HOMOTOPY 4-SPHERES HAVE LITTLE SYMMETRY

PETER ORLIK*

Introduction.

The degree of symmetry, N(M) of a topological (smooth) manifold M is defined as the maximal dimension of a compact Lie group G that can act continuously (smoothly) and effectively on M. It is well-known that if M^n is smooth and $N(M^n) = n(n+1)/2$ then M is S^n or RP^n . It was shown in [3] that if Σ^n , $n \ge 40$ is an exotic sphere then $N(\Sigma) < n^2/8 + 1$. A theorem of Seifert [8] implies that if Σ^3 is a counterexample to the Poincaré conjecture then $N(\Sigma^3) = 0$. The purpose of this note is to find all simply connected 4-manifolds M^4 with $N(M^4) > 1$ and obtain as a corollary that if Σ^4 is a counterexample to the Poincaré conjecture then $N(\Sigma^4) \le 1$.

Groups.

Given a compact Lie group G a theorem of Mann [4] computes the smallest dimension m(G) of a manifold admitting an effective G action. Note that for computing N(G) it is sufficient to consider almost effective actions of groups $G = T^r \times G'$ where G' is semi-simple.

PROPOSITION. If G acts almost effectively on M^4 , then the maximal torus of G is at most 2-dimensional.

PROOF. If the maximal torus T is 3-dimensional then M^4 has a 3-dimensional orbit and a theorem of Mostert [5] applies. The orbit space cannot be a circle, so it is a closed interval, and the action is equivalent to a smooth action. The non-principal isotropy groups of the induced T action must be 1-dimensional toruses and together they do not annihilate $\pi_1(T)$.

The following is a list of all compact Lie groups $G = T^r \times G'$ where G' is semi-simple with maximal torus T^q so that dim $G \le 10$, $m(G) \le 4$ and $r+q \le 2$.

^{*} Partially supported by NSF. Received May 14, 1973.

\overline{G}	Spin 5	SU(3)	$Spin 3 \times Spin 3$	$S^1 imes ext{Spin 3}$	Spin 3	T^{2}	S^1
$\dim G$ $m(G)$	10 4	8 4	6 3	4 3	3 2	2 2	1

Note that $Spin 4 = Spin 3 \times Spin 3$.

Transitive actions.

These are clearly equivalent to smooth actions and the only possibilities are:

Spin 5/Spin 4 =
$$S^4$$
, SU(3)/U(2) = CP², Spin 4/ T^2 = $S^2 \times S^2$.

Actions with 3-dimensional orbits.

According to Mostert [5] the action is equivalent to a smooth action. The orbit space is an interval with isotropy types $\{(H); (U_0), (U_1)\}$ and we may assume $H \subseteq U_i$. Now U_i/H is an r_i -sphere so M is homeomorphic to

$$G \times_{U_0} D^{r_0+1} \cup G \times_{U_1} D^{r_1+1}$$

by an equivariant homeomorphism of the common boundary G/H. The manifolds thus obtained are classified by the components of the double coset space $N_0 \setminus N(H)/N_1$ where $N_i = N(H) \cap N(U_i)$, see [6].

G = Spin 4 admits the following isotropy structures:

$$\begin{split} & \{ ({\rm Spin}\,3) \, ; \, {\rm Spin}\,4, \, {\rm Spin}\,4 \} \, = \, S^4 \\ & \{ ({\rm Spin}\,3) \, ; \, ({\rm Spin}\,3 \times S^1), \, {\rm Spin}\,4 \} \, = \, {\rm CP^2} \\ & \{ ({\rm Spin}\,3) \, ; \, ({\rm Spin}\,3 \times S^1), \, ({\rm Spin}\,3 \times S^1) \} \, = \, {\rm CP^2} \# \, \overline{{\rm CP^2}} \end{split}$$

where \overline{CP}^2 is the reverse orientation of CP^2 . The manifolds are determined by the isotropy structures.

$$G = S^1 \times \text{Spin 3}$$
 can act as a subgroup of Spin 4.

In addition we have the following possibilities:

$$\{(S^1); (\operatorname{Spin} 3), (T^2)\} = S^4, \quad \{(S^1); (T^2), (T^2)\} = S^2 \times S^2,$$

and the manifolds are again determined by the isotropy structure.

G = Spin 3 has finite principal orbit type (H). If H = 1 then we obtain restrictions of the above actions. If $H = \mathbb{Z}_p$ then we have

$$\{(\mathsf{Z}_p);\,(S^1),(S^1)\}\,=\,Q_p$$

where Q_p is the double of the D^2 -bundle over S^2 with euler class p and boundary the lens space L(p,1).

Finally, if

$$H = D_8^* = \{x,y \mid x^2 = (xy)^2 = y^2\},$$

the binary dihedral group, then we have the following possible isotropy structure $\{(D_8^*); (\operatorname{Pin} 2), (\operatorname{Pin} 2)\}$. The normalizer of D_8^* in Spin 3 is the binary octahedral group O* and the double coset $N_0 \setminus N(H)/N_1$ has two components. The component of the identity gives a non-simply connected manifold. The other component corresponds to the irreducible 5-dimensional representation of SO(3) given in [2, p. 43] so the total space is S^4 . I am indebted to G. Bredon for explaining this example.

Actions with 2-dimensional orbits.

G = Spin 3 must have principal isotropy type (S^1) and principal orbit type S^2 . The slice is a 2-dimensional cohomology manifold, hence a 2-manifold and may be taken as a disk. The only other orbits are fixed points so the orbit space, M^* is a 2-manifold. Note that M^* is simply connected because M is. If $M^* = S^2$ then all orbits are principal and M is an S^2 bundle over S^2 with structure group Spin 3. Thus the associated principal bundle is classified by

$$S^3 \rightarrow S^7 \rightarrow S^4$$

and hence $M = S^2 \times S^2$. If $M^* = D^2$ then the action is easily seen to admit a cross-section and it is the action of G in the first factor of the join $S^4 = S^2 \circ S^1$.

 $G = T^2$ actions on simply connected 4-manifolds were classified in [7]. The only manifolds that occur are equivariant connected sums of S^4 , $\overline{\text{CP}}^2$, $\overline{\text{CP}}^2$, $S^2 \times S^2$.

THEOREM. The degree of symmetry of a closed simply connected 4-manifold M is given as follows:

М	S4	CP2	$S^2 \times S^2$, $\overline{\mathrm{CP}}{}^2 \# \mathrm{CP}{}^2$	$Q_p, p > 1$	$\# \text{ of } S^4, \mathbb{CP}^2, \overline{\mathbb{CP}^2}, S^2 \times S^2$
N(M)	10	8	6	3	2

and for all other M, $N(M) \leq 1$.

COROLLARY. If Σ^4 is a counterexample to the Poincaré conjecture then the largest compact Lie group that can act effectively on Σ^4 is S^1 .

278 PETER ORLIK

Remark. A theorem of Atiyah and Hirzebruch [1] implies that there are smooth simply connected 4-manifolds with no smooth S^1 -action.

REFERENCES

- M. F. Atiyah and F. Hirzebruch, Spin manifolds and group actions, in A. Haefliger et R. Narasimhan (Editors), Essays on Topology and Related Topics, Memoires dediés à George DeRham, 18-28, Springer-Verlag, Berlin · New York, 1970.
- G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York

 London, 1972.
- W. C. Hsiang and W. Y. Hsiang, The degree of symmetry of homotopy spheres, Ann. of Math. 89 (1969), 52-67.
- L. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 19 (1966), 532-546.
- P. S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957), 447-455.
- W. D. Neumann, 3-dimensional G-manifolds with 2-dimensional orbits, in P. S. Mostert (Editor), Proceedings of the Conference on Transformation Groups, 220-222, Springer-Verlag, Berlin · Heidelberg · New York, 1968.
- P. Orlik and F. Raymond, Actions of the torus on 4-manifolds, Trans. Amer. Math. Soc. 152 (1970), 531-559.
- 8. H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238.

UNIVERSITY OF WISCONSIN, MADISON