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COMPLETELY MONOTONIC FUNCTIONS ON
n-DIMENSIONAL LATTICES*

JOHAN HAVNEN

1. Introduction.

The Cartesian product L of n linearly ordered sets L, is a partially
ordered set with respect to the coordinatewise ordering. This partial
ordering imposes a lattice structure on L and (L; A) is an idempotent
semigroup. We investigate the nature of the completely monotonic (CM)
functions on this semigroup and are able to give a sufficient condition
for f: L > R to be a CM-function. To do this we restrict our attention
to a certain convex cone C(L) of real valued functions, which satisfy
two conditions (3.2 (i) and (ii)). We are able to identify the extreme
points of a base of this cone as exponentials [2] and thus show that C(L)
is an extremal subcone of the cone of CM-functions, C (L), on (L; A).
This enables us in section 4 to show that a sufficient condition for
f: L > R to be a CM-function on (L; A) is that A4,f> 0, 0 < k < n (for defini-
tion see section 2). We also decompose every fe X (L) into a certain
type of convex sums.

2. Preliminaries.

If S denotes a commutative semigroup with identity e and if f: § - R,
then the difference operators 4,,, for n nonnegative integer, are defined
inductively by 4,f(x)=f(x) and

Anf(xo; LS TR ’xn) = An-—lf(xo; LS TR ’xn—l) —An-lf(xoxn; 3 PRI :xn—l) .
The function f is said to be completely monotonic if 4, f(xy; %,. . .,2,)20
for all choices of z,,z,,...,z, €S and all nonnegative integers n. Let

C.(8S) denote the family of all completely monotonic (CM) functions
on 8§ and

Xoo(S) = {fECoo(S) | f(e)=l} .
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Then C(S) is a convex cone with base [7] X (S) in the linear space RS
of all real valued functions on 8. If RS is equipped with the topology of
pointwise convergence, then the span E_(8)=C_(8)—C(S) of C(S)
becomes a locally convex linear topological space and X _(S) is compact.
It is known from [4] that X _(8) is an r-simplex, that is every fe X _(S)
admits a unique representing measure which is supported by the extreme
points (ext X (8S)) of X (8), and ext X (8) is closed.

3. An extremal subcone of C_(L).

In the following we consider the Cartesian product L of » linearly
ordered sets L;, each with a smallest element, o;, and a largest element,
e¢;. We will leave out the indices when no misunderstanding may arise.
Then L=TI}_,L; becomes a lattice if xvy=(x,vy,,...,z,vy,) where
z,vy,=x, if 2,2y, and x,vy,=y, f x;<y; and xAy is defined similarly.
Moreover (L; A) is an idempotent semigroup with identity e=/(e,. . .e).

Lemma 3.1. Let n= 2. Given x2,...,x" € L such that
A) &= (2q,. . - s T, T* s Xppy1s- - -, T,) Where x L, 1S5kSn.
Then
) n
?=1 xrh = (xly- . -’xn), /\i=1 Xt = (xlla' . ->xnn)

and if y< VI ,at and y«a® for every k then A7_ x'<y.

DeriNtTION 3.2. If 722 let C(L) denote the set of real valued funec-
tions on L such that

(i) A f(VE_ 2t 21,...,2") =0 whenever the collection z!,...,2"
satisfies 3.1.(i).
(ii) f(x)=0 whenever for some k, z;=o0,

and let X(L) denote the set {fe C(L) | f(e)=1}.
If n=1 then O(L) denotes the set of increasing functions such that

f0)=0.

ProPOSITION 3.3. The set C(L) is a closed convex cone with compact
base X(L) in the space RE equipped with the topology of pointwise comver-
gence.

Proor. We will show that X(L) is a compact base. The function 2
as defined by 2(f)=f(e) is a continuous linear functional,

H={f:L->R|&f)=1}
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is a hyperplane missing the origin and X(L)=HnC(L). Let fe C(L),
f+0, and let x € L such that f(z)+0.
By 3.2 (i) and (ii)
A f(x; (0,24, . ., 2,),. . ., (Zg,. . ., 2,10)) = f(x) > 0.
Moreover 4, f(y; 0) 2 0 for every y € L. To show that f(e) = f(x) we observe
that by 3.2 (i) and (ii)
A,f(e; (0,e,....€),...,(e,...e0),(e...,e1,)
= fle)—f(e,...,e,x,) 2

Similarly we show that

fle,....e,®p _pye .., ,) = flE, .. €, %0 1, T gy - -5 Ty)

and hence it follows that f(e)=f(x). More generally it follows that
A,f(e; y) 20 for all y € L. Hence g=f/f(e) € X(L) and so X(L) is a base.
Since 0= f(y) <1 whenever fe X(L) and X(L)=HnC(L) it follows from
Tychonoffs theorem that X(L) is a closed subset of a compact, and hence
compact.

LemMA 3.4. Let n22. Given a collection «,...,a" € L which satisfies
3.1 (i) and let ant1 < V_,at. Then

Apiif(Viy o5 o, 2mamil) 2 0
whenever fe C(L).

Proor. Consider first the case that for some integer z"+!<a?. Direct
calculations then show that

Ay f(Viy 2t . am, antl) = A f (Vi ot 2t ,xn) z0

Suppose therefore that z"+!4a* for each k. Then by Lemma 3.1
Azt <antl, Assume ¥ <zl for some k, say m=k. Then since
A =g,

Apiif(Viey @5 2. . an,ani)
= A, f(\i ot al,. . 2% — A, fla; oL, L am)
= A f(Via 2t oty an ) — A, fan; 2L, . anY)

—A4,_flxr; 2. . ar )+ 4, flam; 2. L2

= A, f(\i, ot al,. .. 2n-1an ),
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Hence

(1) A'n+1f(V?=1 xi; xl’ et ’xn,xn+1)
= A, f(\Vio ab; @b, .kl k41 gnd)

whenever for some k&, 2% < z7+1. The collection z1,. .., a%-1, gn+l gk+l
2™ satisfies 3.1 (i) and hence by 3.2 (i) and (1) it follows that

n b .
(2) An+1f(\/i=1 x‘b, x19' .. axn’xn+1) g 0
whenever z* <2+l < V7 2 for some k. We define
"
2=\l 2t 2= (2y,...,0, 4,2,"),...,
— n+1
28 = (X, B gy T ke Ty, L, 2% = gt

Then a" <2< V! ,2* and hence by (2)

Ay f(Viey o5 at,. . ,am2) 2 0
that is

Anf(v:l=1 xi; xls' . -’xn) 2 Anf(zl; xl,. . .,.’En)
= A, f(2; 2282, ., anAzRl).

The collection a'azl,...,a2"A2! satisfies 3.1 (i) and

arlazl £ 22 £ i, (@t Aazl) =2t

and hence by (2)

Ap i f@ 2t az, . ,a®azl2?) 2 0
that is

A, @ x Az, . anrAat) 2 A, f(2%; 2t A2, . 2" A 2R).
Similarly we show that

(3) A, f@k, L a2k, .. am A ZK)
2 A fREL gl AR+ an Ak, 0k < n-—1.

These inequalities (3) give us

A, f(Vim b2, . 2m) 2 4,f(@ G 2t Az, . amazl)

= ... 2 4,f*; at Az, 2" A2
= A, fla"; 2. .. ,2")
that is

A”"'lf(v;;l xi; xl,. . ,:E"",x"H-l) > 0.
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Lemma 3.5. If f e O(L) and g s defined by g(y) =f(xAy), x a fixed element
of L, then f—g € C(L), that i3, f= g in the ordering induced by the cone C(L).

Proor. Since the case n=1 is trivially established let n 2 2. Given a
collection z1,...,2" € L which satisfies 3.1 (i) and an+'=(VI,a%)Az,
where z is a fixed element of L. Since V}_,(xfax)=z"+ and Az =
xtazntl it follows that

f_g(vr 1xi‘ 17" ,xn)
= Anf(\/ _ xt .. ,x”)—Anf(x”’fl; 2l At Lt A L)
= Ay f(Vioy ot .. am,an )

Hence by Lemma 3.4, f—g € C(L). To see that g € C(L) observe that if
the collection {a};_, satisfies 3.1 (i) then so does {x’az}} ,. Hence g
satisfies 3.2 (i) since

nf(\/ (x A x); xle,...,x"Ax)
= A 9(\Vi, ot 2L, ..,z .
It therefore follows that f>g.

Recall that C_(L) denotes the cone of CM-functions on (L;A) and
X (L) is a compact base of C (L) which is an r-simplex.

THEOREM 3.6. C(L) is an extremal subcone of C (L) and X(L) s a closed
face of X (L), hence an r-simplex.

Proor. Let feextX(L). By Lemma 3.5 then f=g where g(y)=
f(xay) and z is a fixed element of L. Direct calculations show that
g € C(L). Since f is an extreme point, g therefore, must be a multiple of f,
that is there exists an « >0 such that g=of. Evaluating g at e gives

f@)=o.
Hence f(zay)=f(z)f(y) which implies that f is an exponential. Thus
from [2] it follows that ext X(L)<ext X (L) which implies that

co(ext X (L)) < co(extX (L)) .
By the Krein-Milman theorem [3]
X(L) = co(extX(L)), X (L) = co(extX(L))

which means that X(L)=X_(L) and C(L)<C,(L). Routine checking
shows that X(L) is a closed face of X (L). Since X(L) is compact and



COMPLETELY MONOTONIC FUNCTIONS... 319

convex it follows from the Krein—Milman theorem [7] in the integral
representation form that there exists a representing measure u, sup-
ported by ext X(L). But X(L) is a closed face of the r-simplex X (L)
so that u, is unique. Hence X(L) is an r-simplex.

REMARK. If L;=[a,;,b;] is an interval of the extended real numbers
then the collection of cumulative distribution functions [8] is a subset
of X(L), that is, any cumulative distribution functions is a completely
monotonic function with respect to that semigroup operation. An ex-
ample, due to Munroe [6] shows that the boundary condition 3.2 (ii) is
essential.

4. A decomposition of C_, (L).
ProrosiTION 4.1. Let

C (L) ={f:L—>R| 4pf(a®;2%,...,2%)20,05k<n,ate L}.
Then C,(L) is a closed convex cone with base
X, (L) = {feCuL) | fle)=1}.

We omit the proof which is similar to that of 3.3.

DeFinNITION 4.2. Fix an index je{0,1,...,n} and x€ L. For each
i £ () let z; ; be that member of L whose coordinate values agree with the
coordinate values of z in j given coordinates and are zero elsewhere.
The selection of the j coordinates where agreement occurs, is the same for

all z, dependent on ¢ and distincet for distinct i. Thus ¢ ranges over the
set 1,2,...,(7). Let

G0 = {fe X,(L) | flo)=0}.

For each positive integer p=<(}), (j=0,1,...,n), let

HZ’.J' = nizl {fEXn(L) | f(xi,j) = O,VxeL}
and

G = (Nt H(,;)’j) NH,, 15ksn 1212(}).
Let

Go,k = G(kﬁl)’ r—1° 1 §k§n ,

Fp = {fe X (L) | f@)=f(@,1)} 0 Gy,
and F, ,= {identically 1-function}.
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Some properties of the sets G, ; and F, ; are as follows:

@) Gy =Gy e

(b) If x;; has more than n—k zero coordinate values and fe F,,
then f(x) = 0.

(€) Fi Gy =0.

(d) Fy 0 Fp =0 if (k)%= (k).

(e) Gy, ,=9.

Lemma 4.3. Let {Gy,} and {F, .} be collections of subsets of X, (L) ac-
cording to 4.2. Then F,, and Gy, are closed, convex and extremal with
respect to Gq_y ;.

Moreover the sets Gy ), and F, ;. are complemented in Ly_, , when 0<k<n
and 1 1= (}).

Proor. The sets F;, and G, ; are trivially closed and convex. That
Gy, and F,, are extremal in G;_, ; follows from the nonnegativity of
A,f and A4, f respectively. Direct calculations show that if

Je@ 1, —G VT,
then 0<f(e, ;) <1 because A,f=0, 4,f=0 and 4,f=0. Hence

f(=) "f(xz, %) f(xz, x)
1-f (el,k) +f(e,, 2 f (el,k)

flx) = (l‘f(ex.k))
which is the desired convex combination.

ReEmMark. We only used the properties 4,f=0, 4,f=0 and 4,20 in
order to prove the above lemma.

Fix (L,k) e {0,1,...,(3)}x{1,2,...,n} according to 4.2. If {m,,...,m;}
is the collection of specified % indices for which the coordinate values of
;1 agree with x for every x € L, then denote by L; ; the Cartesian pro-
duct 1%, L, with the usual ordering. The projection map IT: L - L,
defined as

H(x) = (xmlw . -:xmk) ’

is order preserving and surjective. For each f: L — R, define f: Ly, —~R
as

FUI@)] = f(z,3) -
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LeMMA 4.4. Let f: L - R and let f be defined as above, then

(@) 4,f20=A4,f20 (m=0,1,...).

(b) If f(x)=f(, ) for every x € L then A,f 20 => A,f=0.

(¢) Fix<Xo(L) and Fy ;, and X(L, ;) are affinely ssomorphic under the
map f—f.

PROOF. (c) The map f— f restricted to F, ; is a bijection. Let fe Fy ;.
Since 4,f20 it follows from (a) that A, f = 0. Clearly f satisfies 3.2 (ii)
and hence by Theorem 3.6, f is a CM-function on (L; ; A). By (b), there-
fore, f is a CM-function.

THEOREM 4.5. The collection of completely monotonic functions on
(L; A) 18 the cone C,(L). Moreover for given collections {Gh ,} and {Fy,}
which satisfy 4.2, each f e X (L) can be written, uniquely, as a convex sum
of the form

(i) =300 (53F) s fi)

where f; ;€ Fy .. Thus the r-simplex X (L) can be written as a direct con-
vex sum of the closed pairwise disjoint faces {F, ;}.

Proor. We only need to show that X, (L)=X_(L). Let fe X,(L).
Since @, , and F, , are complemented in X,(L) by Lemma 4.3

f=1-a)g+afi,

where 0=x<1, ge G, and f, € F,,. By the same lemma

9 = (1=Ph+pf1,x

where k€ @, , and f; ; € F'; ; and so on. The process stops after a finite
number of steps since ¢, , =@ and by repeated substitution we obtain (i).

By Lemma 4.4 (c), each function f; , is a CM-function on (L; A) and
hence fe X (L). Thus the r-simplex X (L) can be written as a direct
convex sum of the collection of closed pairwise disjoint faces {F;,}.
From Alfsen [1], for given {F; ;} and f € X (L) it follows that the convex
sum (i) is unique.

Remark. If L=[0,1]1x[0,1] and f(x,,z,)=yx, where A=L—{(0,0)}
then 4,f=0, 1=0,1 while

Azf((1’1)>(1’0),(0)1)) = —-1<20.

Math. Scand. 33 — 21
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Thus fé¢ C(L). From the example it follows that at least for n=2
Theorem 4.5 is ‘“‘the best possible’’. The above theorem lead to a natural
decomposition of the representing measure, u,, supported by the filter-
space

F(L) = {Fe%(L)| T filter on (L; A)}

[56], for given fe X (L). For given {F, ,} according to 4.2 let
Fiull) = {Fe#F(L)| XFGFz,k}

(xr is the characteristic function of F). Then the collection {# (L)}
consists of pairwise disjoint closed subsets of & (L). If y, ;. is the represent-

ing measure of f; ; then the measures {y; ,} are mutually singular and
hence

COROLLARY 4.6. Given {F;;} according to 4.2. If fe X (L) is decom-
posed according to 4.5 (i) and if u, is f’s representing measure then

@) By = ELO (21(31) o‘l,k:u'l,k)

where ) 18 fi ;'8 representing measure. For given {F;,} the measures
{1, 1} are mutually singular and the convex sum is unique.
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