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1. Introduction.

The objects of our study here will be manitolds with a certain type of
singularities, or in another way, polyhedra with a special neighbourhood
of the singularity subset. Here singularity subset means the subset where
the polyhedron fails to be a (smooth) manifold.

These objects have been studied by Sullivan in [9] and [10]. Let us
consider Sullivan’s description of the objects. A polyhedron is of sin-
gularity type P, if it is “like”” S®* P, P, being a given closed manifold.
So this has to be interpreted in a correct way, namely, that the poly-
hedron should have a decomposition of the form

4=4 Uawxp, 4(1) x CPy
04 = A(1)x P,

where A4 and A(1) are manifolds. 4 should bound if there exists a B
such that
B = B Upgyxp, B(1) x CP,
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where

0B = AuB(1)x P,
and

0B(1) ~ A(1).

Since the singularities have such a special structure we can remove
the cones and work with the remaining manifolds with a special boundary
structure —namely, 4 and B. In order to study bordism theory of these
objects we define a new boundary operator

0B =A4.

Obviously d0B=¢ so this seems like a good starting point.
Before going further let us look at some examples which illustrate the
situation in a good way.

ExamrLE 1. Let us take two 2-spheres intersecting each other in R3
as in the figure (i)

V:

U (ii)

A neighbourhood of the singularity set can be written as S'x(CZ,
(figure (ii)). Remove this neighbourhood from V; the complement is then
D?x Z, and we see that V can be written as

V =D2xZ,Ug1,7,8*xCZ,
and is therefore a “manifold of singularity type Z,”” (or a Z,-manifold).
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ExAMPLE 2. An algebraic variety with a finite number of isolated
singularities can be decomposed as follows

V= VoUOPIU PR UOPk
where V,P, ... P, are smooth manifolds and
oVy =P, +Py+...+P,

(disjoint sum since the singularities are isolated) and the cones attached
by the identity map. This decomposition follows from Milnor [8, Theorem
2.10, p. 18].

This gives also that the inverse image of a critical value of a Morse
function will be decomposed as just described and therefore gives another
example of “manifolds with cone-type singularities’.

ExamrLE 3. Consider 8™ and identify ¢ distinct points z;,. . .,%,, the
quotient space
V= 8"{a,=...=x,}
can then be written as

V="V UypptxCl"1xZ), V' =_8"1xZ,,
and is therefore of singularity type S»-1xZ,.

Let us reflect a bit more over the sentence: V is “like” S®*P,. This
should mean that locally ¥ would be homeomorphic to open subsets of
R” (since the cone on S” is euclidean) or open subsets of R™ x CP; (n,
depending on the dimension of P,). We could therefore introduce a chart
modelled on R* and R™ x C'P, and give a rigorous definition of our objects
similar to the way in which ordinary manifolds are defined. But of
course we then have singularities in our objects!

Whether we keep the “bad” points or remove them, the case of one
singularity — P, —is relatively easy to handle. The situation is, however,
much more complicated for several singularities (Py,...,P,).

According to Sullivan, a polyhedron V is of singularity type (P,,...,P,)
if it is “like”

S« PyxPyx...xP, .

Again interpreted locally this means that locally we have homeomor-
phisms from ¥V to open subsets of
RmO  RmOD x CP;, R™%L2 x OPyxCP,y,. ..,
RMOL...m) x OPy x CPyx ... xCP,

where the m(0,1...4)’s depend on the dimensions of P,,...,P;.
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Once again we could use this information to define a suitable chart
and copy the process for ordinary manifolds. But we want to adopt the
philosophy that we remove the cones and hence the singularities
and concentrate our interest on the structure of the remaining (smooth)
manifold, its boundary and the “attachment data” for the cones.

As we have already pointed out it is quite easy to determine the struc-
ture of the “remaining boundary’’ in the case of one singularity, namely
of the type:

0B = AuB(1)xP,.

In the case of several singularities it is much more complicated when we
are going to specify the “attachment data” and how they are related in
order to reflect how the singularity sub-manifolds meet.

It seems natural to require a decomposition as follows

A4 =A400uvAdA(1)xP,u... ud(n)x P,

but the important thing here is how the manifolds are glued together,
our “attachment data”. In order to specify this in an appropriate way
we discover that we need that the manifolds A4(0),A4(1),...,A(n) should
be decomposed in a similar way to what we want for 4. Hence the A(i)’s
give rise to new systems of manifolds and attachment data and we get
some sort of a hierarchy of manifolds. But for dimensional reasons this
process will stop after a finite number of steps. Therefore, in order to
define our desired objects, we seem to be forced to study systems of
manifolds as indicated (since we have adopted the philosophy of removing
the cones!). One might think that this would be very complicated, but
in fact it turns out to be quite convenient. The important thing is of
course to find suitable definitions.

2. Definitions.

We will now work in the category of smooth (unoriented) manifolds,
and we allow the manifolds to have general corners. For manifolds with
corners see for example [4] or [6]. Our constructions will also go through
for manifolds with an additional G-structure; we will comment on this
later on.

DeriNiTION 2.1. V is a decomposed manifold iff there exist submani-

folds
o,V,0,V,...,0,V
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such that
oV =0,Vue,Vu...ue,V

where union means identification along a common part of the boundary.

Each 0,V is again a decomposed manifold by defining
0;(0, V) =0;Vno,V for j+1

and then
00, V) = Uj=: 9;(3, V) .

Let us now fix a class of closed manifolds

S = {Py=x,P,P,,...,P,,...}
and put
S, = {Py,Py,...,P,}.

These manifolds will later on play the role as singularity manifolds.

DEeFINITION 2.2. A manifold 4 is called an S,-manifold (or a manifold
of singularity type S,,) iff

i) Vo<{0,1,...,n} there exists a decomposed manifold (in the sense
of Definition 2.1) 4(w) such that
(a) 4(0)=4,

(b) there exist isomorphisms
Blw,?): 0;A(w) = A(w,i)xP; if i¢w,

0;4(w) =0 if iew,
where (w,7) means the subset  union the element i € {0,1,...,n}.
i) V4,5 €{0,1,...,n} the following diagram commutes
0,0, A() "2 8, A(w, i) x P; Z25E A(w,i,5) x Py x Py

0;4(w) N 9; A(w) dx T
o %
2,0, A(w) 22 8, A(w, ) x Py X225 A(w,i,5) x Py x P

where 7' is the twisting isomorphism.
The isomorphisms described here give information on how to glue the

A(w)’s together in order to obtain a space with singularities as described
in the Introduction.
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So formally we write our objects as
4 = {A(w),f(w,9)} .

But often we will just write A where no confusion can arise. We say that
the dimension of an S,,-manifold 4 is the dimension of 4(¥) which is the
manifold whose boundary structure the other 4(w)’s describe.

Let A be an 8,-manifold. We want to define a singular §,-manifold
in a pair (X, Y) of topological spaces.

DEriniTION 2.3. A singular S,-manifold in (X,Y) is a sequence of
pairs
(4(w),9(w)), o < {0,1,...,n},
such that
i) 4 is an S,-manifold
4 = {A(w),f(w,1)},
ii) the g(w)’s are continuous maps such that the following diagram
commutes
Adw) 2 X5 Y
U (I
0;4(w)

B(ew,t)

g(@y3) g(@,0)

A(w, i) x Py 2 A(w,i)

DEeFINITION 2.4. A morphism
f: (4,B) — (B,0)

between two S,-manifolds is a system of morphisms between manifolds
f=(fl®)
such that the following diagram commutes:
A(w) 22 B(w)
% 4(w) 120 3, B(w)
pre8(w,i) pred(w,i)
A(w,i) 222 Blw,i)

Next we would like to have a bordism concept for our singular manifolds.
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DeFiNITION 2.5. Let (4(w),g(w)) be a singular S,-manifold in (X, Y).
It bords iff there exists a singular §,-manifold (B(w),k(w)) (we do not
require k(w,0) to factor through Y) such that

0oB(w) = B(w,0) © 4(w)
(as a sub-S,-manifold of codimension zero),

hw,0)| 4(w) = g(w)
and
h(w,0)(B(w,0)—A4(w)°) = Y,

where 4(w)° is the interior of A(w).
If @ is a closed ordinary manifold and 4 an S,-manifold, we define
their product to be the S,-manifold given by
AxQ = {A(w)xQ, flw,i)xid}.

That this is an §,-manifold is obvious. Disjoint sum of two S, -manifolds
is defined naturally as

A+ B = {A(w)+ B(w),f(w,1) + 6(w,7)}
and for singular S,-manifolds in (X, Y)
(4(@),9(0)) +(B(w), lw)) = (4(w)+ Bw),g(w) + k() .

DEFINITION 2.6. (4(w),g(w)) is bordant to (B(w),h(w)) iff
(4(w)+ B(w),g(w) + h(w))
bords. We write this as

(4(w),g(@)) ~ (B(@),h(w)) -

3. Basic properties.
We begin by proving

LemmA 3.1. The relation of bordism (~) between S,-manifolds in
(X, Y) is an equivalence relation.

Proor. i) Symmetry is obvious.

ii) Reflexivity
(4,9(@)) ~ (4,9()) .
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We will organize 4 x I into an §,-manifold in the following way. Define
(A xI)(w) = A(w)x I
and give it the structure of a decomposed manifold as follows:
B(A(w) xI) = (A(w)+A(@)) U, A(@) x I
= (A(w)+ A(w)) Uy 8gd(w) x T U0, A(w)x T U ... U3, A(w)x T

and define
Op(A(w)xI) = (Ad(w) + A(w)) U, 8y A () x I

0i(4(w) xI) = 0; A(w)xI, i=1,...,n.

This is done of course for all w.
We define new isomorphisms §'(w,?) as the composite:

ToB(w,t) xid: 0;A(w)xI ~ A(w,7)x P;x1 ~ A(w,i)xIxP;.
The maps g(w): 4(w) > (X, Y) extend to the maps

9 (w): A(w)xI - (X,Y)
defined by
g (@)(—,t) = glw)(—), tel.

iii) Transitivity. We have the following situation
(Apg1(@) ~ (4,95(w)) ,
(42, 92(@)) ~ (43,95(w)) -

The first bordism we denote by (B, f(w)) and the second by (C,h(w)).
Therefore, for all w
B(0,w) = 4y(w)+Ay(w) ,

C(0,w) © Ay(w)+ As(w) .
Define D(w) as follows:
D(w) = (B(w)+C(w))/~ ,

where ~ means that we identify common elements (up to isomorphism)
of 4,(w) in B(w) and C(w). Consider

o(B(w)+ C(w))= 0B(w) +0C(w)

= 0gB(w)U ... U0, B(w)+0,C(w)u ... ud,Cw).
Here

[4i(w) + 4y(w)] = 8,Blw) and  [dy(w)+dy4(w)] < 9C(w),
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so we give D(w) the following decomposition

0D(w) = [0y B(®) U,y 0y C(@)1 U ... U [0, B(w) Ugy 0, Clw)]
defining

0;D(w) = 9, B(w) Uy, 8,C(w), ©=0,1,...,n.

We also have isomorphisms

0;D(w) = [0;B(w) Ugyuy 0;C(@)] = [B(w,%) U4y, iy Olw,9)] x Py
induced by the corresponding isomorphisms for B(w) and C(w), so

D(w,1) = B(w,%) Uy, i) Clo,1) .
Clearly
4y(0)+ A5(w) < 6yD(w)

and the maps f(w)+g(w) induce maps k(w): D(w) - (X, Y) such that
(D, k(w)) serves as the desired bordism between 4,(w) and A4(w).

We have defined addition between singular §,-manifolds and this is
clearly compatible with our bordism relation, and for a fixed dimension
m of our singular manifolds (this means dim 4 (%) =m) we get an abelian
group

M(8,)(X, Y)

and hence a graded abelian group M(S,)«(X,Y).

Let us denote the usual bordism ring of closed, smooth manifolds by
M,. We have defined a product between singular §,-manifolds and
closed, smooth manifolds, and this gives us now M(S,)«(X,Y) as an
M, -module. We should also remark that in the absolute groups (Y =0)

M(8,)4(X) ,

(4,9(w)) bords via (B,f(w)) iff B(0,w)=A(w), not just B(0,w)>A(w)
(see Definition 2.5). Further for the singular §,-manifolds we have
0y A (w) =2 since g(w,0) factors through Y, but now ¥ =4.
Now we want to study the groups M(8,,)«(X), and the first question
we want to answer is: How are M(S,)«(X) and M(S, ,;1)«(X) related?
Before stating our theorem we have to define certain homomorphisms
between these groups. Let

B: M(S,)x(X) > M(8,)x(X)
be defined by :
ﬁ([A:g(w)]n) = [A X Pn+1:9(w)°Pr]n

where [ ], means equivalence class based on S,. 8 is obviously well-
defined and is of degree +dimP, .
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Further we shall define a map
v M(Sp)x(X) > M(S,41)x(X) .

A singular §,-manifold (4,g9(w)) can always be considered as an 8,,,;-
manifold by extending all decompositions by a trivial component as
follows

04(w) = 6gA(w)U ... V0, A(w)U P

such that 0, ., A(w)~9 x P, ,;. We define
y([A’g(w)]n) = [Asg(w)]nJrl

which is obviously well-defined and y is of degree 0.
Finally
0: M(8p41)x(X) = M(8,)4(X)
is defined by

6([A(w)’g(w)]n+1) = [A(w7'n+ 1)’g(w:n+ 1)]11, .

We have to prove that J is well-defined, namely 6(0)=0.
Assume [4(w),g(w)],;+,=0, then there exists (B(w),f(w)) such that

B(0,0) = A(w)
as S, ,;-manifolds f(0,w) =g(w) but then we must have
B(0,w,n+1) = A(w,n+1)

as §,-manifolds, hence [4(w,n +1),9(w,n+1)], = 0.
We can now state our theorem on the relation between M(S,,),(X) and
M(841)5(X).

THEOREM 3.2. The following sequence is exact
]

e M8 (X) B M(S,)0(X) 5 M8, )a(X) > ...

where B, y and & are the homomorphisms just defined.

Proor. i) yf=0.
YB([A(@),9(0))n = Y([A(@) X Ppy1,9(w)opr],)
= [A(@) X Py 11,9(w)oprlp,y = 0
because we can define a bordism to zero — (B(w),f(w)) where

Bw) = A(w)x P, x1
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with the following decomposition
0B(w) = A(w)x P, U0, A(w)x P, xIuU...U0,A(w)x

XP, 1 xITud(w)x P, ,
and
OgB(w) = A(w) x P14

0;B(w) = 0; A(w)x P, ,xI, i=1,...,n,
On1B(w) = A(w)x Py,

It is clearly an S, ,,-manifold, and we define for tel f(w)(—,t)=
g(w)opr(—) as the corresponding system of maps.
ii) kery<impf. Assume

Y [4(w),g9(0)],) = [4(®),9(®)]ps1 = 0.
Hence there exists (B(w),f(w)), a singular S, ,,-manifold such that
B(0,w) = A(w)

as S, .;-manifolds. 4(w) has been given the structure of an §,, ,,-manifold
in “the trivial” way as mentioned before. We have

0B(w) = 0y B(w) U0, B(w)U ... U0, B(w).
Here
0o B(w) = B(0,w) = A(w)

090n+1B(@) = 0,419 B(w) = A(w,n+1)xP,,, =0,

since we consider the S,-manifold A(w) as an S, ;-manifold. So we can
write

0B(w) = (A(w)+B(w,n+1)x P, ;) ud,B(w)u ... u?d,Bw),

putting
3B(0) = (A(@)+Blw,n+1)x P,,,) .

This shows that
[A(w),9(@)], = [Blw,n+1) x Py, f(w,n+1)opr],
= f([B(w,n+1),f(w,n+1)]) .
iii) oy =0.
y([4(w),g(0)]a) = d([4(@),g(@)]n1)
= [A(w,n+1),9(w,n+1)], = 0,

since 4(w) is an S,-manifold and serves as a bordism to zero.

Math. Scand. 33 - 19



290 NILS ANDREAS BAAS

iv) kerd<imy. Assume
¥([4(@),g(@)]p41) = [A(w,n+1),9(w,n+1)], = 0
Hence there exists an S,-manifold (B(w),f(w)) such that
B(0,w) = A(w,n+1)
and f(0,w)=g(w,n+1). We have

04(w) = 0, A(w) VU ... U0, 4(w) U0, ,4(w)
and

an<}—1A~(w) = A(w:n+ 1) ><-Pn+1 = B(O7w) ><‘P'n+1 ’

0y B(w) ~ B(0,w) .
Form now

O(@) = [A(®) Uggan+1)x Pryy Bl@) X P

where union means identification of A(w,n+1)x P, ,, via the above
isomorphisms. We give C(w) the following decomposition where A4 =
Alwn+1)x P,

0C(w) = (9, A(w) Uy 4 01 B(@) X Ppig) U ... U (0, 4(®) Upy 0 B(w) X P y)
by defining
2:0() = (3;4(0) Upg 0, B(@) x Poyy), i=1,....m.

we organize C(w) into an S,-manifold and g(w) and f(w)opr give rise to
the following singular maps from C(w):

h(w) = g(w) Uy flw)opr .
Consider C(w) x I; then we put

A(C(w) xI) = (Clw) +C(w)) U; C(w) x I
= (C(w)+4(w) Uy B(w) x Ppy) Uy Clw) x I
= (C(w) + A(w)) Uy C(0) x I U B(w) X Py 1y
= (O(w)+ A(0))U0,0(w)xTU ... U0, C(w)xIUB(@)xP,,,.
Define:

0o(Clw) xI) = O(w) + A(w) ,
0i(Clw)xI) = 0;C(w) xI; 1i=1,...,n,
Op11(Clw) xI) = B(w) X P, .
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This decomposition organizes C(w)xI into an S,-manifold, and we
define singular maps by

K (w)(—,t) = bo)—), tel.
Hence (C(w) x I,h'(w)) serves as a bordism and gives
[C(w), Mw)],) = [C(0),Mo)ln = [4(0),9(@)]p4 -
v) po=0.
BH([A(),9(0)]n+1) = B([A(w,n+1),9(w,n+1)],)
= [A(@,n+1) x Ppyy,g(@,n+ 1opr], = 0
because we can give 4(w) the following decomposition:

04(w) = A(w,n+1)x P, U0, 4(@w)U ... UJ,4(w)
with
80 A(w) = Alw,n+1)x P,
and 9;4(w), =1...n, as before, and hence (4(w),g(w)opr) serves as a

bordism to zero.
vi) kerf <imd. Assume

B([A(w),9(w)],) = [A(w) X Ppyy,g(w)opr], = 0,

that is, there exists (B(w),f(w)) such that B(0,w)=A4(w)xP,,; and
f(0,w) =g(w)opr. B(w) is decomposed as follows:
0B(w) = 0y B(w) U, B(w) U ... U?, B(w)
with
0o B(w) = A(w)x P,y .

Therefore, consider B(w) as an 8,,,-manifold with the following decom-
position
oB'(w) = 0;B'(w)U ... U9, B (w)Ud,B'(w)
where we define
0;B'(w) = 0;Blw), ¢=1,...,n,

Op11B'(0) = 0y B(w) .
Put
f(O,w) = f’(’l’l:+ l’w)

flw) =f(0), O¢o.

and

Thus we see that
O([B'(@),f"(@)]p+1) = [4(®),g(®)]y -
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REMARK. A relative version of Theorem 3.2 for a pair (X,Y) can be
obtained in a similar way.

Our next step in the study of the groups M(S, ).(X) is the following
THEOREM 3.3. The groups M (S, )«(-) form a generalized homology theory.

Proor. i) The homotopy axiom. Assume @4, ¢,: (X,Y) - (X,,Y,) and
@Po~ ¢, Via a homotpy

h: (XxI1,YxI)—(X,,Y,).
We want to show that ¢, =4 where , denotes the induced homomor-
phism in M(8,)s(—,—), which is clearly well-defined.
Let (A(w),g(w)) be a singular §,-manifold in (X, Y). Define
O(w): A(w)xI - X,
by
O(w)(x,t) = h(g(w)(x),t), tel.

Then (4(w)xI,0(w)) will be a singular §,-manifold in (X,,Y,) where
A(w) x I is decomposed as usual

(A(w) xI) = (A(w)+ A(w)) U, 04(w) x I

= [(4(w)+ A(w)) U yA(w) x IJU0; A(w)xTU ... U, A(w)x T .

So we put

Op(A(w) x I) = [(A(w) + A(w)) U Oy A(w) x I]

Oi(A(w)xI) = 0;A(w)x I, i=1,...,n.
Clearly

A(w)+ A(w) <= 0p(A(w) xI)
and 6(w)(9yA4(w))<Y,. Furthermore
0(w)(@,0) = o(g(w)()) ,

O(w)(x,1) = py(9(w)()) .
Therefore we get
[4(w), ppog(@)], = [A(w),p109(w)],
and hence @gy = @y« -

ii) The excision axiom. We use induction over the number of singu-
larity types: M(S,)«(-) is just ordinary bordism theory and here we have
excision (see [5]), so we assume inductively that we also have excision
in M(8S,)«(-) and want to prove it for M (S, ,1)x(-).
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Solet UcintY and i: (X —U,Y —U) - (X, Y) be the inclusion, then
we use a relative version of Theorem 3.2 in order to get the following
commutative diagram where the rows are exact (p=dim P, ,):

LS M8,k X, Y) D M(S)UX,Y) S M, (X, ) ...

) ! !

11

S M8,y X—U, Y =U) S MS )X =U, Y -U) 3 M8, WX -U,Y-T)> ...

and then the five-lemma gives
M8, )X =U, Y -U) ~ M(8,41)i(X, Y)
which is the desired result.
iii) The exactness axiom. Given
Y2x4i@x vy,
we are going to prove that the following sequence is exact:
L= S (D) S MS,)(X) B S (X, T) S .

where ¢* and j* are the induced homomorphisms of ¢ and j. ¢ is defined
as follows (here [-]=[-1,).
Let (4(w),g(w)) be a singular S,-manifold in (X,Y), then
o([A(w),9(w)]) = [4(0,w),9(0,w)]

and it is well-defined since if (4(w),g(w)) bords there exists (B(w),h(w))
such that

B(0,0) > A(w) and k0,0)|4(w) = g(w),
h0,w)(B(0,w) - A(w)°) = Y.
Therefore ((B(O, w)—-A(w)"),h(O,m)l) serves as a bordism to zero for
(4(0,w),9(0, w)).
We are now ready to start proving exactness.
1) Jxte=0.
Jxix([A(w),9(0)]) = jx([4(w),i0g(w)]) = [A(w),joiog(w)] = O
as a singular S,-manifold in (X, Y) since
0(A(w)xI) = [A(w)+ A(w)]U 0, A(w)xT U ... UD,A(w) x I
and we put
0y = A(w)+ A(w)
ai=aiA(w)XI, ":=l,...,n.
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Define ¢'(w)(x,t) =g(w)(x), for ¢ € I. Then
¢ (@) A@)x1) = ¥
80 (A(w) x I,9'(w)) serves as a bordism to zero.
ii) 9j, =0.
2ja([4(@),g@)]) = 3([4(w).jogw)]) = [£.0] = 0
since 0y A(w)=¢.
iii) 4,0=0.
1x0([4(w),9(@)]) = ix([4(0,w),9(0,w)]) = [4(0,w),i09(0,w)] = 0
since the original (4(w),g(w)) serves as a bordism to zero.
iv) kerj, <imi, . Assume
Jx([4(w),g(w)]) = 0.
Then there exists (B(w),h(w)) such that
B(0,w) = A(w)
(as sub-S,-manifold) and such that
h(0,0) = jog(w),
(0, 0)(B(0,0) — A(w)°) < Y .
Then (B(0,w)— A(w)°,i0h(0,w)) will be a singular S,-manifold in X and

0B(w) = (A(w)+(B(O,w)—A(w)°)) Uo;B(w)u ... uUd,Bw)
with
9 B(w) = [A(w)+(B(0,0) — A(w)°)] .
Therefore we get
[A(w),g(w)] = [(B(O:w)_A(w)o)"’/°h(0’w)]
= 1,[(B(0,0) — 4(w)°),2(0,w)] .
v) keri, <imo. Assume

ix([4(@),9(®)]) = 0.

Hence there exists (B(w),h(w)) — a singular S,-manifold in X — such
that
B(0,0) = A(w) and h(0,w) = iog(w).
Obviously
a([B(w)yh(w)]) = [A(w):g(w)] ’

since h(0,w) as a map into Y equals g(w).
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vi) kerd<imj,. Let (4(w),g(w)) be a singular §,-manifold in (X, Y)

and

o([A(w),g(w)]) = 0
then there exists a singular S,-manifold (B(w),g(w)) in ¥ such that

B(0,w) = A(0,w) and f(0,0) = ¢g(0,w).
Define now
V(w) = {B(w)+ A(w)}/B(0,0) = A(0,w)

and maps

Flw): V(iw) > X

induced by f(w)+g(w) (this is well-defined since f(0,w)=¢g(0,w) on the
part we have made identifications).
We give V(w) the following natural decomposition

V(w) = (0,B(w) Uy, 0, A(w)) U ... U (9, B(w) U, 0, A(w))
where
0; = 0, B(w) Uy, 0, 4(w)

0y, = 0 B(w) Uy, 0, 4(w)

and where U, means the identification described above. We see that
(V(w),f(w)) is a singular S,-manifold in X.
Consider V(w)x I as an S,-manifold as usual

AV(w)xI) = (V(w)+ V(w))uo, V(w)xIu...uo,V(ew)xI
= (V(w)+ A(w) Uy B(w)) U &, V(w)xT U ... Ud,V(w)xI

and maps F'(w)(—,t)=F(w)-), tel. Since g(w): B(w) - Y this now
shows that

J#([V(@), F(0)]) = [V(o)joF()]
= [4(o),9(w)] .

This completes the proof of the exactness axiom and also that the groups
M(8,)x(-) form a generalized homology theory.

Remarx. By going through the preceding ideas and constructions we
see that they carry over to the case when the manifolds that we consider
have a certain G-structure, and we get homology theories which we will
denote by MG(S,)«(-), . ex. @=0, U, Sp.
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4. The homology theories MG(S,)«(—)-

We will now let MG(S,,)s(~) denote the reduced homology theory and
we would like to know its coefficients MG(S,,)(8°) in terms of M@, (S°).
We proceed inductively by means of Theorem 3.2.

Assume that P, is such that the map

MG, (8% =Y ma, (S0
is a monomorphism, then from Theorem 3.2 we get that
MG(S8)x(8°) = MG (SY)/([P4]) -

(This is satisfied if for example M@, (S°) is an integral domain.) Let us
assume inductively that

MG(8,1)x (8% = MG (SO/([Py),- -, [Pna]) -
Then, if the map
MG(S, )x(8%) L MA(S, 1)4(5°)

is a monomorphism, we have

THEOREM 4.1. Under the conditions just stated we get
MF(8,)x(8%) = MG (SO)/([Py],- - ., [Pp]) -

Proor. This follows immediately from our assumptions and Theorem
3.2.

From a well-known representation theorem we know that the homo-
logy theory M@G(S,)«(~) — defined on the category of finite CW-com-
plexes, to which we now will restrict our attention — has a representing
spectrum which we will denote by MG(S,) (MG is the representing
spectrum for MG, (-).

From the exact sequence in Theorem 3.2 we get a direct system of
homology theories

MGy(-) > MG(8y)x(-) > ... > M8 )u(-) > ... .

It is an interesting question whether the spectrum M@G(S,) can be ob-
tained as some sort of Thom-spectrum in the ordinary way. The direct
limit is also a homology theory which we will denote by

Emn MGE(S,)u(-) = ME(S)(-)

and the ,representing spectrum by MG(S).
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It seems natural to ask for a connection between for example the two
spectra MG(S,) and MG(S,.,). In the case of one singularity this can
be answered nicely as follows.

8;={*,P,} and we have that
[Pi] € MGy (8°) = nyW(MG)
(Thom’s theorem), so P; has a representative map up to homotopy
p: 8" > MG (n=dimP).

We assume that M@ is a multiplicative spectrum. Consider then the
diagram
Sna Ma X ya

I
Lil_‘ MG A MG

the composite map which we have denoted by x [P,] induces multiplica-
tion by [P,] in homotopy. Let us take the cofibre of this map (or other-
wise: extend it to an exact triangle)

S a MG 2P ma > X(Py) .
The spectrum X(P,) has then the following property

THEOREM 4.2. X(P,) 18 homotopy equivalent to MG(P,) under condition
A stated in the proof.

Proor. (The idea of the proof was kindly pointed out to me by J. F.
Adams.) Let MG=lim, MG, where the MG s are finite complexes.

Therefore they also have Spanier—Whitehead duals D M@, . Theorem 3.2
gives an exact sequence for all «

> MG (DMQ,) 2F% MG, (DMG,) > MG(P)(D MG,) > ... .
By duality this exact sequence can be written as
. > MaxM@,) XL Max(Ma,) ~ MGP){MG,) - . .. .
Apply the functor lij_na to this sequence
(#) ... lim MG*M@,) % lim, MG*(MG,)
N - lzx_naMG(P)*(MG,,) - ..



298 ! NILS ANDREAS BAAS

Clearly the composition of two successive maps here is zero (functorial
property of lim) and that is what we need, so we do not worry about
<

exactness. But we have to assume the following about MG':
A. {MG,} can be chosen such that
liinalMG*(MG“) =0= Ii_malMG(Pl)*(MGa)
and multiplication by [P] is injective.

(This is satisfied for example for MU and any P,).
Therefore we have according to Milnor’s lemma

lim, MG*(MG,) = MG*M@G) = {MG, MG},
and
lim MG(P,)*(MG.,) = MG(P)*(MG) = {MG, MGP,)}x -
So we can write the sequence (x) as
> MGMe) 2EL M Me) L MGPYH M) > . ..,
or as

o> MG, UG, S (MG, MG}, S (MG, MGP)}y — ...,

where we have put f= x[P,].
Let 1, be the element in {M@, MQ}, represented by the identity
map MG — MG@G. Take

Y(lyg) € {MG, MQ(P,)},

and represent it by a map
f: MG -~ MG(P,) .

We now combine this map with the exact triangle we have (instead of
S*A MG we write just MG by a degree shift)

Me =% ya x(®,)

7

- lf p
NV

MG(Py)

But we know that y8=0 which implies fo¢x[P;])=0, hence there
exists a g making the above triangle commutative; this follows at once
from the exact sequence

.. < {MG,MGP)}y <L (MG, MG(P)}y < {X(Py), MHP)}e < ...,
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which we obtain by applying the functor {—, MQ(P,)}, to the exact
triangle we have considered.

Clearly we now have a commutative diagram

0 >y (MQ) ~E8 7 (M@) > n (MG(P,))
. ?l L
0 - my(MGQ) 22 7 (M@) > 7y (X(Py)) — 0

The five-lemma then gives that g, is an isomorphism. Hence g is a
homotopy equivalence between MG(P,) and X(P,) and for all complexes
Y we have that

X(P)x(Y) = MG(Py)s(Y) .

We have already shown that we have a pairing
MGy @ MG(S,)x ~ MG(S,)x ,

and we conclude that MG(S,,) is a module spectrum over MG.
Consider the exact sequence in Theorem 3.2.

- MA(8,)5(X) = MG(8,)4(X) > MG(S,11)5(X)

We remark that such a sequence always gives rise to an exact couple
and hence a spectral sequence. This can be considered as a generalization
of the so-called Bockstein spectral sequence which we get in the special
case of one singularity P, =Z, (see for example [7]).

5. The unitary case.

It is well-known that MU, (S°) =Z[xz,2,,. .., %sy,,...]. We will be
interested in the case when S={P,,P,...P,...} is such that P, is a
manifold representing the polynomial generator z,,. As an immediate
consequence we then get

0 if k40,
VS = ‘z it beo

since MU, (S° has no divisors of zero. Hence from the Eilenberg—
Steenrod uniqueness theorem we get

CoroLLARY 5.1. MU(S)y(-)=H,(—,Z).

Therefore, ordinary homology can be considered as some sort of bor-
dism theory with singularities!
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We defined
S, = {Py,...,P,}.
Let us define
S,n = {Pn+1...}

Snm = {Pn+1" . ':Pm}

and

and denote MU(S,) by MU{(n).
Obviously we get

COROLLARY 5.2. MU(n), (8% = Z[z,,. .., 2,s,].

We obtain a natural transformation

t"(=): MU(n)y(=) > MU(n—1)4(-)

as follows:
Consider the exact sequence
MU(S. » x[P1] M Ymon n—1
> MUS,M4(-) 5 MU (S ) ()" MUS P )u(-) > ...

By passing to the direct limit we get

lim ym,n
lim,, MU(8,,")e (=) 2> lim, M U8, )u(-)

MUY, (-) —m MUn—1)4(-)

So we get a “tower” of homology theories and natural transformations
(I am grateful to Larry Smith for drawing my attention to these theories)

HUCHe() = MUC)
i

CLLONS
j

MU ()

MUQ)s(-) = Hy(-Z) .
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6. Addendum.

We can certainly vary the singularity classes S, a lot and obtain
many different spectra M U(S,,). For a general formulation, see [3]. For
example, by using as singularities manifolds representing generators in
dimensions +2(p™—1) for a given prime, we get a tower of “integral”
Brown-Peterson spectra. After localizing with respect to p we get BP
and BP{n) (the analogues of M U{n)) and they give interesting relations
with homological dimension of bordism modules. See [3] and the refer-
ences there. Also the cohomology of these spectra have been calculated
as modules over Steenrods algebra; see [2]. However, one major problem
still seems to be to decide when these spectra are multiplicative. From
our point ot view this should be based on an analysis of product of mani-
folds with singularities.

I also feel that much of what has been done here should be done in
a broader context including more refined singularities (for example,
algebraic) and that the theory of stratified sets would seem appropriate
here. And this would also be interesting in connection with the question
of realizing ordinary homology classes.

It should also be pointed out that since MG(S,,) is a module-spectrum
over MG the general machinery of Adams’ Seattle notes (in Category
theory, homology theory and their applications 111, edited by P. Hilton,
Lecture Notes in Mathematics 99, Springer-Verlag, Berlin - Heidelberg -
New York, 1969) applies to give generalized universal coefficient spec-
tral sequences and these deserve to be studied in detail.
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