COMPLETELY MONOTONIC FUNCTIONS ON n-DIMENSIONAL LATTICES*

JOHAN HAVNEN

1. Introduction.

The Cartesian product L of n linearly ordered sets L_i is a partially ordered set with respect to the coordinatewise ordering. This partial ordering imposes a lattice structure on L and $(L; \land)$ is an idempotent semigroup. We investigate the nature of the completely monotonic (CM) functions on this semigroup and are able to give a sufficient condition for $f \colon L \to \mathbb{R}$ to be a CM-function. To do this we restrict our attention to a certain convex cone C(L) of real valued functions, which satisfy two conditions (3.2 (i) and (ii)). We are able to identify the extreme points of a base of this cone as exponentials [2] and thus show that C(L) is an extremal subcone of the cone of CM-functions, $C_{\infty}(L)$, on $(L; \land)$. This enables us in section 4 to show that a sufficient condition for $f \colon L \to \mathbb{R}$ to be a CM-function on $(L; \land)$ is that $A_k f \ge 0$, $0 \le k \le n$ (for definition see section 2). We also decompose every $f \in X_{\infty}(L)$ into a certain type of convex sums.

2. Preliminaries.

If S denotes a commutative semigroup with identity e and if $f: S \to \mathbb{R}$, then the difference operators Δ_n , for n nonnegative integer, are defined inductively by $\Delta_0 f(x) = f(x)$ and

$$\Delta_n f(x_0; x_1, \ldots, x_n) = \Delta_{n-1} f(x_0; x_1, \ldots, x_{n-1}) - \Delta_{n-1} f(x_0 x_n; x_1, \ldots, x_{n-1}) .$$

The function f is said to be completely monotonic if $\Delta_n f(x_0; x_1, \ldots, x_n) \ge 0$ for all choices of $x_0, x_1, \ldots, x_n \in S$ and all nonnegative integers n. Let $C_{\infty}(S)$ denote the family of all completely monotonic (CM) functions on S and

$$X_{\infty}(S) \, = \, \{ f \in C_{\infty}(S) \, \, \big| \, \, f(e) = 1 \} \; .$$

Received December 19, 1972.

^{*}The result of this paper is contained in the authors Ph.D.-thesis at the Pennsylvania State University written under the direction of Professor P. H. Maserick.

Then $C_{\infty}(S)$ is a convex cone with base [7] $X_{\infty}(S)$ in the linear space \mathbb{R}^S of all real valued functions on S. If \mathbb{R}^S is equipped with the topology of pointwise convergence, then the span $E_{\infty}(S) = C_{\infty}(S) - C_{\infty}(S)$ of $C_{\infty}(S)$ becomes a locally convex linear topological space and $X_{\infty}(S)$ is compact. It is known from [4] that $X_{\infty}(S)$ is an r-simplex, that is every $f \in X_{\infty}(S)$ admits a unique representing measure which is supported by the extreme points (ext $X_{\infty}(S)$) of $X_{\infty}(S)$, and ext $X_{\infty}(S)$ is closed.

3. An extremal subcone of $C_{\infty}(L)$.

In the following we consider the Cartesian product L of n linearly ordered sets L_i , each with a smallest element, o_i , and a largest element, e_i . We will leave out the indices when no misunderstanding may arise. Then $L = \prod_{i=1}^n L_i$ becomes a lattice if $x \vee y = (x_1 \vee y_1, \ldots, x_n \vee y_n)$ where $x_i \vee y_i = x_i$ if $x_i \geq y_i$ and $x_i \vee y_i = y_i$ if $x_i < y_i$ and $x \wedge y$ is defined similarly. Moreover $(L; \wedge)$ is an idempotent semigroup with identity $e = (e, \ldots e)$.

LEMMA 3.1. Let $n \ge 2$. Given $x^1, \ldots, x^n \in L$ such that

(i)
$$x^k = (x_1, \dots, x_{k-1}, x_k^k, x_{k+1}, \dots, x_n)$$
 where $x_k^k \le x_k$, $1 \le k \le n$.

Then

$$\bigvee_{i=1}^{n} x^{i} = (x_{1}, \dots, x_{n}), \quad \bigwedge_{i=1}^{n} x^{i} = (x_{1}^{1}, \dots, x_{n}^{n})$$

and if $y \leq \bigvee_{i=1}^{n} x^{i}$ and $y \leq x^{k}$ for every k then $\bigwedge_{i=1}^{n} x^{i} \leq y$.

DEFINITION 3.2. If $n \ge 2$ let C(L) denote the set of real valued functions on L such that

- (i) $\Delta_n f(\bigvee_{i=1}^n x^i; x^1, \dots, x^n) \ge 0$ whenever the collection x^1, \dots, x^n satisfies 3.1.(i).
- (ii) f(x) = 0 whenever for some k, $x_k = 0$,

and let X(L) denote the set $\{f \in C(L) \mid f(e) = 1\}$.

If n=1 then C(L) denotes the set of increasing functions such that f(o)=0.

PROPOSITION 3.3. The set C(L) is a closed convex cone with compact base X(L) in the space \mathbb{R}^L equipped with the topology of pointwise convergence.

PROOF. We will show that X(L) is a compact base. The function \hat{e} as defined by $\hat{e}(f) = f(e)$ is a continuous linear functional,

$$H = \{f: L \to \mathsf{R} \mid \hat{e}(f) = 1\}$$

is a hyperplane missing the origin and $X(L) = H \cap C(L)$. Let $f \in C(L)$, $f \neq 0$, and let $x \in L$ such that $f(x) \neq 0$.

By 3.2 (i) and (ii)

$$\Delta_n f(x; (o, x_2, \ldots, x_n), \ldots, (x_1, \ldots, x_{n-1}o)) = f(x) > 0.$$

Moreover $\Delta_1 f(y; o) \ge 0$ for every $y \in L$. To show that $f(e) \ge f(x)$ we observe that by 3.2 (i) and (ii)

$$\Delta_n f(e; (o, e, \dots, e), \dots, (e, \dots, e, o, e), (e, \dots, e, x_n))$$

$$= f(e) - f(e, \dots, e, x_n) \ge 0.$$

Similarly we show that

$$f(e,\ldots,e,x_{n-k},\ldots,x_n) \ge f(e,\ldots,e,x_{n-k-1},x_{n-k},\ldots,x_n)$$

and hence it follows that $f(e) \ge f(x)$. More generally it follows that $A_1 f(e; y) \ge 0$ for all $y \in L$. Hence $g = f/f(e) \in X(L)$ and so X(L) is a base. Since $0 \le f(y) \le 1$ whenever $f \in X(L)$ and $X(L) = H \cap C(L)$ it follows from Tychonoffs theorem that X(L) is a closed subset of a compact, and hence compact.

LEMMA 3.4. Let $n \ge 2$. Given a collection $x^1, \ldots, x^n \in L$ which satisfies 3.1 (i) and let $x^{n+1} \le \bigvee_{i=1}^n x^i$. Then

$$\Delta_{n+1}f(\bigvee_{i=1}^{n} x^{i}; x^{1}, \dots, x^{n}, x^{n+1}) \geq 0$$

whenever $f \in C(L)$.

PROOF. Consider first the case that for some integer $x^{n+1} < x^i$. Direct calculations then show that

$$\Delta_{n+1}f(\bigvee_{i=1}^n x^i; \ldots, x^n, x^{n+1}) = \Delta_n f(\bigvee_{i=1}^n x^i; x^1, \ldots, x^n) \ge 0.$$

Suppose therefore that $x^{n+1} \not\in x^k$ for each k. Then by Lemma 3.1 $\bigwedge_{i=1}^n x^i \leq x^{n+1}$. Assume $x^k \leq x^{n+1}$ for some k, say n=k. Then since $x^n \wedge x^{n+1} = x^n$,

$$\begin{split} \varDelta_{n+1} f \big(\bigvee_{i=1}^n x^i; x^1, \dots, x^n, x^{n+1} \big) \\ &= \varDelta_n f \big(\bigvee_{i=1}^n x^i; x^1, \dots, x^n \big) - \varDelta_n f(x^{n+1}; x^1, \dots, x^n) \\ &= \varDelta_{n-1} f \big(\bigvee_{i=1}^n x^i; x^1, \dots, x^{n-1} \big) - \varDelta_{n-1} f(x^n; x^1, \dots, x^{n-1}) \\ &- \varDelta_{n-1} f(x^{n+1}; x^1, \dots, x^{n-1}) + \varDelta_{n-1} f(x^n; x^1, \dots, x^{n-1}) \\ &= \varDelta_n f \big(\bigvee_{i=1}^n x^i; x^1, \dots, x^{n-1}, x^{n+1} \big). \end{split}$$

Hence

(1)
$$\Delta_{n+1} f(\bigvee_{i=1}^{n} x^{i}; x^{1}, \dots, x^{n}, x^{n+1}) = \Delta_{n} f(\bigvee_{i=1}^{n} x^{i}; x^{1}, \dots, x^{k-1}, x^{k+1}, \dots, x^{n+1})$$

whenever for some $k, x^k \le x^{n+1}$. The collection $x^1, \ldots, x^{k-1}, x^{n+1}, x^{k+1}, \ldots, x^n$ satisfies 3.1 (i) and hence by 3.2 (i) and (1) it follows that

(2)
$$\Delta_{n+1} f(\bigvee_{i=1}^n x^i; x^1, \dots, x^n, x^{n+1}) \ge 0$$

whenever $x^k \leq x^{n+1} \leq \bigvee_{i=1}^n x^i$ for some k. We define

$$z^0 = \bigvee_{i=1}^n x^i, \quad z^1 = (x_1, \dots, x_{n-1}, x_n^{n+1}), \dots,$$

$$z^k = (x_1, \dots, x_{n-k}, x_{n-k+1}^{n+1}, \dots, x_n^{n+1}), \dots, \quad z^n = x^{n+1}.$$

Then $x^n \le z^1 \le \bigvee_{i=1}^n x^i$ and hence by (2)

$$\Delta_{n+1} f(\bigvee_{i=1}^n x^i; x^1, \dots, x^n, z^1) \ge 0$$

that is

$$\Delta_n f(\bigvee_{i=1}^n x^i; x^1, \dots, x^n) \ge \Delta_n f(z^1; x^1, \dots, x^n)
= \Delta_n f(z^1; z^1 \wedge z^1, \dots, x^n \wedge z^1).$$

The collection $x^1 \wedge z^1, \dots, x^n \wedge z^1$ satisfies 3.1 (i) and

$$x^{n-1} \wedge z^1 \leq z^2 \leq \bigvee_{i=1}^n (x^i \wedge z^1) = z^1$$

and hence by (2)

$$\Delta_{n+1}f(z^1; x^1 \land z^1, \dots, x^n \land z^1, z^2) \ge 0$$

that is

$$\Delta_n f(z^1; x^1 \wedge z^1, \dots, x^n \wedge z^1) \ge \Delta_n f(z^2; x^1 \wedge z^2, \dots, x^n \wedge z^2)$$
.

Similarly we show that

(3)
$$\Delta_n f(z^k; x^1 \wedge z^k, \dots, x^n \wedge z^k)$$

$$\geq \Delta_n f(z^{k+1}; x^1 \wedge z^{k+1}, \dots, x^n \wedge z^{k+1}), \quad 0 \leq k \leq n-1.$$

These inequalities (3) give us

$$\Delta_n f(\bigvee_{i=1}^n x^i; x^1, \dots, x^n) \ge \Delta_n f(z^1; x^1 \wedge z^1, \dots, x^n \wedge z^1)$$

$$\ge \dots \ge \Delta_n f(z^n; x^1 \wedge z^n, \dots, x^n \wedge z^n)$$

$$= \Delta_n f(x^{n+1}; x^1, \dots, x^n)$$

that is

$$\Delta_{n+1}f(\bigvee_{i=1}^n x^i; x^1, \ldots, x^n, x^{n+1}) \geq 0.$$

LEMMA 3.5. If $f \in C(L)$ and g is defined by $g(y) = f(x \land y)$, x a fixed element of L, then $f - g \in C(L)$, that is, $f \ge g$ in the ordering induced by the cone C(L).

PROOF. Since the case n=1 is trivially established let $n \ge 2$. Given a collection $x^1, \ldots, x^n \in L$ which satisfies 3.1 (i) and $x^{n+1} = (\mathsf{V}_{i=1}^n x^i) \wedge x$, where x is a fixed element of L. Since $\mathsf{V}_{i=1}^n (x^i \wedge x) = x^{n+1}$ and $x^i \wedge x = x^i \wedge x^{n+1}$ it follows that

$$\begin{split} & \varDelta_{n}(f-g) \big(\bigvee_{i=1}^{n} x^{i}; \, x^{1}, \ldots, x^{n} \big) \\ & = \, \varDelta_{n} f \big(\bigvee_{i=1}^{n} x^{i}; \, x^{1}, \ldots, x^{n} \big) - \varDelta_{n} f(x^{n+1}; \, x^{1} \wedge x^{n+1}, \ldots, x^{n} \wedge x^{n+1}) \\ & = \, \varDelta_{n+1} f \big(\bigvee_{i=1}^{n} x^{i}; \, x^{1}, \ldots, x^{n}, x^{n+1} \big) \end{split}$$

Hence by Lemma 3.4, $f-g \in C(L)$. To see that $g \in C(L)$ observe that if the collection $\{x^i\}_{i=1}^n$ satisfies 3.1 (i) then so does $\{x^i \land x\}_{i=1}^n$. Hence g satisfies 3.2 (i) since

$$\Delta_n f(\bigvee_{i=1}^n (x^i \wedge x); x^1 \wedge x, \dots, x^n \wedge x)$$

= $\Delta_n g(\bigvee_{i=1}^n x^i; x^1, \dots, x^n)$.

It therefore follows that $f \geq g$.

Recall that $C_{\infty}(L)$ denotes the cone of CM-functions on $(L; \mathbf{A})$ and $X_{\infty}(L)$ is a compact base of $C_{\infty}(L)$ which is an r-simplex.

THEOREM 3.6. C(L) is an extremal subcone of $C_{\infty}(L)$ and X(L) is a closed face of $X_{\infty}(L)$, hence an r-simplex.

PROOF. Let $f \in \text{ext} X(L)$. By Lemma 3.5 then $f \ge g$ where $g(y) = f(x \land y)$ and x is a fixed element of L. Direct calculations show that $g \in C(L)$. Since f is an extreme point, g therefore, must be a multiple of f, that is there exists an $\alpha > 0$ such that $g = \alpha f$. Evaluating g at e gives $f(x) = \alpha$.

Hence $f(x \wedge y) = f(x)f(y)$ which implies that f is an exponential. Thus from [2] it follows that $\operatorname{ext} X(L) \subseteq \operatorname{ext} X_{\infty}(L)$ which implies that

$$co(ext X(L)) \subseteq co(ext X_{\infty}(L))$$
.

By the Krein-Milman theorem [3]

$$X(L) = \overline{\operatorname{co}}(\operatorname{ext} X(L)), \quad X_{\infty}(L) = \overline{\operatorname{co}}(\operatorname{ext} X_{\infty}(L))$$

which means that $X(L) \subseteq X_{\infty}(L)$ and $C(L) \subseteq C_{\infty}(L)$. Routine checking shows that X(L) is a closed face of $X_{\infty}(L)$. Since X(L) is compact and

convex it follows from the Krein-Milman theorem [7] in the integral representation form that there exists a representing measure μ_f supported by $\operatorname{ext} X(L)$. But X(L) is a closed face of the r-simplex $X_{\infty}(L)$ so that μ_f is unique. Hence X(L) is an r-simplex.

REMARK. If $L_i = [a_i, b_i]$ is an interval of the extended real numbers then the collection of cumulative distribution functions [8] is a subset of X(L), that is, any cumulative distribution functions is a completely monotonic function with respect to that semigroup operation. An example, due to Munroe [6] shows that the boundary condition 3.2 (ii) is essential.

4. A decomposition of C_{∞} (L).

Proposition 4.1. Let

$$C_n(L) \, = \, \left\{ f: L \to {\mathsf{R}} \, \left| \, \, \varDelta_k f(x^0; \, x^1, \ldots, x^k) \, {\textstyle \geq} \, 0, \, 0 \, {\textstyle \leq} \, k \, {\textstyle \leq} \, n, \, x^i \in L \right\} \, .$$

Then $C_n(L)$ is a closed convex cone with base

$$X_n(L) \, = \, \big\{ f \in C_n(L) \, \, \big| \, \, f(e) = 1 \big\} \; .$$

We omit the proof which is similar to that of 3.3.

DEFINITION 4.2. Fix an index $j \in \{0, 1, ..., n\}$ and $x \in L$. For each $i \leq \binom{n}{j}$ let $x_{i,j}$ be that member of L whose coordinate values agree with the coordinate values of x in j given coordinates and are zero elsewhere. The selection of the j coordinates where agreement occurs, is the same for all x, dependent on i and distinct for distinct i. Thus i ranges over the set $1, 2, \ldots, \binom{n}{i}$. Let

$$G_{1,0} = \{ f \in X_n(L) \mid f(o) = 0 \}.$$

For each positive integer $p \leq \binom{n}{j}$, $(j=0,1,\ldots,n)$, let

$$H_{p,j} = \bigcap_{i=1}^{p} \{ f \in X_n(L) \mid f(x_{i,j}) = 0, \forall x \in L \}$$

and

$$G_{l,\,k} \,=\, \left(\, \bigcap_{j\,=\,1}^{k\,-\,1}\, H_{\binom{n}{j},\,j} \right) \,\cap\, H_{l,\,k}, \quad \ \, 1\, \leqq k\, \leqq \,n,\,\, 1\, \leqq \, l\, \leqq \, \binom{n}{k} \,\,.$$

Let

$$\begin{split} G_{0,\,k} \; &=\; G_{\binom{n}{k-1},\,\,k-1}, \qquad 1 \leqq k \leqq n \ , \\ F_{l,\,k} \; &=\; \{f \in X_n(L) \ | \ f(x) = f(x_{l,\,k})\} \, \cap \, G_{l-1,\,k} \end{split}$$

and $F_{1,0} = \{\text{identically 1-function}\}.$

Some properties of the sets $G_{l,k}$ and $F_{l,k}$ are as follows:

- (a) $G_{l,k}, F_{l,k} \subset G_{l-1,k}$.
- (b) If $x_{l,k}$ has more than n-k zero coordinate values and $f \in F_{l,k}$ then f(x) = 0.
- (c) $F_{l,k} \cap G_{l,k} = \emptyset$.
- (d) $F_{l,k} \cap F_{l',k'} = \emptyset$ if $(l,k) \neq (l',k')$.
- (e) $G_{1,n} = \emptyset$.

LEMMA 4.3. Let $\{G_{l,k}\}$ and $\{F_{l,k}\}$ be collections of subsets of $X_n(L)$ according to 4.2. Then $F_{l,k}$ and $G_{l,k}$ are closed, convex and extremal with respect to $G_{l-1,k}$.

Moreover the sets $G_{l,k}$ and $F_{l,k}$ are complemented in $L_{l-1,k}$ when $0 \le k \le n$ and $1 \le l \le {n \choose k}$.

PROOF. The sets $F_{l,k}$ and $G_{l,k}$ are trivially closed and convex. That $G_{l,k}$ and $F_{l,k}$ are extremal in $G_{l-1,k}$ follows from the nonnegativity of $\Delta_0 f$ and $\Delta_1 f$ respectively. Direct calculations show that if

$$f \in G_{l-1,k} - G_{l,k} \cup F_{l,k}$$

then $0 < f(e_{l,k}) < 1$ because $\Delta_0 f \ge 0$, $\Delta_1 f \ge 0$ and $\Delta_2 f \ge 0$. Hence

$$f(x) \, = \, \left(1 \, - f(e_{l,\,k})\right) \frac{f(x) \, - f(x_{l,\,k})}{1 \, - f(e_{l,\,k})} \, + \, f(e_{l,\,k}) \, \frac{f(x_{l,\,k})}{f(e_{l,\,k})}$$

which is the desired convex combination.

REMARK. We only used the properties $\Delta_0 f \ge 0$, $\Delta_1 f \ge 0$ and $\Delta_2 f \ge 0$ in order to prove the above lemma.

Fix $(l,k) \in \{0,1,\ldots,\binom{n}{k}\} \times \{1,2,\ldots,n\}$ according to 4.2. If $\{m_1,\ldots,m_k\}$ is the collection of specified k indices for which the coordinate values of $x_{l,k}$ agree with x for every $x \in L$, then denote by $L_{l,k}$ the Cartesian product $\prod_{i=1}^k L_{m_i}$ with the usual ordering. The projection map $\Pi \colon L \to L_{l,k}$, defined as

$$\Pi(x) = (x_{m_1}, \ldots, x_{m_k}) ,$$

is order preserving and surjective. For each $f\colon L\to \mathsf{R},$ define $\tilde{f}\colon L_{l,\,k}\to \mathsf{R}$ as

$$\tilde{f}[\Pi(x)] = f(x_{l,k}).$$

LEMMA 4.4. Let $f: L \to R$ and let \tilde{f} be defined as above, then

- (a) $\Delta_m f \ge 0 \Rightarrow \Delta_m \tilde{f} \ge 0$ (m = 0, 1, ...).
- (b) If $f(x) = f(x_{l,k})$ for every $x \in L$ then $\Delta_m \tilde{f} \ge 0 \Rightarrow \Delta_m f \ge 0$.
- (c) $F_{l,k} \subset X_{\infty}(L)$ and $F_{l,k}$ and $X(L_{l,k})$ are affinely isomorphic under the map $f \to \tilde{f}$.

PROOF. (c) The map $f \to \tilde{f}$ restricted to $F_{l,k}$ is a bijection. Let $f \in F_{l,k}$. Since $\Delta_k f \geq 0$ it follows from (a) that $\Delta_k \tilde{f} \geq 0$. Clearly \tilde{f} satisfies 3.2 (ii) and hence by Theorem 3.6, f is a CM-function on $(L_{l,k}; \Lambda)$. By (b), therefore, f is a CM-function.

THEOREM 4.5. The collection of completely monotonic functions on $(L; \Lambda)$ is the cone $C_n(L)$. Moreover for given collections $\{G_{l,k}\}$ and $\{F_{l,k}\}$ which satisfy 4.2, each $f \in X_{\infty}(L)$ can be written, uniquely, as a convex sum of the form

(i)
$$f = \sum_{k=0}^{n} \left(\sum_{l=1}^{\binom{n}{k}} \alpha_{l,k} f_{l,k} \right)$$

where $f_{l,k} \in F_{l,k}$. Thus the r-simplex $X_{\infty}(L)$ can be written as a direct convex sum of the closed pairwise disjoint faces $\{F_{l,k}\}$.

PROOF. We only need to show that $X_n(L) \subset X_{\infty}(L)$. Let $f \in X_n(L)$. Since $G_{1,0}$ and $F_{1,0}$ are complemented in $X_n(L)$ by Lemma 4.3

$$f = (1 - \alpha)g + \alpha f_{1,0}$$

where $0 \le \alpha \le 1$, $g \in G_{1,0}$ and $f_{1,0} \in F_{1,0}$. By the same lemma

$$g = (1 - \beta)h + \beta f_{1,1}$$

where $h \in G_{1,1}$ and $f_{1,1} \in F_{1,1}$ and so on. The process stops after a finite number of steps since $G_{1,n} = \emptyset$ and by repeated substitution we obtain (i).

By Lemma 4.4 (c), each function $f_{l,k}$ is a CM-function on $(L; \Lambda)$ and hence $f \in X_{\infty}(L)$. Thus the r-simplex $X_{\infty}(L)$ can be written as a direct convex sum of the collection of closed pairwise disjoint faces $\{F_{l,k}\}$. From Alfsen [1], for given $\{F_{l,k}\}$ and $f \in X_{\infty}(L)$ it follows that the convex sum (i) is unique.

REMARK. If $L = [0,1] \times [0,1]$ and $f(x_1,x_2) = \chi_A$ where $A = L - \{(0,0)\}$ then $\Delta_i f \ge 0$, i = 0,1 while

$$\Delta_2 f((1,1),(1,0),(0,1)) = -1 < 0.$$

Thus $f \notin C_{\infty}(L)$. From the example it follows that at least for n=2 Theorem 4.5 is "the best possible". The above theorem lead to a natural decomposition of the representing measure, μ_f , supported by the filterspace

$$\mathscr{F}(L) = \{ F \in \mathscr{F}(L) \mid F \text{ filter on } (L; \Lambda) \}$$

[5], for given $f \in X_{\infty}(L)$. For given $\{F_{l,k}\}$ according to 4.2 let

$$\mathscr{F}_{l,k}(L) = \{ F \in \mathscr{F}(L) \mid \chi_F \in F_{l,k} \}$$

 $(\chi_F$ is the characteristic function of F). Then the collection $\{\mathscr{F}_{l,k}(L)\}$ consists of pairwise disjoint closed subsets of $\mathscr{F}(L)$. If $\mu_{l,k}$ is the representing measure of $f_{l,k}$ then the measures $\{\mu_{l,k}\}$ are mutually singular and hence

COROLLARY 4.6. Given $\{F_{l,k}\}$ according to 4.2. If $f \in X_{\infty}(L)$ is decomposed according to 4.5 (i) and if μ_f is f's representing measure then

(i)
$$\mu_f = \sum_{k=0}^n \left(\sum_{l=1}^{\binom{n}{k}} \alpha_{l,k} \mu_{l,k} \right)$$

where $\mu_{l,k}$ is $f_{l,k}$'s representing measure. For given $\{F_{l,k}\}$ the measures $\{\mu_{l,k}\}$ are mutually singular and the convex sum is unique.

REFERENCES

- 1. E. M. Alfsen, On the geometry of Choquet simplexes, Math. Scand. 15 (1964), 97-110.
- H. Bauer, Konvexität in topologischen Vectorräumen, Lecture notes, University of Hamburg, 1963-64.
- N. Dunford and J. T. Schwartz, Linear Operators, Vol. I (Pure and Applied Mathematics 7), Interscience Publ., New York London, 1958
- N. J. Fine and P. H. Maserick, On the simplex of completely monotonic functions on a commutative semigroup, Canad. J. Math., 22 (1970), 317-326.
- I. Kist and P. H. Maserick, BV-functions on semilattices, Pacific J. Math. 37 (1971), 711-723.
- M. E. Munroe, Introduction to Measure and Integration, Addison Wesley Publ. co., New York, 1952.
- R. R. Phelps, Lectures on Choquet's Theorem (Van Nostrand Mathematical Studies 7),
 D. Van Nostrand co., New York, 1966.
- 8. S. Wilks, Mathematical Statistics, John Wiley and Sons, Inc., 1962.