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ON FILTERED MODULES
AND THEIR ASSOCIATED GRADED MODULES

GUNNAR SJODIN

Introduction.

This paper considers the relation between a filtered ring A and its
filtered modules on one hand and their associated graded objects on the
other. The first two sections are devoted to definitions and elaboration
of our main tools. Let 4 be a filtered ring and N a filtered 4-module.
In section 2 the main result states that

Lw.dim, N = grlw.dimg ,E(N),
where E(-) denotes the associated graded object, and that
glwdimA4 =< grglw.dimE(4).

In section 3 we discuss direct sums in the category of filtered modules.
In section 4 we prove that, assuming certain finiteness conditions, then
E(N) injective over E(4) implies that N is injective over 4. Furthermore,
we give an example which shows that some kind of finiteness condition
is necessary. In section 5 we study the possibility of lifting projective
modules over E(A) to projective modules over 4.

0. Definition of relevant concepts.

We shall study a filtered ring 4 and filtered (left or right) modules
over A. All filtrations are supposed to be increasing and we always as-
sume that 1€ Fy4. If M is a filtered module then the filtration F,M
is said to be:

discrete if F, M =0 for p <p,, where p, depends on M,
separated if F, M =0,

exhaustive if M=UF, M,

complete if M =projlim M/F,M.

L e

Thus a discrete filtration is complete and a complete filtration is
separated. Note that if we topologize M, using Fy,M as a fundamental
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system of neighborhoods of 0, then F, M is discrete, separated or complete
iff the associated topology is discrete, separated or complete respectively.
The ring of integers ,Z, will always be assumed to be filtered by F,,Z=0
for p<0, F,Z=7Z for p=0. As a graded ring, Z will be given the grading
Z7=0 for n+0, Z°=Z. Note that in particular “Ey(Z)=2Z".

Our interest will be in the three types of categories described below.

If C is a ring then MM (M) will denote the category of left (right)
C-modules and the usual homorphisms.

If B is a graded ring then we let the objects in gr ;M (griy) be the
graded left (right) modules over B. The grading M* of a graded module
will be said to be discrete if M?=0 for p<p,, where p, depends on M.
A homomorphism f: M — N in gt (M), i.e. in the corresponding un-
graded category, will be said to be of degree n if f(M?)< N?+» for every
integer p. This gives us a graded Z-module Hom (M,N), where
(Hom (M, N)) consists of the homomorphisms of degree n. As the mor-
phisms in gryIM (grMy) we take homy(M,N)=(Hom(M,N))°, Then
grpI (grMz) becomes an abelian category with ‘‘sufficiently many”
projective and injective objects.

An object M in gr zM (grM ) is said to be gr-projective, -injective, -flat
if it is projective ete. in gr zgM (grM ). If we say that it is projective ete.
without the prefix gr- then we mean that it is so in the corresponding
ungraded category pM (Mz). We say that M is gr-free if it is free in
M (M) and has a basis consisting of homogeneous elements. It is easy
to show that each M has a gr-free resolution and that M is gr-projective
iff it is projective.

Note that TorB, is a functor

grMfp x grpgM — gr, M .

Furthermore, Tor®,(M,N) considered as an ungraded object is our usual
TorE, (M,N) when B, M, N are regarded as ungraded. This follows im-
mediately from the way we compute it. We have also defined a functor

Homy: gr ;9 x gr ;I — gr, M .

It is clear that Homg (-, N) is exact iff NV is gr-injective. Using the derived
functors of Homy we get the functors

ExtB,: gr ;M x gr ;M — grM .

If A is a filtered ring then we let the objects in filt ;M (filtM ) be the
filtered left (right) A-modules. Let M,N be filtered 4-modules and let
f: M — N be a homomorphism of A-modules. Then f is said to be of filt-
degree nif fF, M < F,,, N for every integer p. The homomorphisms M->N
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of finite filter-degree will be denoted by Hom ,(M,N). As the morphisms
in filt ;M (filtM ,) we take the homomorphisms of filt-degree 0 and the
morphisms M — N will be denoted by hom ,(M,N). It is clear that we
then get a category and that this category is not abelian in general.

It is well-known that there is a functor

E,: {ilt M - grp I .

We shall denote this functor simply by E. A morphism f e hom ,(M,N)
is said to be strict if fF, M =imfnF,N. It is shown in [2, pp. 36-37]
that if

KIsM- I, N
is strict exact (i.e. it is exact and f and ¢ are strict) then

EK) 2D By 22 B
is exact.

Finally, all rings are supposed to have a unit element and all modules
are assumed to be unitary.

1. Strict morphisms and exactness. Free objects in filt ,J&.

We want to somewhat extend the above mentioned and some related
results in [2].

LemmMa 1. Let 4 be a filtered ring and let

be a 0-sequence in filt , M. Consider
(2) E(K) > E(M) > E(N) .
We have

(a) If (1) is strict exact then (2) is exact.

(b) If (2) is exact and Fy M 1is exhaustive then g is strict.

(c) If (2) is exact, F K is complete and F,M is separated then f 1s strict.

(d) If (2) is exact and F, M is discrete then f is strict.

(e) If F K is complete and F, M 1is exhaustive and separated or if F M
18 exhaustive and discrete then (1) is strict exact iff (2) is exact.

ProoF. (a) Let E(g)mP=0, where m € F, M and m® is its canonical
image in
E»M) = F,M|F, M.
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Then g(m) € F,,_; N so that g(m)=g(m’), where m’ € F,_; M. It follows
that m—m’'=f(k), where k€ F,K, so that

mP = (m—m') = f(kp = E(f)kv .
Thus (2) is exact.

(b) Let n eimgnF,N, n=g(m). Since F,M is exhaustive we can as-
sume m € F,, .M. If s=0 we are done. Suppose s> 0. Then E(g)mP+=0
and hence

mP+s = E(f)kbt;, where k,, . eF, K,

m _f(kp+8) € Fp+s—-1M and g(m _f(kp+s-1)) =n,

i.e. we can reduce s to s—1. By induction we get n € gF, M.
(c), (d) Let meimfnF,M. Hence E(g)mP=g(m)? =0, which shows
that m? = E(f)k?,, that is,
m—f(k,) eimfnF, M, where k,eF,K.
By induction we get an element k,_,€ F,_ K such that

m—fk,+ ... +ky_)eimfnF, ., M.
If F, M is discrete we shall be done after a finite number of steps, which
proves (d). If F,K is complete we get
k=23020ky-s€F,K
m—f(k) = lim,_, (m—flk,+...+k,_,) =0

if F,M is discrete. This proves (c).

(e) It only remains to prove that if (2) is exact then (1) is exact.
Let me M, g(m)=0. Since F,M is exhaustive we can assume that
meF,M. We have E(g)ym?=0, so that m—f(k,)e F, ;M for some
k, e F, K, and g(m—f(k,))=0. By induction we can choose k,_,€ F, K

such that
m—flky+ ... +ky g)eF, M.

and

If F,. M is discrete we shall be done after a finite number of steps. If
F.K is complete and F, M is separated then we get

m = fzogs«:o kp—s .
Next we consider the free objects in filt IR (cf. [7]).

DEriniTION. Let L efilt ;. L is then said to be filt-free if L is free
in ,9M and has a basis {z;};.; such that there are integers p(¢), ¢ € I with
the property

FPL = Zsﬂ)(i)—rp F,A-z;.
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The set {(x;,p(1))};c; Will then be called a filt-basis for L.
The following lemma is easy to prove.

LemMma 2. Let L efilt ;M. We have

(a) If L s filt-free with filt-basis {(x;, p(?))}se; then E(L) i3 gr-free and
{xP®},.; ts a homogeneous basis.

(b) If E(L) ts gr-free with homogeneous basis {x?P};.; and F,L 1is
discrete then L is filt-free with filt-basis {(x;,p(1))}ses

(c) If M egry IR ts gr-free then there is a filt-free L efilt ;MM such
that E(L)=M.

(d) Let L be filt-free with filt-basis {(x;,p(t))};;- Suppose that M e
tilt ;M and that f: {x;};c; ~ M is a function such that f(x;) € Fg,pp M.
Then there is unique homomorphism L — M of filter-degree s which ex-
tends f.

(e) Let L be filt-free, M € filt ;I and suppose that g: E(L) - E(M) is a
homomorphism of degree s. Then there is a homomorphism f: L - M of
filter-degree s such that “E(f)’ =g (¢f. Lemma 15).

(f) Let L be filt-free. Then F,L ts exhaustive or separated iff F, A s
exhaustive or separated respectively. If F', A is discrete and {p(i)};c; (defined
as above) is bounded below then F,L is discrete. If I s finite and F, A s
complete then F, L is complete.

(g) Let M efilt [ IR. Then there is a resolution of M

—>L2——fz—>Ll~Il—>Lo——f°—>M—>0

such that every L, is filt-free and every f, is a strict homomorphism in
filt ;M. Such a resolution will be called a strict filt-free resolution of M.
Note that if F,A and F, M are discrete then we can assume that every
F.L, is discrete.

Furthermore, if FyA is exhaustive and complete, E(A) is noetherian and
E(M) is f.g. then we can assume that every L, is f.g.

2. Weak dimension.

Let A be a filtered ring and assume that M efiltM,, N efilt M.
Filter M® 4N by letting F,(M® 4N) be the sub-Z-module of ¥® N
generated by elements of type m® 4 n, where m € F,. M, ne F\N with
s+t < p. This defines a functor

®.4: HilbIN , x filt , M — Filt M .

Clearly F,(M® ,N) is exhaustive or discrete if F,M and Fy,N are ex-
haustive or discrete respectively.
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% = x(M,N): E(M)® g E®N) > E(M® 4N)

be given by x(m*® g yn')=(mQ 4n)**. This obviously well-defines »x
since the right-hand expression is independent of the choice of represen-
tatives m,n and is bilinear in m?,n!. Clearly » is a natural transformation
and x(M,N) is always an epimorphism.

For M=A we have a morphism 7: AQ N — N in filt ,fM given
by t(a® n)=an. Now 7 is an isomorphism in IR and

F,N = 1-F,N ¢ FyA-F,N < 1F,(AQN) < F,N .

Consequently tF,(A®, 4N)=F,N and thus 17'F N=F,(AQ,4N) so
that 7 is an isomorphism in filt ;. We have a commutative diagram

in gr g oM v
EA)® ,E(N) — E(N)

(A, N) E()

E(AQ4N)

where ¢p(bQ® g y) =by. It follows that »(4,N) is an isomorphism. Simil-
arly »(M,A) is always an isomorphism. We summarize in

Lemma 3. There is a natural epimorphism
#(M,N): E(M)@gE(N) ~ EMS4N)
given by x(m*Q g on') = (MR 4n)3+. Furthermore, »(A,N) and »(M,A) are
isomorphisms in gr g oM (grMzy).
Using » we get the following result

LemmaA 4. Let A be a filtered ring and let N € filt ;M. Suppose that
F.A, F N are discrete and exhaustive and that E(N) is gr-flat. Then N is

flat.

Proor. Let J be a right ideal in A. Filter J by F,J =JnF, A that is,
give J the filtration making the inclusion ¢: J — A4 a strict morphism in
filtIM ,. Then E(3): E(J) —~ E(A) is & monomorphism by lemma 1. Con-
sider the commutative diagram

E() 1
B @ BE) —28EA , B(A)@ g B(N)

J, N)|epi iso | x(4, N)

E(i®4al)

E(J®4N) > B(AQ4N)
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Since E(N) is gr-flat we infer that E(i)®g1 is a monomorphism. Thus
%#(J,N) is a monomorphism and hence an isomorphism. It follows that
E(i® 41) is a monomorphism. Now F,(J® 4 N) is discrete and exhaustive
and so, by lemma 1, i® 41 is a monomorphism. This proves that N is
flat.

LeMmA 5. Let A be filtered ring and let N € filt ;M. Suppose that F, A
and F.N are discrete and exhaustive. Then

Lw.dim N =< grlw.dimg,E(N)

Proor. Suppose that the right-hand side is <n. Let

o-L-tsp, I8 Lop NS

be a strict exact sequence, where Ly,. . .,L,_, are filt-free and F,L,,. ..,
F.L, ,,F.L are discrete and exhaustive. This gives us an exact sequence

0> E(@L)Z% B(L, ) > ... > B(L) 228 B(L,) 2 B(N) - 0

in gr g M, where E(L,),. . .,E(L,_,) are gr-free and consequently gr-flat.
Thus E(L) is gr-flat, which by lemma 4 implies that L is flat. Consequently
l.w.dim N £n and the proof is complete.

THEOREM 1. Let A be a discretely and exhaustively filtered ring. Then
glw.dim4 = gr.glw.dimE(4)

Proor. Suppose that the right-hand side is <n. Let N € /M. Filter
N by F,N=F,A-N. Then N efilt ;M and F,N is discrete and exhaus-
tive. Thus lw.dim, N <grlw.dimy  E(N)<n and it follows that
gl.lw.dim A <n» and this concludes the proof.

Now let us consider a graded ring B. Let M egrMy, N egrpM.
Then M®QyzN is a graded Z-module (this is due to the fact that there is
an exact sequence

M®;BR;N > MR,N>MQzN -0

where ¢(m ®;b Q1) =mb Q;n—m Qzbn). Give B, M, N the associated
filtrations i.e. F,B=@®,,B" etc. Note that (M @pN)? is the Z-sub-
module of M ® z N generated by elements of type m @pn, where m € M,
n € N* and s+t=q. Thus the associated filtration of M @z N is given
by letting F,(M ®5N) be the Z-submodule of M ® 5N generated by
elements of type m ®zn, where m € M?, ne N* and s+t<p. But this
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submodule F,(M ®zN) is then also the Z-submodule of M @z N gener-
ated by elements of type m @ gn, where me F, M, ne F\N and s+t<p
that is, the earlier introduced filtration, induced by F,M, F,N, coin-
cides with the associated filtration. Note that the associated filtration is
exhaustive and separated for any graded module. In particular
F,(M ®pN) is exhaustive and separated. If we re-examine the proof of
lemma 4 we find that in order to conclude that 7 ® 41 is a monomorphism
we really only need F,(J ® N) to be separated (instead of discrete).
Furthermore it is clear that N € gr ;M is gr-flat iff J QN -~ BRQgxN is
a monomorphism for each graded (even f.g. graded) right ideal J. Further-
more, “E(B)=B, E(M)=M, E(N)=N" as graded objects.
All this adds up to,

LemMMA 6. Let B be a graded ring and let N € gr gM. Then N is gr-flat
iff it is flat.

In the same way as before we obtain

THEOREM 2. Let B be a graded ring and let N € gr g, Then
grlw.dimpN = lw.dimgXN ,
grglw.dimB < glw.dimB

with equality also on the last line of B* is discrete.

Proor. The inequalities < are both trivial. The reverse inequality on
the first line follows from lemma 6 using a gr-flat resolution of N. On
the second line the reverse inequality follows from theorem 1 when B*

is discrete since then the associated filtration of B is discrete.

In analogy with [7] we also obtain,

THEOREM 3. Let B be a positively graded ring. Suppose that gl.w.dim B®
=0 that is B® is von-Neumann reqular. Then

glwdimB = l.w.dimzyB® = r.w.dimgB°.

Proor. Let M € ;IR and give B the associated filtration. Filter M by
F,M=0 for p<0 and ¥, M =M for p=0. Then E?(M)=0 for p+0 and
hence E(M) is annihilated by the ideal J =@, ,B", which shows that
we can consider (M) as a module over B°=B/J. By lemma 5 and [3,
exercise 5 page 360] we have
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LlwdimgM = lw.dimgB(M) £ l.w.dimpB°+1.w.dimg, E(M) =
= Lw.dimgB°.

Since M is arbitrary we get gl.w.dim B=1.w.dimgzB°® and by symmetry
also gl.w.dim B =r.w.dimz B°.

3. Direct sums, suspensions and the natural transformation x.
In the following 4 is supposed to be a filtered ring.

LEMMA 7. Let
(1) foM, > M, xel

be morphisms in filt ;M. Then (1) is a direct sum system in filt ;M ff it ¢s
a direct sum system in I and

F;pM = zafa(FpMa) .

Proor. Suppose that (1) is a direct sum system in I and
FpM = Eafu(FpMu) .

Let g,: M, > N, « € I be morphisms in filt ;9. Then there is a unique
morphism ¢g: M — N such that gf,=g, for each x € I. But

ngM = gZafanMa = ZaganMa < FpN

Thus (1) is a direct sum system in filt ;. Now assume that (1) is a
direct sum system in filt k. Let g,: M, > N, « €I be a direct sum
system in ,IR. Filter N by

F,N=39F,M,.

Clearly this makes N an object in filt ;I and it follows from what we
have already proved that it is a direct sum system in filt 9. Thus there
is a unique isomorphism f: N - M in filt ;I such that fg,=f, for each
a € I and this implies that

rF,M=3,fF,M,.

Note that the proof above at the same time shows that filt ;MM has
arbitrary direct sums.

Lemma 8. Let
foM, - M, «xel

be a direct sum system in filt ;. Then
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E(f):EM,) > EM), o«cl
18 @ direct sum system in gr g M (and thus also in gz HIN).

Proor. Let m? € EP(M). Then me F,M and m=3,f m,, where

m,€ F,M, and all but a finite number is 0. Consequently
mp = (zafama)p = z“ (fama)p = za 'E(fa)map M
On the other hand suppose that E(f,)m,?=0. Then

Jomo € Fp s M = 3, f3Fy 1 M,

and it follows that f,m,=3,fsns, where nye F,_, M;. Then my;=0 for
p+o and m,=n, e F,_;M,. Thus we get m,»=0, which concludes the
proof.

2l

DeriniTioN. Let M efilt ;. Then the nth suspension s"M e filt ;I
is defined by s"M =M as A-module but with filtration

Fps"M=F, M.

pin

Similarly if B is a graded ring and N € gr ;R then the nth suspension
s"N is N as a B-module but with grading (s"M)? = MP+n,

It is clear that L € filt ,9M is filt-free iff L is the direct sum in filt ;M
of suspensions of 4 considered as a filtered left 4-module. Furthermore,
if {(#,,P(x))},er is a filt-basis for L then L=@, ;s 7“4 in filt ;. We
have E(s"M)=s"E(M) and

Sm.M ®ASnN = 8m+n(M ®AN)

in filt,IM (or gr, M) if 4 is a filtered (or graded) ring. If f: M — N is a
morphism of filtered (graded) modules then we get a morphism
s*f: s M — s"N, where s"f=f as a morphism of modules. It is clear that
under these identifications we also have

x#(8™M,s"N) = sm™tny(M,N) .

In particular x(s™M,s"N) is an isomorphism iff »(M,N) is an isomor-
phism.

Now suppose that f,: M, - M,x € % and gs: N, > N, f €B are direct
sum systems in filt, and filt ;M respectively. This gives us a direct
sum system

fo®a9s M, Q@ Ny > M QN

in ;9 and f, @ g, are morphisms in filt,I. Let x € F (M ® 4N). Then

T = 2“61 m(i) ®An(i) ,
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where m® e F ,, M, n®® € Fy, N and s(i) + (1) = p. Consequently

m® = za fama('i) ,
where m,® € F M, and n®=3,q9,n,9, where n,9 e Fy,N,. Thus

m, D Q n e F (M, ®4,)
and

xr = Ei m(‘i) ®An(i) = Za,ﬂfa®gﬁ Zi ma(i) ®Anﬁ(i) s
which shows that

Fp(M ®AN) = za,ﬂfot ®AgﬂFp(sz ®ANﬂ) .
We have proved,

Levma 9. Let f,: M, —~ M, x € A and gs: Ny -~ N, f €B be direct sum
systems in filtIN ,, filt M respectively. Then

fa®Agﬁ:Ma¢®ANﬁ_)M®AN’ (‘x:ﬁ)e%x%

18 a direct sum system in filt,IN.

Let the situation be as in lemma 7 and consider the commutative dia-
gram
E(M,) ®ppEWN,) —=T0 . (M, 2,N,)

E(f2) ®E(4)E(gp) E(fa® a9p)

v

R BM @)

E(M) QpuEN)

for xe A, p€B. By lemmas 8 and 9 it follows that both systems of
vertical arrows are direct sum systems. Hence »(M,N)=®x(M,,N,) is
an isomorphism if every »(M,,N;) is an isomorphism. If we combine
this result with lemma 3 we get,

Lemwma 10. If either M e filt I , or N e filt ;I is filt-free then »(M,N)
8 an isomorphism.
Lemma 10 gives us an alternative proof of lemma 5 as follows: Let
—~Ly-> Ly~ Ly—>N—~>0

be a strict filt-free resolution of N, where every F, L, is discrete and ex-
haustive. Let M € filtIM ,. We get a commutative diagram
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- BE(M) Qg B(Ly) ~ BE(M) @ gy (Ly) — E(M) Qg E(Ly) ~ 0

i80 | % iso |2 iso|x=

+
-~ EM® L) -~ EMR,L) - EM@4L) —~0

which implies that

El*’"(M ®AL*) = HnE(M ®AL*) = Hn(E(M) ®E(A)E(L*))
= TorE4, (E(M),E(N)).

Thus Tor®4 (E(M),E(N))=0 yields E,*»™(M ® 4L)=0, whence
Tor4, (M,N) = H,(M & ,Ly) = 0

if Fo(M R®4L,) is exhaustive and complete (cf. [4, page 18]). In our
particular case we even have F,(M ® ,L,) exhaustive and discrete.
We have proved,

LemmA 11. Suppose that F, A is discrete and exhaustive. Let M € filt N ,
and N efilt M, where Fy M and F, N are discrete and exhaustive. Then
Tor®4 (E(M),E(N))=0 implies that Tor4, (M,N)=0.

Now lemma 5 follows easily from lemma 11 since we can filter any
M e M, by putting F,M=M-F,A.

The following result implies proposition 7 in [8] by considering K as a
filtered ring with F,K =0 for p<0 and F, K=K for p=0.

Lemma 12. Let A be a filtered ring and let M e filt M 4, N e filt .
Suppose that F, A, F. M, F,N are all discrete and exhaustive. Then
#(M,N) is an isomorphism if either E(M) or E(N) is flat (which is equiv-
alent to gr-flat by lemma 5).

ProoF. Assume that E(M) is flat. Let
(1) 08I N0

be strict exact, where L is filt-free and all filtrations are discrete and
exhaustive. Consider the commutative diagram

1®E(a4)E(9) B
—_—

1 E(f)
0 > B(M) @5 B(S) ~229™ B(M) @ iy B(L) (M) @ g B(N) > 0

epl | »(M, S) iso | (M, L) epi|»(M,N)

0> EM®,8) E(1®4/f) E(1®49)
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Since (1) is strict exact and E(M) is flat it follows that the upper row is
exact. Hence E(1 ® ,f) is a monomorphism and E(1 ® ,¢) is an epimor-
phism. Now F, (M @ ,48), Fou(M @ 4L), Fo (M @ 4N) are all discrete and
exhaustive. Thus by lemma 1 (b) (with L=0) 1 ®_f is strict and by
lemma 1 (c) or (d) (with N =0) 1 ® ,g is strict.

By lemma 4 M is flat so that

0->Me,8 2 we, L 24 Mg, N0

is strict exact. Thus the lower row above is exact by lemma 1 (a). The
5-lemma now shows that »(M,N) is an isomorphism.

The proof that »(M,N) is an isomorphism when E(N) is flat is of course
analogous.

4. Injectivity.

Let M,N efilt ;I and filter Hom (M, N) by letting F,,Hom ,(M,N)
be the homomorphisms M — N of filt-degree p (cf. [4, page 19] and [6]).
This gives us a functor

£ilt M x filt (IR — filt, M .

It is clear that F, Hom , (M, N) is exhaustive. However, we need not have
Hom ,(M,N)=Hom ,(M,N) even if M is filt-free and N =4 is discrete
and exhaustive (let M has a filt-basis {(2;,0)},<;<0 and let f: M — A be
given by f(x;)=a;, where a, ¢ F;A, which is possible if 4+F 4 for
every p). We have,

LemmMa 13. Let M, N e filt IR. Then

(@) If FyM is exhaustive and F N is separated then F, Hom ,(M,N)
is separated.

(b) If FyM s exhaustive and FyN is discrete then F,Hom ,(M,N) is
discrete.

(¢) If FuM is exhaustive and F,N is complete then F,Hom ,(M,N) s
complete.

Proor. (a) Suppose that fe(,F,Hom,(M,N). Then fF M<
N,F,,.N=0. Thus fM=fU,F, M =0. The same argument proves (b).
(¢) We have to show that the projective system
————Hom (M,N) —————
p>q: ®p g

|
Hom , (M, N)/F,Hom ,(M,N) —*-. Hom , (M, N)/F ,Hom 4(M,N)

Math. Scand. 33 — 16
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represents Hom ,(M,N) as projlim Hom (M, N)/F ,Hom 4(M,N).

Suppose that we are given f,, e Hom 4(M,N)/F,Hom 4 (M,N), for each
p € Z, such that ¢*f,=f, when p>q. Then we have to show that there
is a unique f € Hom 4 (M, N) such that ¢,f=f,, for each q € Z. Since each
@, is an epimorphism we have f,=¢(g,) where g, € Hom ,(M,N). The
uniqueness of f, if it exists, follows from (a). As for existence, let g, be
given as above. Then g, —g, € F,Hom 4 (M, N) for ¢ > p and consequently
(9p—9)F M<F, N for each integer s. Let x € M. We may assume
that « € F, M, for some ¢, since F, M is exhaustive. Then

gp(x) —gq(x) = (gp_gq)(x) € Fl+qN )
which shows that (g,(x)) is a Cauchy-sequence in N. Since N is complete
we may define a function f: M — N by
f(x) = ﬁmp—)oogp(x) .
It is clear that f € Hom  (M,N). Note that for x € F\.M

gp(x) € gq(x) +Ft+qN, pgq ’

whence f(x) € g,(x)+ Fy N. Thus (f—g,)F,M<F, N so that f—g,e
F,Hom ,(M,N). We conclude that f € Hom (M, N) and that ¢,f=f, for
every integer g.

DeriviTION. Let M € filt ;M. We say that M is filt f.g. if there exists
a finite set {(x;,p(¢))}1<i<n, Where z; € M and p(i) are integers, such that

F,M = Zs+p(i)§p Fod-z;.

In particular, every f.g. filt-free object in filt ,9M is filt f.g.
Following [2] page 41 we get,

Lemma 14. Let M € filt ;. Assume that F,A is complete and F M is
separated and exhaustive. Then M is tilt f.g. of E(M) is f.g.

Proo¥. Let {z;?},_;., be a homogeneous set of generators of E(M).
Let L be filt-free with filt-basis {(y;,0(4))}1<i<n. Define f: L ~ M by
fly;)==;. Then E(f) is an epimorphism. By lemma 2(f) F, L is complete
and thus, by lemma 1(e) (with N =0), f is an epimorphism, which shows
that M is filt f.g.

Lemma 15. Let M,N efilt ;M. Assume that M is filt £.g. and Fo M 1s
exhaustive. Then
Hom ,(M,N) = Hom,(M,N) .
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Proor. Let {(x;,p(!))}1<s<n be as in the definition of filt f.g. and let
feHom,(M,N). Then there is an integer s, such that f(x;) € Fu),,N
for 1 =¢=n. It is then obvious that

feF,Hom,(M,N) < Hom (M,N) .

We can construct a natural transformation (cf. [6])
¢ = ¢(M,N): EHom (M ,N) - Homgy,,(E(M),E(N))
by @(f?)(x?) =f(x)?+4, between functors from filt M x filt M to gr M.

Lemma 16. Let o(M,N) be as above. Then ¢(M,N) is always a mono-
morphism and it is an isomorphism if M is filt-free.

Proor. Suppose that ¢(f?)=0. Then f(z)?+2=0 for every xe F, M
and every integer ¢ and hence fF, M <F,, N, for every integer g.
Thus fe F,_;Hom ,(M,N), which shows that f?=0.

Now assume that {(x;,p(7))};c; is a filt-basis in M. Then {x,7®},_; is a
homogeneous basis in E(M). Thus, if g € Homy,,(E(M),E(N))?, then we
have

g PO = gy pi+p

so that if we define f: M - N by f(x,) =y, then ¢(f?)=g.

Lemma 17. Suppose that B is a graded ring. Let N € gr g. Then the
following statements are equivalent,

(a) N s gr-injective (i.e. injective in gr zM).

(b) homg(-,N) is exact.

(¢) Hompg(-,N) is exact.

(d) Homg(s,1): Homg(B,N) -~ Homg(J,N) is an epimorphism for
every homogeneous left ideal J in B.

Proor. Obviously (a) and (b) are equivalent and (¢) implies (b) and
(d). That (b) implies (c) follows by using suspensions, noting that
Homy(M,N)? = homg(sPM,N).
Finally (a) follows from (d) as in [3, page 9].
Lrmma 18. Let B be a graded ring and let N € gr g, Then N is gr-

tnjective if N is injective.

Proor. Consider a diagram



244 GUNNAR SJODIN

N

1
0—s M !> K
in gr g, with exact row. Then there is an h € Homg(L,N) such that

hg=f. Let H: K — N be given by H(k,)=the component in N, of A(k,),
where k, € K, . Then H € gr ;I and Hg=f. Thus N is gr-injective.

THEOREM 4. Let N e filt I, where F, A is exhaustive and F N com-
plete. Suppose that E(N) is gr-injective. Then
Hom 4 (4,1): Hom ,(A4,N) = Hom ,(4,N) -~ Hom 4 (J,N)
18 an epimorphism for every left ideal J of A i.e. every homomorphism
f:J = N of finite filt-degree can be extended to a homomorphism A — N.
Proor. Filter J by F,J=JnF,A so that i:J - 4 is a strict mono-

morphism. Consider the commutative diagram

EHom 4(3, 1)

E Hom, 4 (4,N)

E Hom ,(J,N)

oA, N)|iso mono | ¢/, N)

| .
Homy,(E(4), B(N)) Z2E0E0D Homy, ,(E(J), B(N))

E(i) is mono and E(N) is gr-injective. Thus Homy,,(E(:),1) is epi. Hence
@(J,N) is an epimorphism and therefore also an isomorphism. It follows
that EFHom,(s,1) is an epimorphism. Now F,Hom(4,N) and
F, Hom,(J,N) are exhaustive and complete by lemma 13(c). Thus
Hom 4 (7,1) is an epimorphism by lemma 1(e) (with N =0).

DrrFiNiTION. Let C be a ring. Then N € ;M is said to be principal-
injective if every homomorphism

f:Cx—>N, =zeC
can be extended to C.

THEOREM 5. Let N € filt ,M, where F, A is exhaustive, F, N complete
and F,N =N for pzt. Suppose that N is principal-injective and E(N) is
gr-injective. Then N 1s injective.
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Proor. Let J be a left ideal in 4 and give J the induced filtration.
Suppose that f: J - N is a homomorphism. By theorem 4 it is sufficient
to prove that f is of finite filt-degree. Assume the contrary. Then there is
an a € F),J such that f(a) ¢ F,,,N. Consider f/Ca: Ca — N. This homo-
morphism has an extension 4 —~ N and consequently f(a)=ac for some
ce N=F,N. Thus f(a) € F,,,,N which is a contradiction.

REMARKS. (a) A filtration which stops as above is obtained e.g. if one
filters with ideals.

(b) By lemmas 14, 15 and theorem 4 it follows that if F', 4 is exhaustive
and complete and E(A4) is noetherian and self-injective that is a QF-ring
then A is a QF-ring (thus F, A will automatically be discrete if Fo4 =4
since 4 is artinian). In this way J.-E. Roos in [6] gives a very short
proof of the main result in [1]. At the same time he strenghtens this,
using a spectral sequence, to:

E(A) noetherian, F, A exhaustive and discrete yields

Linj.dim 4 < gr.linj.dimg ,B(4) .

This works even if ', 4 is only assumed to be complete instead of discrete.

(¢) Let B be any non-left-noetherian ring. Grade B by B°=B and
B"=0 for n#0. Let J,=J,<... be a strictly increasing sequence of
left ideals in B and put J=U,_; . J;. Define M € grzM by

M = @rigicoo IUIT7) 5

where I(J/J;) is the injective envelope of J/J; in zI (as a matter of fact
any injective module in IR containing J[J; will do). Let f: J -~ M be
given by

fU) = Prgicooli+J0) -

Then f is well-defined, since j + J ;= 0 for 7 2 n(j), and f is a homomorphism
in zIR. This homomorphism has no extension F: B — M since then we
would have

F(1) € Dr1gicn BT [T)
and thus f(J) < ®,<;<, E(J[J;), whence

f(J) < @1§i<nJ/Ji .

This implies J <J,, which is a contradiction. Consequently M is not
injective. Now let L be a left ideal in B and let g € Homg (L, M)? that is
g9: L -~ E(J|J,). Since E(J[J,) is injective there is an extension G: B —
E(J|J,) of g, which shows that M is gr-injective. Hence M is a positively
graded ring which is gr-injective but not injective. If we give B and M
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the associated filtrations we get a discretely and exhaustively filtered
ring B and a discretely and exhaustively filtered M e filt ;9 such that
E(M) is gr-injective but M is not injective.

5. More about direct sums.
We have the following slight strengthening of [5, page 72].

LEeMMA 19. Let A be a complete topological ring, which has a fundamental
netghborhood system of 0 comsisting of additive subgroups. Let ¢: A - B
be a ring-homomorphism such that every x € kerg is topologically nilpotent
that is ™ — 0 when n — co. Then every idempotent in im @ can be lifted to A.

Proor. Let b eimg be an idempotent. Suppose that b=g(a). Thus
@(a®—a)=0 so that n=a?—a € kergp. Put

¢ = a+d(l-2a)

where d is to be determined (note that 1—2a=f"(a), where f(x)=x—x?).
Suppose that d commutes with a. Then ¢2=c¢ is equivalent to

(1) (@ —d)(1+4n)+n = 0
which has the formal solution
d=31-(1+4n)) = } Dicpen (—1)F1(F)0k

Now $(%) is an integer since (%) is the coefficient of 1¥(—1)¥ in the
binomial expansion of (1—1)%*=0 and the other terms occur pairwise
and thus have an even sum. It follows that the expression obtained for d
is a power-series in n with integer coefficients and since any sequence
a;,n¥, where a, are integers, tends to 0 we conclude that the power-series
converges. We find that d given by this series really commutes with a
and hence satisfies (1). Consequently c=a +d(1 —2a) is an idempotent
and since

d =m0 3(— 1)k-1(%y k-1 ¢ ker g

we conclude that ¢ —a € kerg. This shows that ¢ lifts a.

LeMMA 20. Let A be a filtered ring and let M € filt IR, where Fy M s
exhaustive and complete. Assume that f: M —~ M is a homomorphism in
filt ;M such that E(f)2=E(f). Then there is a homomorphism g: M -~ M
in filt ;N such that g*=g and E(g)=E(f). The homomorphism g is auto-
matically strict.
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Proor. Consider the mapping
@: hom (M, M) - homy,(E(M),E(M))

given by @(h)=E(h). Note that hom , (M, M) and homy,, (E(M),E(M))
are rings with multiplication defined by composition and that ¢ is a ring-
homomorphism. Filter hom , (M, M)<Hom (M, M) by the induced fil-
tration. Since

hom , (M, M) = F,Hom , (M, M)

we see that hom , (M, M) is closed in Hom ,(M,M). Thus hom , (M, M)

is complete by lemma 13(c). Note that hom , (M, M) is a topological ring
since

feF_,hom, (M,M), geF_,hom,(M,M)
implies that fg € F_,  hom ,(M,M). Now
kerp = F_jhom (M, M) .
Let he F_jhom (M, M). Then h»F,M<F,_, M that is
h* e F_,hom (M, M)

and we find that h® — 0 when n - co. Hence, by lemma 19, every idem-
potent in im ¢ can be lifted. It only remains to prove that any idempotent
g in hom (M, M) is strict. Suppose that g(x) € F, M. Then g(g(x))=g(x)
so that g(x) € gF, M that is g is strict.

Let M be as in lemma 20. Then every fe F_jhom ,(M,M) is topo-
logically nilpotent. Thus 1 —f has an inverse Yy, .of", Which shows that
F_jhom ,(M,M) < Radhom (M, M) .

Following [5, page 73], we obtain,

COROLLARY. Let M be as in the previous lemma. Then any finite or
countable orthogonal set of idempotents in
can be lifted to hom (M, M).

Note that ¢ is an epimorphism if M is filt-free. Furthermore we know

that each gr-free object N € gr I equals E(L) for some filt-free object
L e filt ;M.
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THEOREM 6. Let A be a filtered ring, where F A is exhaustive. Let
P € gr 5 M be projective (which is equivalent to gr-projective). Assume that
either Fy A and P* are discrete or P finitely generated and F,A complete.
Then there is a P € filt ;I such that E(P)=P. Furthermore, if M e filt ;M
then any homomorphism §: P — E(M) of degree p can be written §=“E(g)”,
where g: P — M is a homomorphism in IR of filt-degree p.

Proor. Let L be gr-free and let f: L -~ P be an epimorphism in
gr s If Pis f.g. we assume that L is f.g. There is a right inverse

i: P - L of fin gr oM. Put h=iof: L - L. Then h2=h. We can assume
that L=E(L), where L is filt-free and f.g. if P is. Since F, 4 is exhaustive
it follows that F, L is exhaustive. If F, A is complete and P, and there-
fore L, is f.g. then F, L is complete. If F, 4 and P* are discrete then we
may assume that F,L is discrete. Thus in either case we may apply
lemma 20 to find an idempotent h € hom ,(L,L) such that E(h)=h.
Let P=imh. We get

h: L——)P——»L

mono

Filter P by the filtration induced by f. Since % is strict we have
F,P =fF,L = h¥F,L =imhnF,L =PnF,L

that is the filtration on P is also induced by i. Thus f and 7 are strict
and this gives us

E(h): B(L) =2 B(P) 22 B(L)

mono

which shows that we can 1dent1fy E( ) with P and put f=E(f), i=E().

Now suppose that M e filt ;M and that §: E(P) -~ E(M) is a homo-
morphism of degree p. By using a suitable suspension of M we may as-
sume that p=0. We have

G = oE(f)oE() .

But goE(f): E(L) - E(M). Thus we can put goE(f)=ZE(k), where
k € hom , (L, M). It follows that g=E(ki), where ki € hom , (P, M).
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