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ON CYCLIC GROUPS OF MOBIUS TRANSFORMATIONS

TROELS JORGENSEN

1. Introduction.

For the study of Kleinian groups it is important to consider their
fundamental polyhedrons. If the groups is of the second kind, i.e. dis-
continuous somewhere in the complex plane, then already a reasonable
fundamental polygon provides some insight. A canonical polygon may
then be defined as done in the book of L. R. Ford [1], by means of the
isometric circles. It is useful to know how this polygon looks for a cyclic
group, especially when the generator is loxodromic but close to parabolic.

In this note the latter case is investigated. The natural question is
whether the polygon of a cyclic group is connected. The answer is in
the affirmative. The polygons are either doubly connected and bounded
by two circles or they are simply connected and bounded by two, four
or six circular arcs. Hence one may distinguish between the different
types of polygons. A refinement is achieved by the description of the
isometric polyhedrons.

The proofs are elementary. They are based on a method of geometric
continuity which generally is applicable to the deformation theory of
finitely generated Kleinian groups. But this topic, being non-trivial, will
be dealt with elsewhere.

The author would like to thank W. Fenchel and A. Marden for many
interesting discussions.

2. Preliminaries.

SL(2,C) is the group of all complex two-by-two matrices with determi-
nant one, the composition being usual matrix multiplication. The neu-
tral element is denoted E.

Let A belong to SL(2,C) and let v be the trace of A. For each integer
n we have by induction

(1) An
where
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and
(2) ﬂn+1 = _.Bn—1+ Tﬂn .

The number 7,= —f,_,+p,., is the trace of A». Evidently g8, and 7,
are polynomials of degrees |n|—1 and |n| in the variable v. Remark that
f_n=—P, and 7_,=1,. It may be convenient to change the variable:
put Tt=z+2"1, then 7,=2"+2"" and

Bn = @*—2"")(z—271)71.
Thus we have the identities

TnTn = TmtnT Tm—n >

(3) ﬂmtn = ﬂm+n+ﬂm—-n s
ﬂmﬁn = (Tm+n_rm—-n)(72—“4)—1 .

Moreover, 8, and 7,, as functions of 7, satisfy

d

E-t Tp = nﬂn s
(4)

—Bn = (n7,— Tﬁn)(rz —4)71.

dv

M =8L(2,C)/{+ E} is a representation of the group of all Méobius

transformations, i.e. the group of conformal orientation preserving map-
pings of the Riemann sphere, Cu{co}, onto itself. A Kleinian group is a
discrete subgroup of M. If A € M and z € Cu{c}, we have explicitly

ab az+b
A = d =
+ (c d) an 4@ cz+d

for some complex numbers a,b,c,d with ad —bc=1.
The isometric circle for 4 € M is defined, provided 4(o0) o0, as

I(4) = {zeC| |dAG)| = |dz]} .

The finite closed disc bounded by I(4) is denoted D(A). By 4 the exterior
of I(A) is mapped onto the interior of 7(A4-!). Some incidence relations
between the isometric circles, to be used frequently, follow immediately
from the chain rule for differentiating composite functions. For example,
D(B) covers an arc s of I(A) if and only if D(BA-1) covers the arc A(s)
of I(4-1). Of importance is the case of three different isometric circles
I(A), I(B) and I(C) passing through a common point x. Assuming that
the points z, A(z), B(zx) and C(x) are distinect, it is natural to consider
three isometric circles for each point, namely through A(x) the circles
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I(4-1), I(BA-!) and I(CA-1), through B(x) the circles I(B-1), I(CB-)
and I(4B-!) and through C(z) the circles I(C-1), I(AC-1) and I(BC-Y).
Suppose each of these four points has arbitrarily small neighbourhoods
which are not covered entirely by the three appropriate discs. Then it
follows, by symmetry, that if at x the sides of the union of the three
discs lie on I(4) and I(B), then at 4(x) the sides lie on 1(4A-1) and I(CA-1),
at B(x) the sides lie on I(B-!) and I(CB-1), and at C(x) the sides lie on
I(AC-1) and I(BCY).

The cyclic group generated by 4 € M is discrete, except when A4 is
elliptic of infinite order. In the discrete case {4"} is discontinuous in
Cu{oo}\ {fixed points of 4} and it is well-known that if 4(cc)= oo, the
set of points outside all D,(=D(4")) is a fundamental polygon, P(A4)
(see [1]).

The configuration of isometric circles I,, (=1I(4™)) is determined up to
similarity by z=trace 4. It is symmetric with respect to the mid-point
of the segment joining A(oc) and 4-1(co). For the study of P(4) we may
therefore use 7 as a parameter and consider only the case where the
centre of symmetry is zero, A(co)—A-1(c0)=7 and 0=argz<n. Under
these assumptions we have

a = (5 )

Then I, has centre C, = — 7,8, ! and radius r, =|8,|™!, provided it is
defined, that is when §, 0. Now remark that (3) implies

Om—on = ﬂm—nﬂm_lﬁn—l

from which it follows that D,, and D,, intersect if and only if

(5) Ba-nl = 1Bl +1Bnl
and that D,, is contained in D, if and only if
(6) Brnnl + 1Bnl = 1Bl -

3. The polygon.

It is fairly easy to describe the polygon P=P(4) if 7 is real or |z = 2.

Assume first 7 €[0,2[. Then A is elliptic and has two fixed points
through which all the isometric circles pass. If 8,40 for all n+0, then
U1, is a dense subset of the complex plane, the group {4} is not discrete
and there is no polygon. Otherwise there exists a smallest natural num-
ber n for which B,=0. In this case 4, as a Mdobius transformation,
generates a group of order n. The boundary of P consists of two circular
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arcs, the sides of P, and two vertices, namely the fixed points of 4. In
particular P is connected and simply connected.
Next assume |7| = 2. Then (2) yields

21Bnl = 1Bm-al + |Bmaal

showing that |§,| is a convex function of the index. The minimum is
|86l =0. The convexity implies

Iﬂm+1| - lﬂml
‘ﬁm—ll - llgm‘

which according to (6) shows that

1) if m>0,

2
2 |4 i m<O,

D, ., is contained in D, if m>0,
D,,_, is contained in D, if m<0 .

Therefore, each of the sequences I,,1,,1,,... and I_,,I 5,1 5,... con-
sists of nested circles. This implies that P is connected and bounded
by I, and I_,. If |7| > 2, then D, and D_, are disjoint, by (5), since

1Bal = |7| > 2 = [By| + Bl

while |7]|=2 is equivalent to D, and D_; being externally tangent. If
t=2, A is parabolic. In this case the fixed point of 4 is the common
point of D, and D_,.

So far we have been dealing with well-known facts. The interesting
case is when |7| <2 and 7 is not real.

In general, P is bounded by six sides. Following the boundary of P
around with P to the left, these sides belong to

Il I I I, 1

-m-n+t-n

for some pair of natural numbers m and n. Such configurations are said
to be of type {m,m+mn,n}. The sides are paired, the one on I; being
mapped onto the opposite one on I_; by A7. The side-pairing transforma-
tions generate the whole group, that is, m and n are relatively prime.

In order to ‘“‘change sides” by varying 7, one has to pass through a
polygon with only four sides. In this case each vertex of P belongs to
three isometric circles. The succession is

for some natural numbers m and n, relatively prime. Such polygons are
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said to be of type {m,n}. The polygons coming from the open half circie
|7| =2 are considered as {1,1}-configurations.

These assertions are proved by a geometric continuity argument ex-
hausting the deformation possibilities of P under variation of 7.

It is easy to see that P is finite sided. In fact, A has two fixed points
and each D, contains exactly one of these as interior point; but the radii
r, converge to zero as |n| increases. Since the intersection of D, and D_,
is non-empty, another consequence is that each component of P is
simply connected.

The main problem is to show that P is connected. Together with its
boundary, P is topologically a torus if points which are equivalent with
respect to the group are identified. Therefore, if ‘new components’ of P
turned up under deformation, at least one would have a side on its bound-
ary being paired to a side of the component containing infinity. That
this cannot happen follows from a general discussion below of the side-
change possibilities.

First we remark that P is of type {1,2,1} when 7 belongs to the open
segment joining 0 and 2:. This is immediately verified.

Starting from a connected polygon, no new side can break out through
an old side under continuous deformation. Otherwise there would be a
value of 7 for which some I, touches the side on I, from the inside. If
z is the common point, then I_, and I,_, have A*(x) as a common
point. Moreover, by (6) and (5), I,_, must be externally tangent to a
side on I_,. It is no restriction to assume that P has a side on /,_, which
ends at A™(x). The symmetry of P implies that a side on I, and a side
on I, _, will be tangent to each other. Therefore, by (5) and (6), I, must
also touch a side on /,_, from the inside. By geometry, this is impossible
unless s—n=n= +1; but if so (6) yields |7|=2.

The corners of the isometric polyhedron (see section 5) which do not
belong to the boundary of P lie strictly above the plane, because
equivalent corners lie in the same height and one corner from each
cycle is the common point of isometric hemispheres defined by three
positive powers of A! It follows that no new component can arise.
Therefore, if the side on I, gets a new neighbour, breaking out through
the vertex y, then an old side disappears through the equivalent vertex
A™y). We conclude that P must be four-sided in the critical situation.
Only one pair of new sides arises and these will be opposite. The new
configuration is completely determined by the old configuration when
it is known which pair of sides disappears.

The previous discussion shows that P remains connected and bounded
by four or six sides as long as 7 lies in the domain under consideration.
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Hence, by the incidence properties of the isometric circles, the sides of P
are forced to succeed each other as described. Of course, this fact is also
a consequence of the continuity method. That the side-pairing transfor-
mations generate the group is well-known.

4. The polygons.

Classification of the polygons according to their types results in a
tesselation of the upper half plane, Im 7 > 0. Define f,, ,, to be the set of
traces 7 for which P is of type {m,n} and define T, ,, as the set of traces v
for which P is of type {m,m+n,n}. Thus the half plane is the disjoint
union of f,, , and T, ,,, where (m,n) runs over all ordered pairs of co-
prime natural numbers, and of the set outside the circle || = 2, where the
corresponding polygons are doubly connected and bounded by the iso-
metric circles I, and I_,.

As one might expect, f,, , is a simple smooth curve with end points
on the real axis. These correspond to elliptic transformations of orders
m and n, elliptic of order 1 meaning parabolic. The set T, , is a curvi-
linear triangle bounded by the curve f,, , from above and the curves
Smmin a0d fo ., , from below. In particular 7', , is connected and
simply connected. The ‘“vertices” are the common end points of f,, ,
and f,, nin> Of fou men and f., , and of f,... . and f, .. These state-
ments will be proved below. The tesselation induces a partial order <
on the set of all ordered pairs of relatively prime natural numbers, alike
the one known from Euclid’s algorithm and from the study of Farey
series, reflecting that elliptic transformations of finite order are exactly
those for which v=2 cosng, where ¢ is a rational number. Explicitly
this ordering is given by (m,n)<(m’,n') meaning that f,. , lies below
f m,n*

Consider first a polygon of type {m,n}. Assume the sides of P on I,
and I, meet at the vertex x through which also I, ,, passes. Then we
have

= —$Tpfnt+Bn " expb,
x = —$Tnn r_r-a}l-n"'ﬂ;t-ll-nexp Om-+n
= - %77;/31;_1 +.Bn_1 expb,

for some purely imaginary numbers 0,,, 0,,,,, 0,. Using that A™+*(x)=
—a, an easy calculation yields exp0,,,,= + 1. Thus, by (3), the equa-
tions reduce to

(7) ﬁm+n exp0 = ﬁmiﬂn
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for an imaginary number 6. Remark that §=6,. The computation can
be reversed. Given 7 and 6 (imaginary) such that (7) holds, there exists
a common point of I,,, I,,., and I,, provided these circles are defined.
This point need not be a vertex of P, but it is mapped onto the opposite
point by 4m+»,

The aim is to obtain information about f,, , from the equation (7).
The roots of §,,,,, as a polynomium in 7, are real. For the present pur-
pose, therefore, it is not necessary to pay attention to the common roots
of ., and B, + 5, but merely to the non constant solutions of (7),
t=17(0). Dividing in (7) by B,,+,, We get

(8) eXPB = (ﬂmi—ﬂn)ﬂ;sin .
Differentiation with respect to t yields
(9) d0fdv = —(nBy £ MPp) (T £ 7,) 1.

The undetermined signs in (8) and (9) are simultaneously all plus or all
minus. It is a routine matter to verify that the solutions of (8) consist
of a finite number of simple closed curves. Each of these has two points
of intersection with the real axis, namely for 6 being a multiple of iz,
as seen either by a direct computation or by a geometric argument. For
fixed (m,n), the solutions which correspond to the same sign do not
intersect; those given by opposite signs may intersect. But it is clear
that only one of the signs is correct for each given polygon of type {m,n}.
Hence we conclude that f,, , is the union of a finite number of simple
smooth curves, each of these connecting two points on the real axis.

It follows, using (9), that f,, , can only approach the real axis orthog-
onally since d@ is imaginary and dt/df becomes real and not zero. If this
occurs, i.e. if f,, , is non-empty, the limit point corresponds to a trans-
formation of order m or n. It is clear that the order d must be finite
and divide m or n; but d cannot be a proper divisor since the radius of I,
then would become too large compared to 7, or r,.

Each component of f,, , has one end for which the order is m and one
for which the order is n. This fact is not true in general for the solutions
of (8), but it follows by geometry for those belonging to f,, ,. Consider
again a polygon of type {m,n} and let x denote the vertex which is a
common point of I,,, I,.., and I,. Then v belongs to some curve in
fm,n- If T approaches one end of this curve, then x approaches the mid-
point of the side on I,, i.e. that side becomes arbitrarily small. At the
other end z approaches the diametrically opposite point. The first case
yields ellipticity of order m; in the second case we have ellipticity of
order n.
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Next we apply induction, taking advantage of 7', , being separated
from the real axis except, possibly, at points corresponding to elliptic
transformations of orders m, m+n or n.

The case m=n=1 needs a special treatment because the polygons of
type {1,2,1} have two different sides on the same isometric circle. It is
known that f; ; is the half circle |7|=2. Trivially the open segment
]—2,2[ contains only one point corresponding to the order 2, namely
zero. Hence T ; is bounded from below by f, , and f, ;. In fact, f, ,
connects —2 with 0 and f, ; connects 0 with 2.

Suppose mn>1 and let §,, , be a component of 7', ,, bounded from
above by a curve g,, ,, which belongs to f,, ,,. Thus §,, , has at least two
boundary points on the real axis, namely the end points of g,, ,,. If these
are the only such points, §,, , must be bounded from below by another
component g,, ,, of f,, .. But this is inconsistent with our knowledge
about the solutions of (8). Both curves, g,, , and g,, ,, satisfy the same
equation; that the sign is the same follows by continuity, using the con-
nectedness of S,, ,, once we recall that the sign depends on whether
Crint+ Bk, or Cpin—pBml, is the mid-point of the side on I,,,,. Also,
S, » cannot have more than three boundary points on the real axis
since no boundary curve connects two points corresponding to the same
order, only three possible orders are in play and, by continuity, the bound-
ary of §,, , does not contain points of some f, , together with points of
f4.»> the corresponding types being oppositely oriented. Hence 8, , is
bounded from below by curves g,, ,,., and g,,.,, , belonging to f,, ...,
and f,,,, », respectively. It follows by the same arguments that g,, ,,.,
bounds a component 8,, ..., of T, ., from above and g¢,,,, , bounds a
component 8,,,, , of T, , from above. In other words, the four-sided
polygons separate six-sided polygons of different types.

In order to complete the discussion, remark that each component of
T, n is simply connected. Hence a covering of the upper half disc is
obtained by repeated application of the above procedure, first defining
8, =T, then deducing the existence of 8, , and S, ; as neighbours of
8;,1. By induction it is verified that there is a one to one correspondence
between all ordered pairs (m,n) of relatively prime natural numbers and
curves g,, . The final conclusion is that g,, ,=fn », and S, ,=T,, .

It is of interest to know that P varies continuously at v=2 in all
directions dv, except dv real and negative. If v approaches 2 in such a
way that 4 comes sufficiently close to elliptic transformations, then P
may degenerate, that is, P may have the single point co as limit. On the
other hand, the continuity is intuitively clear for any direction dr with
non-negative real part.

Math. Seand. 33 - 17
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Consider a sequence {;v} of complex numbers with positive imaginary
parts, converging to 2. The polygons corresponding to {;z} converge to
the parabolic polygon if and only if, for each “diagonal-type sequence”
of isometric circles, the radii converge to zero. This follows from the fact
that the fixed points converge. Assume now that the polygons do not
converge. If necessary, {;z} can be replaced by a subsequence, again
denoted {;z}, such that there exists an increasing sequence {n;} and a
constant K € C for which

liml—»ooﬂm(lt) =K.
Put ;z=z+;z"1. Then ;z—+ 1 as | > . Hence, using the formula
Bu = =2z =z

and that Koo, we deduce that the imaginary part of 2z converges to
zero but not faster than {n,~'}. It follows too that

lim,z"‘ = i 1;

therefore, the absolut value of 2 converges to 1 of higher order than
{14n;1}. This implies that {z} approaches the unit circle tangentially.
Hence {;v} approaches the real axis tangentially.

5. The polyhedron.

Consider the upper half space H, bounded by the extended complex
plane, Cu{c}. That Mcbius transformations operate on H in a natural
way was first remarked by H. Poincaré [2]. Given 4 € M, let S,, denote
the hemisphere in H which has the same centre and radius as I, . The set
of points in H exterior to all S, forms a fundamental domain. This set
is denoted Ph. It is a non-euclidian convex polyhedron. The purpose of
this section is briefly to describe its boundary.

First some notation is needed. Let ¢, denote the intersection of the
closure of Ph with the closure of S,,. If ¢, is not contained in an arc of a
circle, then ¢, will be called a side or a face of P according as ¢, has
points in common with the complex plane or not. Obviously the boundary
of Ph is made up of a finite number of sides and faces together with P.
It is convenient to define ¢, as the closure of P. An edge of Pk has one
or two end points, called corners. By a vertex we mean a corner belong-
ing to ¢,.

In a sense the boundary of Ph collects the information about types
of the polygons obtained in the preceding section. It is intuitively clear
that when 7 is real or if |v|=2, then Ph has three sides, including g,
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and no faces. Polygons of type {1,2,1} correspond to polyhedrons bounded
by five sides, these being ¢,, ¢, and ¢_;, ¢, and ¢_,.

To illustrate what can happen, we consider a polygon of type {1,2}.
By a little push, changing the type of P to {1,3,2}, the four vertices get
lifted into H as equivalent corners of Ph. Next time, for instance by
crossing f3 ,, other four vertices become inner corners of Pk, and ¢, and
@_, become faces.

Let 7 belong to some T, ,, with mn > 1. Then the planar graph formed
by edges and corners of Ph is cubic, i.e. every edge has two end points,
no two different corners are joined by more than one edge and each
corner is the end point of exactly three distinet edges. The sides of Ph
are @q, @, and @_,, @i, and @_. ., @, and ¢_,. Faces are those g,
and @_; for which there exists a number ¢ such that (|¢|,q) < (m,n), with
the omission of |¢|=m or |[¢|=n. The ordering is the one mentioned in
section 4. Let A=A(m,n) be the numbers of strict minorants of (m,n).
Then Ph is bounded by 7 sides and 2(A—1) faces. Moreover, Ph has 6
vertices and 44 other corners; the number of edges is 3(24+ 3).

To see this, again the method of geometric continuity is applied.
Remark the symmetry of Ph. To each ‘“lifted vertex” corresponds a
power of 4 by which it is mapped onto the opposite corner. It follows
that edges joining lifted vertices cannot degenerate as long as A remains
loxodromic. Neither can unexpected faces arise since nothing disappears.
Think of a critical situation where some new S, touches the boundary
of Ph. Then ¢, and ¢_, are either two opposite corners or two opposite
edges. In the first case it is obvious that ¢, would be fixed by some power
of A and hence by 4. In the second case either the two edges were already
equivalent i.e. paired by another transformation, or there must be at
least five isometric spheres containing ¢,. Using the symmetry of Ph,
we deduce that two unexpected powers of 4 map ¢, onto ¢_,. But this
is contrary to the assumption of 4 being loxodromic: no boundary point
of Ph is a fixed point.

The conclusion is that no corner of Pk can belong to four distinct
isometric spheres when 4 is loxodromic. Such a point would be fixed
by A. No edge can degenerate under deformation without having a
vertex as end point. Therefore faces are preserved or they change becom-
ing sides. In the opposite direction, faces can only arise from sides being
“pushed in” and this process does change the ¢, in question from a side
to a face. In other words, any essential modification of the boundary of
Ph takes place at the vertices. Since we already know how the sides
change, the description is reduced to a simple combinatorial problem.
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