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THE DUAL BALL OF A LINDENSTRAUSS SPACE

KA-SING LAU

1. Introduction.

We call a Banach space a Lindenstrauss space if its dual is an L(u)
space for some measure u. This class was introduced by Grothendieck
and was studied extensively by Lindenstrauss [14]. If the unit ball of a
Lindenstrauss space X contains an extreme point, then X is (isometric
to) the space of continuous affine functions on a Choquet simplex. The
unit ball of the dual X* of a Lindenstrauss space will be called an L-ball.
Lazar [13] has proved a characterization of L-balls similar to the Cho-
quet—-Meyer uniqueness theorem for simplexes, which is the basis of
much what we will do.

Lazar and Lindenstrauss [12] have generalized the Edwards extension
theorem on Choquet simplexes to L-balls. In section 2, we prove that the
result actually characterizes L-balls. We also obtain some other equivalent
conditions and collaries.

Namioka and Phelps [16] proved that a compact convex set in a locally
convex space is a Choquet simplex if and only if there exists an affine
map ¢ from K to the set of probability measures on K such that for
z € K, the resultant of ¢(x) is . (Fakhoury [5] has given a simpler
proof.) This suggests the problem of whether there exists a similar
criterion for a compact absolutely convex set K to be an L-ball. In [3],
we prove that this is the case. (This result has been obtained indepen-
dently by Lacey [11].)

In [4], we present some characterizations of those L-balls K for which
the extreme points 0,K union {0} is closed.

This paper is part of the author’s Ph.D thesis prepared in University
of Washington under the supervision of Professor R. R. Phelps. The
author wishes to acknowledge his indebtedness to him for many fine
suggestions and constructive criticisms for the preparation of this paper.

2. Extension theorems for L-ball.

Throughout this paper, we shall use the following notations. Suppose
K is a compact absolutely convex (symmetric about 0) subset of a locally

Received November 5, 1972; in revised form April 13, 1973.



324 KA-SING LAU

convex space. We let C(K) denote the space of real valued continuous
functions on K. A real valued function f on K is called affine (convex) if

fAz+(1-2)y) = (2)Af@)+(1-Df(y), =zyekK, 1€[0,1].
We let A(K) (Q(K)) denote the set of continuous affine (convex) func-
tions on K and we let 4,(K) be the set of all functions fin 4(K) such that
J(0)=0. We call such functions affine symmeiric. A function f is called

concave if —f is convex. Suppose f is a bounded real valued function
on K, we define the upper envelope f of f by

f@) = inf{a(z): ac A(K),a2f}, zecK.

Note that f is an upper semicontinuous concave function on K. For any
real valued function on K we define the functions of, oddf and evenf as
follows:

of @) = f(-2), zeK,
0ddf = 3(f—of),
evenf = }(f+af) .

A function is called odd if f=oddf.

We will let M,(K) be the set of regular Borel measures on K with
norm at most 1 and let P(K) be the set of probability measures on K.
For u € M,(K), we use suppu to denote the support of x4 and u, for the
restriction of u to a Borel subset 4 in K. The measure y is called a bound-
ary measure on K if

pf-f) =0, feC(K).
The resultant of u is the point r(u) € K satisfying
flrw) = p(f) (=§fdu), fedy(K).

The point 7(x) is also called the barycenter of u. For a finite signed Borel
measure on K, we define ox and oddu as follows

ou(f) = u(of), feC(K),
oddy = Hu—op) .
A measure y is called odd if yu=oddu.

DeriniTION 2.1. A Banach space X is called a Lindenstrauss space if
X* is isometric to an L'(u) space for some measure u. A compact abso-
lutely convex subset K in a locally convex space is called an L-ball if K
is affinely homeomorphic to the unit ball of the dual of a Lindenstrauss
space in its weak* topology.
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Much of what we do is based on the following theorem of Lazar [13].

THEOREM 2.2. Let K be a compact absolutely convex subset of a locally
convex space; then the following are equivalent:

(1) K ts an L-ball.
(ii) For any continuous convex function f on K, oddf is an affine func-
tion.
(iii) If u is a boundary measure on K which represents the point x in K
and if f is a continuous convex function on K, then

0ddf(x) = u(oddf)

(iv) If u, and u, are boundary measures on K having the same barycenter,
then

oddy, = oddy,

(v) For each continuous convex function f on K,

f(0) = tsup{f(z) +f(~2): v e K}
= sup{evenf(z): ze€ K}.

Suppose K is a compact absolutely convex subset of a locally convex
space, a subset H of K is called a biface if H=conv(FuU —F) where F
is a face in K. It was proved in [12] that if K is an L-ball and H is a closed
biface of K, then H is also an L-ball. Qur main object in this section is
to prove the following theorem.

THEOREM 2.3. Let K be a compact absolutely convex subset of a locally
convex space, the following properties are equivalent:

(i) K 18 an L-ball.

(ii) Suppose that H is a closed biface H of K and that h is a continuous
affine symmetric function on H. If f is a lower semicontinuous concave
Sfunction on K such that

evenf 2 0 on K and f= h on H.

then there exists an h € Ay(K) such that h extends h and f2h on K.

(iii) For any lower semicontinuous concave function f on K such that
even f2>0, there exists a continuous affine symmetric function h such that
h=f.

(iv) Let f be a lower semicontinuous concave function and g is an upper
semicontinuous convex function on K such that
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sup{eveng(z) : € K} < inf{evenf(z): € K}
and

gsf.

Then there exists a continuous affine function h on K such that g<h<f.

REMARK. The fact that (i) implies (ii) has been proved by Lazar-
Lindenstrauss [12]. Also, (ii) implies (iii) has been obtained both by
Fahkoury [6] and the author independently.

Proor. (i) implies (ii). Cf. [12].

(ii) implies (iii). Let x, be an extreme point of K, let H =[ —x,,,] and
let h; be a continuous affine symmetric function on H such that A, <f
on H. Condition (ii) implies that there exists a continuous affine extension
h on K such that h<f.

(iii) implies (iv). Without loss of generality, we assume that

eveng < 0 < evenf.

Let k(z)=min{f(x), —g(—2)}, x € K; then k is a lower semicontinuous
concave function on K and it is easily checked that even & > 0. By hypo-
thesis, there exists a continuous affine symmetric function 4 on K such
that <k and therefore g<h <f.

(iv) implies (i). We will apply Theorem 2.2 (v) = (i) by showing that
for each continuous convex function g on K,

§(0) = sup{eveng(z): z€ K}.
Indeed, let a=§(0) and let b=sup{eveng(x) : = € K}. Since
9(0) = sup{u(g) : u e P(K), u represents 0} ,
it is obvious that a = b. Next, we define the function f by
[ = —og+(a+b);
then f is continuous and concave. Since

a+b=2b 2 2eveng = g+og,
we have
—og+(a+b) 2 ¢,
that is,

fzg.
For any 2,y in K, we have
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2 evenf(x) = [—og(x)+ (a+b)]+[—g(x) + (a +b)]
= —2eveng(x)+2(a+d) 2 a+bd = gly)+g9(—y)

= 2eveng(y),
that is,

sup{eveng(x) : « € K} < inf{evenf(x): x € K}.

Thus by (iv), there exists a continuous affine function % on K such that
g=<h=f. Since a=§(0), and

9(0) = inf{k(0) : ke A(K), k2g}
we have

IS
IIA

h(0) = inf{evenf(x): z € K}
inf{—eveng(z) : x€ K}+(a+b)
= —sup{eveng(z): z € K}+(a+b)
= —b+(a+bd) =a,

hence k(0)=a. Define A'= —gh+ (@ +b), so that A’(0)=b. Since

h<f implies g < —oh+(a+b) =5",
we have

a = §(0) = inf{k(x): ke A(K), k2g} £ b.
This shows that a=5 and theorem 2.2 (v) applies.

COROLLARY 2.4. Let F be a proper closed face of an L-ball K. Suppose f
18 a lower semicontinuous concave function and g 18 an upper semicontinuous

convex function on F such that g <f. Then there exists a continuous affine
Sfunction b on K such that g<h<fon F.

Proor. Since f is lower semicontinuous and F is compact, it attains
its minimum. We choose a lower bound a of f less than zero. Similarly,
g attains its maximum and we let >0 be an upper bound of g. Define
f and ¢’ on K as

v _ | f@)AD, zEF
f@) = { b w¢F.

, gix)va, zelF
g(x):{a z¢F.

It is easily seen that f is a lower semicontinuous concave function and ¢’
is an upper semicontinuous convex function. Furthermore, for any

z,y € K, even f'(x) equals either b or }(b+f(—x)) or ¥(f(x)+b) and
eveng'(y) equals either a or }(a+g(—y)) or ¥g(y)+a). In any case,
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eveng'(y) < evenf'(z),
that is,

sup{g’'(®)+¢g'(—z): xe K} £ inf{f'(x)+f'(—x): xe€ K}.

By the above theorem, we can find an affine continuous function A
on K such that ¢'<h=<f’' hence g<h=<fon F.

As a direct consequence of the above corollary, we obtain the following
result.

PrOPOSITION 2.5. Let F be a closed face of an L-ball K. If b is a continu-
ous affine function on F, then h has a continuous affine norm preserving
extension h on K.

Proor. We define the functions f’, ¢’ on K such that

x¢F
, xzeF,

y (I,
(@) = {h(x)

, —lIpll, =¢F
g(x)={h(x), zelF .

It follows from the proof of the above corollary that there exists a con-
tinuous affine function 2 on K such that ¢’ <A <f’, hence % is a norm
preserving extension of A.

We conclude this section by giving a necessary and sufficient condition
for a subset of an L-ball to be a peak face. The analogous result for
Choquet simplexes is well-known.

Lrmma 2.6. Let F be a proper closed face of an L-ball K. Suppose h is
a continuous affine function on K such that h=0 on F. Then there exists
a continuous affine function k on K such that k=20, k=h and k/F =h[F.

Proor. We define f,g on K by

h(x), x€F
fe) = {2uhu, 26 F,

g(x) = h(z)v0, zeK.

It is clear that f is a lower semicontinuous concave function and ¢ is an
upper semicontinuous convex function such that g <f. Also, we observe
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that evenf equals either 2||h||, $(h(y)+ 2|]|), or }(h(—y)+ 2|A|l), while
eveng equals either 0, 3A(x), $h(—2) or evenh. In any case, we have

eveng(r) < evenf(y) foranyxz,yeK.

By Theorem 2.3(iv), we have a continuous affine function ¥ on K such
that g <k <f. Note that A/F =k/F and k2> g=~hvO, hence k is the required
function.

ProrositioN 2.7. Let K be an L-ball and F be a subset of K. Then F is
a G, closed face of K if and only if there exists a continuous affine function
h on K such that h(z)=0 for x € F and h(x)>0 for t€ K\ F.

Proor. We clearly only need to prove the sufficiency. For each z
which is not in F, there exists a continuous affine function » on K such
that h(z)<0 and 220 on F. By the above lemma, there exists a non-
negative continuous affine function k on K such that »/F =k[F and k= h.
Hence we have shown that for each x not in F, there exists a continuous
affine function (that is, £ — #) which is identically zero on F, positive at
and nonnegative on K.

Now since F is a G, set, it is the intersection of a sequence of open sets
{U,}x_,. For each n, and for each x € K\ U,,, we can find a continuous
affine function A, such that 2,=0 on F and h(z) > 0. By compactness of
K\U,, we can find z,,...,z; € U, such that

fifeeK: hy(2)>0} 2 K\NU,.
Let hn=zf=1hxi, and let

h = 351 27" hy[sup [k, (K)|

then A is a continuous affine function on K such that A=0 on F and
h>0o0n K\ F.

3. Another characterization of L-balls.

In [16], Namioka and Phelps first studied “simplex-like” compact
convex sgets, that is, those compact convex sets K which admits an affine
map ¢ from K to the set of probability measures such that r(g(z))==z.
They proved that those sets are just the Choquet simplexes. An elegant
proof has been given by Fakhoury [5], who also proved the analogous
result for L-balls under certain restrictions [8]. Lacey [11] obtains the
same result as here for &£, spaces.
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DzeriniTION 3.1. Let K be a compact absolutely convex subset of a
locally convex space. A map ¢ from K to M,(K) is called an affine selec-
tion on K if ¢ is an affine function and r(p(z)) ==, # € K. An affine selec-
tion is called odd if ¢(z)=o0dde(z), z € K.

DrriNiTION 3.2. A Banach space X is called a &, space, A €R if for
any bounded linear operator 7' from X to a Banach space Y and any
Banach space Z containing X, the operator 7' admits a linear extension
T from Z to Y such that ||T'| < AT

It is known that if Z is a &, space, X is a subspace of Z and there
exists a projection of norm one form Z onto X, then X is also a &, space
[2, p. 94]. In [9], Grothendieck proved the following theorem:

THEOREM 3.3. A Banach space X is a Lindenstrauss space if and only
if X** is a P, space.

Let K be a compact absolutely convex set, which, as is known, is
affinely homeomorphic to the unit ball of Ay (K)* under the weak*-
topology. We will consider the natural injection i: 4,(K) - C(K) and
the adjoint maps

i*: O(K)* > A(K)* and i**: A (K)** > C(K)** .

THEOREM 3.4. A compact absolutely convex subset K is an L-ball if
and only if there exists an affine selection ¢ on K to M,(K).

Moreover, if such a selection exists, then there is a unique odd affine
selection @ and @(x) ts a boundary measure for each x in K.

Proor. Necessity. Define ¢: K — M,(K) as ¢(x) =odd p, where u, is a
boundary probability measure representing x. Theorem 2.2(iv) shows
that this is a well defined map. Let f be a continuous convex function;
by Theorem 2.2(ii), we know that odd fis an affine function, and by (iii),
(@(x))(f)=0dd f(x). Hence we have

(p(Ax+ (1= Ay)I(f) = [Ap@)+(1-Ae@)](f)

where 0<A<1, z,y € K. The same equality holds for continuous concave
function, hence holds for all functions in C(K). Thus

p(Az+(1-2A)y) = Ap@)+ (1=Np(y), 0<AS1, z,yekK.

Sufficiency. If ¢ is an affine selection, then z — }(@(x) — ¢(—z)) is also
an affine selection which is 0 at 0. We assume that ¢ has this property.
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Define
¢: Ao(K)* ~ C(K)*
by
@(ox) = ap(x) where xeR, ze K.

The map ¢ is easily seen to be linear, and it has norm 1 since it carries
the unit ball K of 4y(K)* into the unit ball M,(K) of C(K)*. Its adjoint
@* maps C(K)** into 4,(K)** and has norm 1.

Consider 4,(K)* as a subspace of C(K)* under the injection @, the
hypothesis on ¢ shows that ¢* is a projection from C(K)* onto Ay(K)*,
hence if we let Ay(K)** to be a subspace of C(X)** under the injection
1**_ it is easily checked that ¢* is a projection of norm one from C(K)**
onto 4,(K)**. By the remark on Definition 3.2 and by Theorem 3.3,
we conclude that 4,(K) is a Lindenstrauss space. Thus, K is an L-ball.

The last assertion follows from [7, Lemma 5].

CoroLLARY 3.5. (Namioka—Phelps-Fakhoury.) 4 compact convex set K
18 a Choquet simplex if and only if there exists an affine selection ¢ from K
to the set of probability measures on K.

Moreover, if such a selection exists, then it is unique and ¢(x) is a bound-
ary measure for each x in K.

ProOF. Let ¢ be the selection from K to the set of probability measures
P(K). Embed K into A(K)* and let H=conv(KuU—K); then H is a
compact absolutely convex set. Define ¢: H —~ M,(H) by

P(Az—(1-2)y) = dple)—(1-Ae(y) ,

where A€ [0,1]. This map is well defined and affine. By Theorem 3.4,
we conclude that H is an L-ball. Since K is a maximal face and is com-
pact, it follows that K is a Choquet simplex.

To prove the last assertion, we see that ¢ is odd. If there exists an-
other selection y, then $ will be odd and $=1, this implies p=y. That
each g(x) is a boundary measure follows easily from Theorem 3.4.

4. L-balls with 9_Ku {0} closed.

Our aim in this section is to give some characterizations of L-balls
for which union of {0} and the set of extreme points 0,K is closed. Such
sets can be considered as generalizations of the Bauer simplexes. We will
first prove several lemmas.
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LemMma 4.1. Let K be a compact absolutely convex set and consider K as
the unit ball of Ay(K)*. Then

(i) Suppose z,y are in K, that ||x||=1 and that y € [0, —x]. Then for any
1> &> 0, there exists a function f in A(K) which satisfies ||f||=1, f(x)>1—¢
and f(y)=0.

(ii) Suppose that x is in K, that ||x||=1 and that there exist y,z in K
with x =}(y +2). Then for 1 >¢e> 0, there exists a function f in Ay(K) satis-

Jying ||fll=1 and f(y), f(2), fx)>1—e.

Proor. (i) For 1>¢>0, take ¢’ =¢(1 —¢)~1, then (1+¢')xr ¢ K. By the
separation theorem, there exists a function f; in Ay(K) such that ||f||=1
and

sup{fy(2): 2z K} = 1 < fy((1+¢)2) .
Hence we have fi(x)>(1+¢')"1=1-¢>0. Since y € [0, —z], we have
fiy)<0. Let —c=f;(y) and let
f=1+e)Nfi+0).

Then ||f||=1, f(y)=0 and f(x)>(1+c)}(l—e+c)>1—¢.
We omit the proof of (ii) since it is similar to (i).

Lremma 4.2. If f,,f, are two continuous convex functions on a compact
convex set K such that f,=f, on 8,K, then f,=F,.

Proor. We need only show that if f is a continuous convex function
on K and if for each z in K, we let

h(z) = inf{a(z): ac A(K), a2f on 0,K},

then f=h. It is easily seen that h<f. To show the other inequality, let
a € A(K) be such that a 2% on 9,K so that a —f is a continuous concave
function and a—f=0 on ¢,K. By the minimum principle, a —f attains
its minimum on the extreme points of K, so a—f=0 on K. It follows
that A2 f.

LemMMmA 4.3. Let K be a compact absolutely convex set with 9,Ku{0}
closed. If u is a boundary measure on K, then oddu is supported by 0,K.

Proor. If 4 is a boundary measure on K, then y is supported by 9,K.
But 9,K <0,Ku{0} and

oddp({0}) = ({0} —u{o}) = 0.
This shows that u is supported by 0,X.
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THEOREM 4.4. If K is a compact absolutely convex subset of a locally
convex space, then the following are equivalent:

(i) K ts an L-ball with 0,KuU{0} closed

(ii) There exists an affine selection ¢ from K to the weak* compact set
M, (K) such that ¢ is continuous.

(iii) The function oddf is in Ay(K) for each continuous convex Sfunction f
on K.

(iv) Every continuous function f on 0, KU {0} to R such that f(x) = —f(—z)
can be extended to a function in Ay(K). Furthermore, the extension is norm
preserving.

Proor. We will prove the theorem in the following two cycles. (i) =
(ii) = (iii) => (i) and (ii) = (iv) = (iii).

(i) = (ii). From the proof of Theorem 3.4 we know that ¢(z)=oddpu,
is an affine map from K to M,(K), where u, is a boundary measure rep-
resenting x. We claim that ¢(K) is a closed subset in M,(K). Let {p(z,)}
be a net in ¢(K) converging to a measure w in M,(K). We first observe
that w is an odd measure. Indeed, for any continuous function f on K,
we have

o(f) = lim,p(z,)(f) = —lim,p(z,)(of) = —w(of).

If w is not supported by 0,KuU{0}, then there exists a compact subset
C in K such that C is disjoint from 9,Ku{0} and w(C)>0 (or o(C)<0).
Hence we can find a continuous function f on K such that f is 0 on
0,KuU{0} and fis 1 on C; since by Lemma 4.3, ¢(z,) is supported by
0,K, we have

0 = lim,p(z,)(f) + o(f) > 0.

This contradiction shows that w is supported by 9,K u{0}. Since w is an
odd measure, »({0})=o0ddw({0})=0 (as in Lemma 4.3), so it is in fact
supported by 0,K. Thus, w is an odd boundary measure. Let 2 be the
resultant of w. By the uniqueness of the odd boundary measure represen-
tation, we have w = ¢@(«), which shows that ¢(K) is closed and thus com-
pact.

We already know that the resultant map x4 — r(u) from M,(K) onto K
is continuous [18, p. 4], hence the map from ¢(K) onto K such that
u — r(u) is continuous. Since the map is a continuous bijection from a
compact set onto a compact set, the inverse map is continuous.

(ii) = (iii). Without loss of generality, we assume that ¢(x)=oddu,
where u, is a boundary measure representing x. By Theorem 2.2 (iii),
we have oddf(z)=g(x)(f) for each convex continuous function f. Since
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the map ¢ is continuous affine and @(0)=0, it is easily seen that oddf
is a continuous affine symmetric function on X.

(iii) = (i). By Theorem 2.2 (iii), we need only show that o, Ku{0} is
closed. For this we will show

%K U{0} = Nyequo {7 : 0ddf(z)=o0ddf(x)}

where Q(K) is the set of continuous convex functions on K. It is known
that f=f on 8,K for any continuous function f. Thus

0, K U {0} & Nyeqwo (& : oddf(z)=oddf(z)}.

To show the reverse inclusion, we let z ¢ 9, KU{0} and consider the fol-
lowing two cases.
Case 1. ||z||< 1. Let y=|jz||-'z and z= —|z||~1z. Then

z = Ay+(1—2)z where 1 = #(1+|x]|) .

By Lemma 4.1 (i), there ®xists an @ in A(K) such that |ja||=1, a(z)>
$(1+|l=|l) and a(zx)=0. Let f=av0; we then have

0ddf(z) = #(—a(—2)) = —|lla@)/(1+[l) < — &l .

On the other hand, since ||f||<1, we have f(z) <1, and f(y) = 0. By line-
arity of odd, f, we have

oddf(z) = 4 oddf(y) + (1—2) oddf(z)
= 31+ [2l)3(F @) —F(—9) + 31— |l 3(Fz) - f(~2)
= H1+]el)(F@) - @) + H1 = ) (F2) - f ()
= H(kllfw) - Ilf(2)) 2 — 4l > oddf(x).

Hence z ¢ Nequp {1 0ddf(z) =o0ddf(x)}.

Case 1I. |jz||=1. Since x is not an extreme point, there exist y,z in K
such that z=}(y +2), where |ly||=|i2||=1, and y,z+x. We can find ay,aq
in A(K) such that

a;(—y) >0, a)(—2) =0, ay(—2)<0, [af <%
and
a’ﬂ(_y) <0, “2(—“’) = 0, az("z) >0, ”as” < %‘

Choose ¢ such that 0<e<min{a,(—y),ay(—2)}<$. By Lemma 4.1 (ii),
there exists a; € 44(K) such that

as(%),as(y),a5(2z) > 1—¢ > }.

Let f=a,va,vag, then f is continuous convex function and each of f(z),
f(9), f(z) is greater than 1 —¢ and
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f(=2) =0, f(—2) =ay(—2)>¢ [fl—y)=a,(-y) >e¢.
We thus have
oddf(x) = ¥(f(z)—f(—=)) = $f(x) > $(1—¢),

and since oddf is affine

oddf(z) = ${oddf(y)+oddf(z)]
= Hfw) —F(~y) +F@) —F(—2)
< H2-f(—y)—-f(-2)
< H2-2¢) = (1—¢) < oddf(x) .

Hence # ¢ N,equnf: 0ddf(x)=oddf(z)}.
We conclude that the two sets are equal and since oddf and oddf
are both continuous, the set

Nyeouo {#: 0ddf(x)=o0ddf}

is closed. That is 0, Ku{0} is closed.

(ii) = (iv). We may assume that ¢(x)=odd y,, where y, is a boundary
measure representing z. Suppose f is a continuous function on 9, Ku {0}
with f(x) = —f(—=), define f on K by f(x)=g(z)(f). Since g(z) is an odd
boundary measure, it is supported by 0,K (Lemma 4.3) and the map f
is well defined. If x € 9, KU{0}, then g(x)(f)=f(x) and we see that f is
an affine extension of f. To show that f is continuous, we need only ob-
serve that z — ¢(z) and @(x) - @(x)(f) are continuous for x € K (the last
map is continuous since f is defined on the closed set 9, KU {0} and can be
extended to a continuous function on K).

(iv) = (iii). Let f be a continuous convex function on K and consider
oddf restricted to 9,KU{0}. By (iv), there exists a continuous affine

function f such that f=oddf on 9,Ku{0}. We want to show that f equals
oddj. Let

9(@) = 2f(x)+f(-=), =zecK.
Then f(x)=g(z), € 9,K and by Lemma 4.2, we have f=0 on K. Since f

is affine and continuous,
(@) = @) +f(-2), zeK
[18, p. 19], and thus we have f(z)=o0ddJ.

COROLLARY 4.5. Let K be an L-ball and let J be a compact subset of
0,Ku{0}. Suppose f is a continuous function on J such that f(x)=f(—z)
whenever x, —x, are in J. Then there exists an extension f of f in Ay(K)
such that ||f||=|IfI.
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ProoF. Let H=conv(JU —J); we first show that H is an L-ball. Let
4 be an odd boundary measure on H representing x € H; then y is sup-
ported by the extreme points (Ju—J)<0,K and hence u is an odd
boundary measure on K. By the uniqueness of odd boundary measure
representing the points in K, and thus on H, we conclude that H is an
L-ball by Theorem 2.2. Extend f from J to a function f, on Ju —J =0, H

u{0} by
filw) = {S;)b—x) ZE{’J

Then f, is a continuous function on 9, Hu{0} and by Theorem 4.4 (iv), f;
can be extended to a function f in A,(H)such that ||f,||=||f,|. By Theorem
2.3 (ii), (letting g= —||f]l), we can extend f, to f in A, (K) such that
IFll= 1111

Let K be a compact Hausdorff space. By a C,(K)-space, we mean the
set of continuous functions on K such that foo= —f, where o: K - K is
a homeomorphism satisfying o%*(z)==x for all z in K. We call a space
C(K)-space if it is a C (K) space and ¢ does not have any fixed point.
We conclude this section by giving two propositions concerning such
spaces. The first one was suggested by Effros [4] and has been inde-
pendently proved by Fakhoury [8]. The second proposition is due to
Lindenstrauss and Wulbert [15]. Both of them are corollaries of Theorem
4.4. In the proof, we make use of a well-known fact [10], namely, if
X =C,(K), then the set of extreme points of the unit ball of X* are the
evaluation functions 2 at those points of K for which o(x) 4. We denote
the unit ball of a Banach space X by B(X).

ProposiTioN 4.6. Let X be a Lindenstrauss space. Then X is a C,, space
if and only if 0,(B(X*))u{0} s weak*-closed.

PrOOF. Necessity. We may assume that X is a subspace of C(K)
where K is a compact Hausdorff space with a homeomorphism ¢ as
above and foo= —ffor each fin X. The set K can be continuously mapped
into B(X*) such that the set of extreme points of B(X*) is the set

{(k: olk)y+k, ke K}

and k=0 if o(k)=4k. Hence 8, B(X*)u{0}=K and K being weak*-closed
implies that 0, B(X*)u{0} is weak*-closed.

Sufficiency. Let K =9,B(X*)u{0} be closed in the weak*-topology and
let ¢: K -~ K be such that o(x)= —« for z in 9,(B(X*)) and let ¢(0)=0.
We can consider X as the subspace A,(B(X*)) of C(B(X*)), and we will
show that the restriction map f — f/K (which maps X into C(K)) is an
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isometry between X and C,(K). Indeed, we have ||f||=|f/K|| for any f
in X. On the other hand, if f e C (K), then by Theorem 4.4, there exists
an extension f in 4,(B(X*))=X such that f=f on K and ||f||=||f|l, which
completes the proof.

The same method of proof can be used to prove the following propo-
sition.

ProrosiTioN 4.7. (Lindenstrauss—Wulbert.) Let X be a Lindenstrauss
space; then X is a Cy, space if and only if the set of extreme points of B(X*)
18 weak*-closed.
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