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ON CYCLES IN FLAG MANIFOLDS
H. C. HANSEN

0. Introduction.

Let K be a compact connected real Lie group and T a maximal torus
in K.

In 1954 R. Bott constructed a Morse function on K/T' and showed
that K/T was a cell complex with cells in the even dimensions only.
That means that the cells considered as cycles give a basis for the hom-
ology of K/T. It is easy to calculate these cycles explicitely and in fact
they turn out to be the so-called K-cycles of Bott—Samelson [2], which
were constructed in 1958 in a more general setting using Morse theory
of loop spaces.

The space K/T also appears as G/B, where G is the complexification
of K and B is a Borel group in @ containing 7'. In 1954 F. Bruhat dis-
covered that if G was one of the classical Lie groups, G/B had a cell
decomposition, each cell being isomorphic as an algebraic variety to C».
This was soon afterwards proved to be the case for all reductive linear
algebraic groups G' by Chevalley [3].

The closure of a Bruhat cell can be considered as a cycle (see [4]) and
these cycles again generate the homology of G/B.

Now the reductive groups are exactly the complexifications of the
compact real groups (see [5]), so we have two decompositions of K/T =
G/B. We prove that they are identical, and as a consequence of the proof
we solve another problem. The closure of a Bruhat cell is in general an
algebraic variety with singularities and the construction of the K-cycles
can be improved to give a resolution of these singularities.

In section 1 we describe the K-cycles, in section 2 the Bruhat decom-
position and in section 3 we show the identity and construct the resolu-
tion.

1. The K-cycles.

Let K and 7T be as above. L(K) and L(T) will denote the Lie algebras
and +o«,;,t=1,...,m, the roots. The hyperplanes through 0 in L(T') given
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by o;(x)=0 are called O,. The stabilizer of the plane O, is K;. The Weyl
group N(T)/T is denoted W.

W operates on L(T) by the adjoint action. There is an r,e K;, 1=
1,2,...,m, such that r,€ W and Ad(r;) is the reflection in O,. Corre-
sponding to a choice of fundamental root system we have a fundamental
Weyl chamber & and we keep w € W fixed. Ad (w) brings # to another
Weyl chamber Adw(%). Let s be a straight line from % to Adw(%)
crossing the planes O, one at a time. We can assume that they are met
in the order 0,,0,,...,0,. It is then clear that Ad(r,...ryr;) brings &
to Adw(Z). Since w operates simply transitively on the Weyl chambers,
w must be equal to ry ... ryry.

Now we define

I'y = KixpKyx ... x(K,[T)

as the orbit space of the action of 7'x ... xT on K, x ... x K, given by
(otase o s ti)Eqye o o ky) = (kyty, by Vhota,. . o 872 Kpty) -
We define ¢g: I',, > K/T by
gk, ks, . - k)] = kyko. . Rpry ... T

I, is orientable. Let y, be a cycle determining the orientation. Then
gx(v,) is the K-cycle corresponding to w. As shown by Bott—Samelson [2]
the set of all g(y,,) where w e W, constitute a basis for H,(K/T).

2. The Bruhat cells.

Following the notation of [1] let G be a reductive complex linear alge-
braic group with maximal torus T and B a Borel group containing T,
B=UT where U is the unipotent part of B.

The set of roots is @ and for each root « the eigenspace g, is the Lie
algebra of U,. L(T)®g,Pg_, is the Lie algebra of the group @,. The
roots fall into two parts, the positive part @(B) and the negative part
— @(B), such that the Lie algebra of B is the direct sum of L(T) and the
eigenspaces corresponding to the positive roots, whereas the sum of L(T)
and the eigenspaces corresponding to the negative roots is the Lie alge-
bra of B'=U-T, where U~ is the unipotent part of B’.

Also define U,,~=UnwU-w-! for we W=N(T)/T. With this notation
let us recall the Bruhat decomposition theorem [1, p. 347]:

THEOREM 2.1. G/B 1is the disjoint union of the U-orbits UwB, we W.
If we W the morphism
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U, UwB (ut> uwB)

18 an isomorphism of varieties.

Moreover U, is the semi-direct product of the U,’s, e.g. it contains the
U./’s such that x>0 and «*<0.

If we consider G as the complexification of K, then K is embedded
in G. If T is a maximal torus of K we let B be a Borel group of G con-
taining T, the complexification of 7'.

The Weyl group of ¢ is as in section 1 generated by the r;,t=1,...,m,
the action of the Weyl group is the same in the two cases, and the set of
roots @ restricted to 7' is exactly the roots of K,7T'.

Let we W. We saw in section 1 that w=r,...r,r;, where we met
0,,...,0, successively with a straight line s from % to Adw(&). For
later use we continue the enumeration of the O,’s beyond Adw (&) until
we meet the opposite Weyl chamber of %

LeMMA 2.2.

w(D(B)) = (P(B)\A{ay,. . ,oq) U {—0g,. .., =04}

Proor. The roots @(B) are the ones taking positive values in &#. The
roots in w(P(B)) are the ones taking positive values in w(#). Now follow-
ing the line s we first go through O, coming to another Weyl chamber.
Here all roots in @(B) still take positive value, except «,, because we
passed through the 0-hyperplane O, of «,. But then —«, takes positive
value. An obvious induction now finishes the proof since a root «; only
changes sign along s, when s passes through O,.

In the following we write U, for Ux;. As a consequence of Lemma 2.2
we get:

LrmMma 2.3. For w=ry...ryr; as above the group U,~ equals U, ...
U,U,, the semi-direct product of the U;s,1=1,... k.

3. The resolution.
Keeping the notation of section 2 we shall study a typical Bruhat
cell of G/B,
UwB = Ul"' Ukrk...rl.B,
where w=ry...r,r; € W. We want to compare this cell with the set

g, = Ky...Kyry... "B
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underlying the K-cycle. In fact the closure of UwB equals g(I',). To
show this we need a new variety.

Let B; be the connected subgroup of ¢ with Lie algebra equal to the
direct sum of L(T) and the eigenspaces of —«;, j=1,...,¢ and «;,
j=t+1,...,k This is a Lie algebra, since it equals Adw(L(B)). Using
this fact for 4=1! and s=1—1 it is easily seen that also the direct sum of
L(T) and the eigenspaces of —«;, j=1,...,l, and «;, j=I,...,k is a Lie
algebra. The corresponding subgroup we denote H,. In fact H,=@Q,B,.

DEeriNITION 3.1. Let
M, =H xpHyxp,...xHB,
be the orbit space of the action of (B,,...,B;) on (H,,...,H,) given by
(Bys- o hg)(byy. ., bg) = (hiby L by hybyL, . oL b3 Byby) -

Using [7] it is seen by induction that M, is a non-singular complex
algebraic variety of real dimension 2k.

LemMA 3.2. The map induced by inclusion
it Ky x pKyx ... x KT - Hyx g Hyx ... x H[B,
18 @ homeomorphism.

PRrooF. 7 is one-one, since K;nB;=1T. But I, and M, are manifolds
of the same dimension, hence the conclusion.

Now consider the commutative diagram
M, =HyxgHyx...xHB,——GB
I'y=K,xpKyx...xKT 2~ K|T
where g was defined in section 1 and ¢ is defined similarly by
@[(hys - - ly)] = bihy. . Byry...7B.
The K-cycle g(I',) is now seen to be the same as ¢(M,,), but
oM, =H,...Hyr,...mnB

obviously contains U, ... U,r,...r;B. Moreover, according to Theorem
2.1 the dimension of UwB is 2k and the dimension of ¢(M,) is not
greater. Now I',, is compact, which ensures us that ¢(M,) is compact
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and thus closed. More precisely, ¢(M,,) contains the closure of UwB in
the strong topology and therefore also in the Zariski topology, because
UwB is constructible (cf. [6]).

Since closed subvarieties of an algebraic variety always have strictly
smaller dimension we can conclude that ¢(M,) equals the closure of
UwB. We have thus proved:

THEOREM 3.3. The sets underlying the K-cycles of Boti—Samelson are the
closures of the Bruhat cells.

We have seen that it suffices to take representatives for elements in
M, from K, x K, ... x K;. More illuminating is the following:

LemMa 3.4. Elements in M,, can be represented by elements of the form
(vy,. . .,v), where v; € U;u{r;}.

Proor. Let [(#,h,,. . .,k;)] be an arbitrary element in M,,. We shall
find (b,,...,b;) € (By,...,B;) such that
(hyby, by haby, . . . bl hyby) = (v, .., 0)

where v; € U;u{r;}. Assume inductively that we found (b,,...,b;) such
that
(hyby,. . 07 hiby) = (v, 50), v e Uyu{rg}.

Now using Theorem 2.1 on G; we obtain

G, =U_ U, TuU_ rU_T

of —og 7 —ag —og
and therefore
@, =rU_TUU, U_T.

o —og

Hence
H;,=G,B; = r;B;uU;B; fori=1,...,k.

Since b;1h;,, € H;,,, we can thus find b;,, € B;,; such that
b hiiabja € U U {rs}
and the induction step is concluded.

THEOREM 3.5. ¢: M, — G|B is a resolution of the closure of UwB.

Proor. We have only left to show that ¢ is one—one when restricted
to ¢~}(UwB). By 2.1 we know that
i: Uyx...xU,>Uy...Ury...175B
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is a homeomorphism. So according to Lemma 3.4 we only have to show
that elements outside of [U; x ... x U] of the form [(v,,...,v;)], where
v;=r; for at least one ¢, map outside of UwB by ¢. But such elements
are in the boundary of [U;x ... x U,] in M,,, and therefore the images
are in the boundary of UwB, which is disjoint from UwB since it con-
sists of other Bruhat cells.
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