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HOMOTOPY 4-SPHERES HAVE LITTLE SYMMETRY

PETER ORLIK*

Introduction.

The degree of symmetry, N(M) of a topological (smooth) manifold M
is defined as the maximal dimension of a compact Lie group G that can
act continuously (smoothly) and effectively on M. It is well-known that
if M™ is smooth and N(M")=n(n+1)/2 then M is S* or RP~. It was
shown in [3] that if X", n =40 is an exotic sphere then N(X)<n?/8+1.
A theorem of Seifert [8] implies that if X3 is a counterexample to the
Poincaré conjecture then N(23)=0. The purpose of this note is to find
all simply connected 4-manifolds M* with N(M*)>1 and obtain as a
corollary that if 2* is a counterexample to the Poincaré conjecture then
NZEZYH=1.

Groups.

Given a compact Lie group G a theorem of Mann [4] computes the
smallest dimension m(®) of a manifold admitting an effective @ action.
Note that for computing N (@) it is sufficient to consider almost effective
actions of groups G=7"7x G’ where G’ is semi-simple.

ProrosIiTiON. If G acts almost effectively on M4, then the mazimal torus
of G is at most 2-dimensional.

Proor. If the maximal torus 7' is 3-dimensional then M* has a 3-
dimensional orbit and a theorem of Mostert [5] applies. The orbit space
cannot be a circle, so it is a closed interval, and the action is equivalent
to a smooth action. The non-principal isotropy groups of the induced 7'
action must be 1-dimensional toruses and together they do not anni-
hilate 7,(7).

The following is a list of all compact Lie groups G =17 x G' where G’
is semi-simple with maximal torus 7'¢ so that dimG <10, m(G)<4 and
r+q=2.

* Partially supported by NSF.
Received May 14, 1973.



276 PETER ORLIK

G Spin5 | SU(3) | Spin3x Spin3 | S x Spin3 | Spin3 | 7% | §*

dim@ | 10 6 4 3 2 |1
m(@) 4 4 3 3 2 2

@

Note that Spin4=Spin3 x Spin3.

Transitive actions.
These are clearly equivalent to smooth actions and the only possibili-
ties are:

Spin5/Spin4 = 8%, SU(3)/U(2) = CP?, Spin4/T? = §2x 82,

Actions with 3-dimensional orbits.
According to Mostert [5] the action is equivalent to a smooth action.

The orbit space is an interval with isotropy types {(H); (U,),(U,)} and
we may assume H < U;. Now U,/H is an r;-sphere so M ishomeomorphic
to

Gx gD UG x gy DY

by an equivariant homeomorphism of the common boundary G/H. The
manifolds thus obtained are classified by the components of the double
coset space Ny\ N(H)/N, where N,=N(H)nN(U,), see [6].
G =Spin4 admits the following isotropy structures:
{(Spin3); Spin4, Spin4} = S*
{(Spin3); (Spin3 x 8'), Spin4} = CP?
{(Spin3); (Spin3 x 8?), (Spin 3 x 81)} = CP2# CP?
where CP2 is the reverse orientation of CP2. The manifolds are determined
by the isotropy structures.
@ = S'x Spin3 can act as a subgroup of Spin4 .
In addition we have the following possibilities:
{(8Y); (Spin3),(T?)} = 8%,  {(8Y); (T%),(T?)} = §2x 82,

and the manifolds are again determined by the isotropy structure.
G =Spin3 has finite principal orbit type (H). If H=1 then we obtain
restrictions of the above actions. If H=2Z, then we have

{(Zp); (Sl),('gl)} = Qp
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where @, is the double of the D?-bundle over §? with euler class p and
boundary the lens space L(p,1).
Finally, if
H = Dg* = {a,y | a*=(2y)* =y},

the binary dihedral group, then we have the following possible isotropy
structure {(Dg*); (Pin2),(Pin2)}. The normalizer of Dg* in Spin3 is the
binary octahedral group O* and the double coset N,\ N(H)/N, has two
components. The component of the identity gives a non-simply connected
manifold. The other component corresponds to the irreducible 5-dimen-
sional representation of SO(3) given in [2, p. 43] so the total space is S%.
I am indebted to G. Bredon for explaining this example.

Actions with 2-dimensional orbits.

G=Spin3 must have principal isotropy type (8') and principal orbit
type S2. The slice is a 2-dimensional cohomology manifold, hence a
2-manifold and may be taken as a disk. The only other orbits are fixed
points so the orbit space, M* is a 2-manifold. Note that M* is simply
connected because M is. If M* =82 then all orbits are principal and M
is an 82 bundle over S? with structure group Spin 3. Thus the associated
principal bundle is classified by

S8 - 87 - S

and hence M =82 x S2. If M* = D? then the action is easily seen to admit
a cross-section and it is the action of G in the first factor of the join
S4=_8%.81.

G =T? actions on simply connected 4-manifolds were classified in [7].
The only manifolds that occur are equivariant connected sums of S%,

CP2, CP?, 2 x S2.

TuEOREM. The degree of symmetry of a closed simply connected 4-mani-
fold M is given as follows:

M | 8*| CPz| S2x .82 CP2#CP? Qp,p>1|#of S4, CP2, CP?, S2 x S2

Ny |10 s 6 3 | 2

and for all other M, N(M)<1.

CoroLLARY. If X% is a counterexample to the Poincaré comjecture then
the largest compact Lie group that can act effectively on X% is S*.
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REMARK. A theorem of Atiyah and Hirzebruch [1] implies that there
are smooth simply connected 4-manifolds with no smooth S*-action.
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