lemma 2.4 i), we obtain

R(y) = cy)y—=)** § Rz—y)1dA,.
SO
o)y~ 27+ | BIAy(y)
CIFI(L = 8)y ~z[|y —=ld,(y)
CIFIL—8)y — [ p(ly — z)lw(ly — ) U () + ly - 215(y)]

by Lemma 2.4 (ii). Thus for y € E,

IA A TIA

IR(y)l

IIA

26C(1 =) fllly — [P g(ly —I)
= el fllly - (ly—=l)
and (ii) is proved.

Let L,f=R(y)/[ly —xP¢(ly —x|)] for fe R(X). Then {L,:yeE}is a
uniformly bounded set of linear functionals on R(X), for (ii) states that
ILl|<e for y € E. Since L,f > 0 as y —» x for fe Ry(X), it follows that
L,f—0asy—xin K for all fe R(X), and thus (iii) is proved.

REMARK. The hypothesis u({z})=0 was included only to cover the
case p=0, lim,_ ,¢(r) > 0. The theorem in this case specializes to a theo-
rem of Browder [2, p. 177].

CoROLLARY 3.5. If there exists a t-th order bounded point derivation on
R(X) at x, then for every f € R(X) we have

f = 30 (DAf)a—a) + R

where applim,_, , R(y)ly—x|~=0.
Proor. Take p=[t] and ¢(r)=r* with « =t—[t] in Theorem 3.4.

Taking t=1 in this corollary, we deduce immediately: If there exists
a first order bounded point derivation on R(X) at x, then

D.f = applim,_,, (f(y) —f(@))/(y—x) forall fe R(X).

This observation extends easily to higher order bounded point derivations.

For f a function defined on a subset of X, h € C, we set 4, f=f(z+h)—f,
5o 4,f is a function defined on a (possibly empty) subset of X. We define,
inductively, 4,°=id, 4, =4;04,-1 for j=1.

Math. Scand. 33 — 23
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CoRrOLLARY 3.6. If there exists a p-th order bounded point derivation on
R(X) at z, then for all f € R(X)

‘szf = a‘pplimheo Ahpf(x)/(p' kp) .

Proor. By Corollary 3.5, there exists a subset £ of X having full area
density at z such that

f =200 (Dif)z—2)+R,
where R(y)ly —x|? - 0 as y -z in E. Let
F;={heC: x+jhe L}

for j=1,...,p. Then each F; has full area density at 0, hence F =2 F,
has full area density at 0. We note that 4, f(x) is a linear combination of
flx+jh), 0=j = p, hence is well-defined for & € F'. Now it is classical that

limy_,, 4,2P(@)/(p! ?) = D,2P
for a polynomial P. Since

hPR(x+jh) >0 as h—>0in F, 1<j<p,
we have
applim, ., 4,7R(@)/(p! b¥) = 0 ,

so taking P=37_,(D,f)(z—x)’, and noting D ,?P = D ?f, the desired con-
clusion follows.

Remark. Taking into account the remark made after Lemma 2.3, we
see that the set £ of Theorem 3.4 contains any sector lying in the in-
terior of X, ,,non-tangentially”’ with respect to X, having « as vertex
and sufficiently small radius. Hence we can deduce from Theorem 3.4
some results on non-tangential limits found by O’Farrell [5, 6].

So far, we have emphasized the consequences of Theorem 3.4 in taking
¢=1. We now turn our attention to the case p=0. In this case, equation
(ii) of Theorem 3.4 reads

If(y)—fl@)] = ep(ly—=))IfIl

for all y € B, f € R(X) and is thus the assertion that ep is a modulus of
approximate continuity at x for every function in the unit ball of R(X).

We say that x € X is a peak point for R(X) if there exists f € B(X) with
f@)>1f(y)| for all y+x. It was shown by Bishop (see, e.g., [2, p. 99])
that z is not a peak point for R(X) if and only if there exists a representing
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measure u for x with u({x})=0. Taking into account this fact, and
Lemma 2.6, we deduce at once from Theorem 3.4:

CoroLLARY 3.7. If x is not a peak point for R(X), there exists a nice
admissible function ¢ with @(0*)=0 such that every function in the unit
ball of R(X) admits ep as modulus of approximate continuity at x, for every
£>0.

In fact, any nice admissible ¢ will work for almost all non-peak points.
(By a theorem of Bishop (see, e.g., [2, p. 172]), the set of non-peak points
has positive measure whenever R(X)=+C(X).)

LemwMma 3.8. Let ¢ be a nice admissible function. If x is not a peak point
for R(X), then

€ X : there exists a representing measure or y such that
Y P My Jory

§o(lz—yl)dlu,| < oo}
has full area density at x.

Proor. Let u be a representing measure for & with u({z})=0. Let

F ={yeC: {[lz—ylp(z—y)]*dlu| < oo} .

Since 1/|z|g(]2|) is locally summable with respect to m, m(C\F)=0
Fix 8, 0<d<1, and put E=FnE,J). Then E has full area density at
by Lemma 2.3, and for each y € E, the measure

c(y)Hz—a)z—y)u = py
is a representing measure for y (Lemma 3.2). Also
lz—2|d|pl
lz—yle(lz—yl)
K {[lz—ylo(lz—y)I 7 dlul < o

for all y € R. The lemma is proved.

S dluyl

- -1
ole—y) ~ W S

A

The following corollary is immediate.

COROLLARY 3.9. Let ¢ be a nice admissible function. Then for almost all
non peak points x, every function in the wnit ball of R(X) admits ¢ as
modulus of approxzimate continuity at x. In particular, at almost all non
peak points x, the functions in R(X) satisfy approximate Holder conditions
of order « for every x<1.
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On the other hand, no positive function ¢ with ¢(0+)=0 can serve
as modulus of approximate continuity for every function in the unit
ball of every R(X) at every non-peak point. For given such a ¢, we con-
struct X as follows:

Let D, be the closed unit disk, and let D, be the open disk with center
a, and radius g,, where a,+0 and 3°0,/|a,| <1. Let X=Dy\UyD,.
Then 0 € X, and 0 is not a peak point for R(X). For let X =D,\UYD,,;
then 0 lies in the interior of X for each N, and

f(0) = (2mi) 2 \ox y fzldz = § fduy

for fe Ry(Xy), by Cauchy’s integral formula. Since NXy=X, each
J € Ry(X) belongs to Ry(Xy) for N sufficiently large. Now

ln —pall < (27)72 I ni1 Sop, 217N d2|  for M >N,
and
Voo, 12172 2| = 270,/(la,l —e,) S 27C0,/la,l,

where C=max(|a,|—g,)!|a,| <. Hence {uy} converges in norm to a
measure u, which represents 0 for R(X) and has no mass at 0. Thus 0
is not a peak point for R(X).

Now choose a,, so that 0<a, ,<a,, lima,=0, and ¢(r)<e¢, for 0<
r<a,, where {¢,} is any sequence of positive numbers with 3’¢, <1.
Put ¢, =¢,a,, and form X as above. We assert that

Y = {yeX: |fly)-f0) =¢(lyl) for all fe R(X),|fl=1}

does not have full area density at 0. To see this, let f,=9,(2—a,)"}, so
Jn € R(X) and ||f,]| £1. Thus

Y c{yeC: [fuy)—fa00) = ¢(ly]), n=1,2,...}.
Now

lfn(y) —fn(o)l = in(y_a'n)—l'*'an—ll = enlyl/ly—'anl .

Hence for |y| <a, and Rey= }a,, we have

Ifn(y)_fn(o)l 2 &n > ‘p(lyl) ’

80
Yn{y: lylsa,} < {y: |yl Sa,, Rey<ia,},
whence
m(Ynjn)/m(jn) < §+V3/(4n) <1 foralln,

where A,={y: |y| <a,}, which implies that ¥ does not have full area
density at 0.
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It is not hard to modify the construction so that Y has zero lower
density at 0.

It follows that there is no ,,universal” ¢ such that {g(|z—2|)1d|u| < oo
for some u representing x whenever z is a non-peak point for R(X),
with X arbitrary.

For 2,y € X, we define

lz—yll = sup{|f(@)-fy)l : feRX),|flI=1}.

This ,,Gleason metric”” has proved important in the general theory of
function algebras. In the following, we fix z, and set

P,={yeX: ly-al<e}.

Many of the preceding results have obvious formulations in terms of
the Gleason metric. For example, taking p=0 and ¢ =1 in Theorem 3.4,
we obtain Browder’s result: If x is not a peak point for R(X), then P,
has full area density at z, for every ¢> 0. Taking p=1 and ¢=1, we ob-
tain: If there exists a first-order bounded point derivation at z, then
y — |ly — || satisfies an approximate Lipschitz condition at z, or more
precisely, for any ¢>0,

ly—=ll = (1D +e)ly —=|

for all y in a set having full area density at x.

We conclude by observing that P, has more than full area density
at z, if x is not a peak point, and much more if there exists a bounded
point derivation at x.

ProrosiTioN 3.10. i) If z is not a peak point, then there exists a mice
admissible function @ with @(0+)=0 such that
m(4,\P,) = o(p(n1)*n-2).

ii) If @ is a nice admissible function, then for almost all x which are not
peak points, we have

m(A,\P,) = o(p(n-1)n"") .

In particular, m(4,,\ P,)=o((logn)3>n-*) for almost all non peak points x.
iii) If there exists a t-th order bounded point derivation at x, then

m(4,\ P,) = o(n=%-2) .
Proor. If u is any representing measure for z, then K, (6)< P, for ¢

sufficiently small (this was shown in the course of proving Theorem 3.4
for the case p=0, p=1, or see [2, p. 176]). Having Lemma 3.6 for i),
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Lemma 3.8 for ii), and the definition (or preceding remark) of ¢-th order
bounded point derivation for iii), the proposition follows at once from
Proposition 2.5.

The last part of the above proposition was first found by O’Farrell [4]
as a consequence of a deeper theorem. The weaker result m(4,\ X)=
o(n=%-2) (¢ an integer) had been previously found by Hallstrom [3].

Finally we remark that all our results are valid for the algebra A(X)
of all continuous functions on X which are holomorphic in the interior
of X. For a theorem of Arens [1] tells us that for any x € X, the space
of all fe A(X) which are (restrictions to X of functions) holomorphic
in a neighbourhood of x is dense in A4(X). This space serves as substi-
tute for By(X) in our arguments. (Compare [2, p. 205].)

Acknowledgement.

This paper contains part of the author’s Ph.D. thesis. I would like to
thank Prof. Andrew Browder for his advice and comments. The author
received support from the National Science Foundation during the prep-
aration of this paper. I would like also to thank the Matematisk Institut
at Aarhus Universitet for their hospitality during the academic year
1972-73.

REFERENCES

1. R. Arens, The maximal ideals of certain function algebras, Pacific J. Math. 8 (1958),
641-648.

. Browder, Introduction to Function Algebras, Benjamin, New York, 1969.

. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis
4 (1969), 153-165.

. O’Farrell, Capacities in uniform approximation, Thesis, Brown University, 1973.

. O’Farrell, Equiconvergence of derivations, Preprint, Brown University.

. O’Farrell, Analytic capacity, Holder conditions and t-spikes, Preprint.

. Wermer, Bounded point derivations on certain Banach algebras, J. Functional Ana-
lysis 1 (1967), 28-36.

8. D. Wilken, Bounded point derivations and repr ting measures on R(X), Proc. Amer.

Math. Soc. 24 (1970), 371-373.

Eadl
> P

qJe s
bl

UNIVERSITY OF AARHUS, DENMARK
AND
BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND, U.S.A.



