ON FILTERED MODULES AND THEIR ASSOCIATED GRADED MODULES

GUNNAR SJÖDIN

Introduction.

This paper considers the relation between a filtered ring A and its filtered modules on one hand and their associated graded objects on the other. The first two sections are devoted to definitions and elaboration of our main tools. Let A be a filtered ring and N a filtered A-module. In section 2 the main result states that

$$l.w.\dim_{\mathcal{A}} N \leq \operatorname{gr.l.w.dim}_{E(\mathcal{A})} E(N)$$
,

where $E(\cdot)$ denotes the associated graded object, and that

$$\operatorname{gl.w.dim} A \leq \operatorname{gr.gl.w.dim} E(A)$$
.

In section 3 we discuss direct sums in the category of filtered modules. In section 4 we prove that, assuming certain finiteness conditions, then E(N) injective over E(A) implies that N is injective over A. Furthermore, we give an example which shows that some kind of finiteness condition is necessary. In section 5 we study the possibility of lifting projective modules over E(A) to projective modules over A.

0. Definition of relevant concepts.

We shall study a filtered ring A and filtered (left or right) modules over A. All filtrations are supposed to be increasing and we always assume that $1 \in F_0A$. If M is a filtered module then the filtration F_*M is said to be:

- 1. discrete if $F_p M = 0$ for $p < p_0$, where p_0 depends on M,
- 2. separated if $\bigcap F_p M = 0$,
- 3. exhaustive if $M = \bigcup F_p M$,
- 4. complete if $M = \operatorname{projlim} M/F_p M$.

Thus a discrete filtration is complete and a complete filtration is separated. Note that if we topologize M, using F_*M as a fundamental

Received April 26, 1973.

system of neighborhoods of 0, then F_*M is discrete, separated or complete iff the associated topology is discrete, separated or complete respectively. The ring of integers ,Z, will always be assumed to be filtered by $F_p Z = 0$ for p < 0, $F_p Z = Z$ for $p \ge 0$. As a graded ring, Z will be given the grading $Z^n = 0$ for $n \ne 0$, $Z^0 = Z$. Note that in particular " $E_0(Z) = Z$ ".

Our interest will be in the three types of categories described below. If C is a ring then ${}_{C}\mathfrak{M}$ (\mathfrak{M}_{C}) will denote the category of left (right) C-modules and the usual homorphisms.

If B is a graded ring then we let the objects in $\operatorname{gr}_B\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_B$) be the graded left (right) modules over B. The grading M^* of a graded module will be said to be discrete if $M^p=0$ for $p< p_0$, where p_0 depends on M. A homomorphism $f\colon M\to N$ in ${}_B\mathfrak{M}$ (\mathfrak{M}_C), i.e. in the corresponding ungraded category, will be said to be of degree n if $f(M^p)\subset N^{p+n}$ for every integer p. This gives us a graded Z-module $\operatorname{Hom}(M,N)$, where $(\operatorname{Hom}(M,N))^n$ consists of the homomorphisms of degree n. As the morphisms in $\operatorname{gr}_B\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_B$) we take $\operatorname{hom}_B(M,N)=(\operatorname{Hom}(M,N))^0$, Then $\operatorname{gr}_B\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_B$) becomes an abelian category with "sufficiently many" projective and injective objects.

An object M in $\operatorname{gr}_B\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_B$) is said to be gr-projective, -injective, -flat if it is projective etc. in $\operatorname{gr}_B\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_B$). If we say that it is projective etc. without the prefix gr- then we mean that it is so in the corresponding ungraded category ${}_B\mathfrak{M}$ (\mathfrak{M}_B). We say that M is gr-free if it is free in ${}_B\mathfrak{M}$ (\mathfrak{M}_B) and has a basis consisting of homogeneous elements. It is easy to show that each M has a gr-free resolution and that M is gr-projective iff it is projective.

Note that Tor_{n}^{B} is a functor

$$\operatorname{gr} \mathfrak{M}_B \times \operatorname{gr}_B \mathfrak{M} \to \operatorname{gr}_{\mathbf{Z}} \mathfrak{M} \ .$$

Furthermore, $\operatorname{Tor}^B_n(M,N)$ considered as an ungraded object is our usual $\operatorname{Tor}^B_n(M,N)$ when B,M,N are regarded as ungraded. This follows immediately from the way we compute it. We have also defined a functor

$$\mathbf{Hom}_B\colon \mathbf{gr}_B\mathfrak{M}\times\mathbf{gr}_B\mathfrak{M}\to\mathbf{gr}_{\mathbf{Z}}\mathfrak{M}\ .$$

It is clear that $\operatorname{Hom}_B(\cdot, N)$ is exact iff N is gr-injective. Using the derived functors of Hom_B we get the functors

$$\mathrm{Ext}^B{}_n\colon \mathrm{gr}_B\mathfrak{M}\times\mathrm{gr}_B\mathfrak{M}\to\mathrm{gr}_{\mathsf{Z}}\mathfrak{M}\ .$$

If A is a filtered ring then we let the objects in filt_A \mathfrak{M} (filt \mathfrak{M}_A) be the filtered left (right) A-modules. Let M,N be filtered A-modules and let $f \colon M \to N$ be a homomorphism of A-modules. Then f is said to be of filt-degree n if $fF_pM \subset F_{p+n}N$ for every integer p. The homomorphisms $M \to N$

of finite filter-degree will be denoted by $\operatorname{Hom}_A(M,N)$. As the morphisms in filt M_A (filt M_A) we take the homomorphisms of filt-degree 0 and the morphisms $M \to N$ will be denoted by $hom_A(M,N)$. It is clear that we then get a category and that this category is not abelian in general.

It is well-known that there is a functor

$$E_0: \operatorname{filt}_{\mathcal{A}}\mathfrak{M} \to \operatorname{gr}_{E_0(\mathcal{A})}\mathfrak{M}$$
.

We shall denote this functor simply by E. A morphism $f \in \text{hom}_A(M, N)$ is said to be strict if $fF_pM = \operatorname{im} f \cap F_pN$. It is shown in [2, pp. 36-37] that if

$$K \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N$$

is strict exact (i.e. it is exact and f and g are strict) then

$$E(K) \xrightarrow{E(f)} E(M) \xrightarrow{E(g)} E(N)$$

is exact.

Finally, all rings are supposed to have a unit element and all modules are assumed to be unitary.

1. Strict morphisms and exactness. Free objects in filt $_{4}\mathfrak{M}$.

We want to somewhat extend the above mentioned and some related results in [2].

LEMMA 1. Let A be a filtered ring and let

$$(1) K \xrightarrow{f} M \xrightarrow{g} N$$

be a 0-sequence in filt A M. Consider

$$(2) E(K) \to E(M) \to E(N) .$$

We have

- (a) If (1) is strict exact then (2) is exact.
- (b) If (2) is exact and F_*M is exhaustive then g is strict.
- (c) If (2) is exact, F_*K is complete and F_*M is separated then f is strict.
- (d) If (2) is exact and $F_{\star}M$ is discrete then f is strict.
- (e) If F_*K is complete and F_*M is exhaustive and separated or if F_*M is exhaustive and discrete then (1) is strict exact iff (2) is exact.

PROOF. (a) Let $E(g)m^p=0$, where $m \in F_pM$ and m^p is its canonical image in

$$E^p(M) = F_p M/F_{p-1} M.$$

Then $g(m) \in F_{p-1}N$ so that g(m) = g(m'), where $m' \in F_{p-1}M$. It follows that m - m' = f(k), where $k \in F_p K$, so that

$$m^p = (m - m')^p = f(k)^p = E(f)k^p$$
.

Thus (2) is exact.

(b) Let $n \in \text{im } g \cap F_p N$, n = g(m). Since F_*M is exhaustive we can assume $m \in F_{p+s}M$. If s = 0 we are done. Suppose s > 0. Then $E(g)m^{p+s} = 0$ and hence

$$\begin{split} m^{p+s} &= E(f) k_{p+s}^{p+s}, \quad \text{where } k_{p+s} \in F_{p+s} K \ , \\ m-f(k_{p+s}) &\in F_{p+s-1} M \quad \text{ and } \quad g\big(m-f(k_{p+s-1})\big) = n \ , \end{split}$$

i.e. we can reduce s to s-1. By induction we get $n \in gF_pM$.

(c), (d) Let $m \in \inf \cap F_p M$. Hence $E(g)m^p = g(m)^p = 0$, which shows that $m^p = E(f)k^p_p$, that is,

$$m-f(k_p)\in \mathrm{im} f\cap F_{p-1}M,\quad \text{ where }\ k_p\in F_pK\ .$$

By induction we get an element $k_{p-s} \in F_{p-s}K$ such that

$$m-f(k_p+\ldots+k_{p-s})\in \operatorname{im} f\cap F_{p-s-1}M$$
.

If F_*M is discrete we shall be done after a finite number of steps, which proves (d). If F_*K is complete we get

$$k = \sum_{s=0}^{\infty} k_{p-s} \in F_p K$$

and

$$m-f(k) = \lim_{s\to\infty} (m-f(k_p+\ldots+k_{p-s})) = 0$$

if F_*M is discrete. This proves (c).

(e) It only remains to prove that if (2) is exact then (1) is exact. Let $m \in M$, g(m) = 0. Since F_*M is exhaustive we can assume that $m \in F_pM$. We have $E(g)m^p = 0$, so that $m - f(k_p) \in F_{p-1}M$ for some $k_p \in F_pK$, and $g(m - f(k_p)) = 0$. By induction we can choose $k_{p-s} \in F_{p-s}K$ such that $m - f(k_p + \ldots + k_{n-s}) \in F_{n-s-1}M$.

If F_*M is discrete we shall be done after a finite number of steps. If F_*K is complete and F_*M is separated then we get

$$m = f \sum_{0 \le s < \infty} k_{p-s} .$$

Next we consider the free objects in filt $_{4}\mathfrak{M}$ (cf. [7]).

DEFINITION. Let $L \in \text{filt}_A\mathfrak{M}$. L is then said to be filt-free if L is free in ${}_{A}\mathfrak{M}$ and has a basis $\{x_i\}_{i\in I}$ such that there are integers p(i), $i\in I$ with the property

$$F_p L = \sum_{s+p(i)=p} F_s A \cdot x_i.$$

The set $\{(x_i,p(i))\}_{i\in I}$ will then be called a filt-basis for L.

The following lemma is easy to prove.

Lemma 2. Let $L \in \text{filt}_A \mathfrak{M}$. We have

- (a) If L is filt-free with filt-basis $\{(x_i, p(i))\}_{i \in I}$ then E(L) is gr-free and $\{x_i^{p(i)}\}_{i \in I}$ is a homogeneous basis.
- (b) If E(L) is gr-free with homogeneous basis $\{x_i^{p(i)}\}_{i\in I}$ and F_*L is discrete then L is filt-free with filt-basis $\{(x_i, p(i))\}_{i\in I}$.
- (c) If $M \in \operatorname{gr}_{E(A)}\mathfrak{M}$ is gr-free then there is a filt-free $L \in \operatorname{filt}_A\mathfrak{M}$ such that E(L) = M.
- (d) Let L be filt-free with filt-basis $\{(x_i,p(i))\}_{i\in I}$. Suppose that $M\in \operatorname{filt}_A\mathfrak{M}$ and that $f\colon \{x_i\}_{i\in I}\to M$ is a function such that $f(x_i)\in F_{s+p(i)}M$. Then there is unique homomorphism $L\to M$ of filter-degree s which extends f.
- (e) Let L be filt-free, $M \in \text{filt}_A\mathfrak{M}$ and suppose that $g \colon E(L) \to E(M)$ is a homomorphism of degree s. Then there is a homomorphism $f \colon L \to M$ of filter-degree s such that "E(f)" = g (cf. Lemma 15).
- (f) Let L be filt-free. Then F_*L is exhaustive or separated iff F_*A is exhaustive or separated respectively. If F_*A is discrete and $\{p(i)\}_{i\in I}$ (defined as above) is bounded below then F_*L is discrete. If I is finite and F_*A is complete then F_*L is complete.
 - (g) Let $M \in \text{filt}_A \mathfrak{M}$. Then there is a resolution of M

$$\rightarrow L_2 \xrightarrow{f_2} L_1 \xrightarrow{f_1} L_0 \xrightarrow{f_0} M \rightarrow 0$$

such that every L_n is filt-free and every f_n is a strict homomorphism in filt_A \mathfrak{M} . Such a resolution will be called a strict filt-free resolution of M. Note that if F_*A and F_*M are discrete then we can assume that every F_*L_n is discrete.

Furthermore, if F_*A is exhaustive and complete, E(A) is noetherian and E(M) is f.g. then we can assume that every L_n is f.g.

2. Weak dimension.

Let A be a filtered ring and assume that $M \in \operatorname{filt} \mathfrak{M}_A$, $N \in \operatorname{filt}_A \mathfrak{M}$. Filter $M \otimes_A N$ by letting $F_p(M \otimes_A N)$ be the sub-Z-module of $M \otimes_A N$ generated by elements of type $m \otimes_A n$, where $m \in F_s M$, $n \in F_t N$ with $s+t \leq p$. This defines a functor

$$\otimes_{\mathcal{A}} \colon \operatorname{filt} \mathfrak{M}_{\mathcal{A}} \times \operatorname{filt}_{\mathcal{A}} \mathfrak{M} \to \operatorname{filt}_{\mathsf{Z}} \mathfrak{M} \ .$$

Clearly $F_*(M \otimes_A N)$ is exhaustive or discrete if F_*M and F_*N are exhaustive or discrete respectively.

Let

$$\varkappa = \varkappa(M,N) : E(M) \otimes_{E(A)} E(N) \to E(M \otimes_A N)$$

be given by $\kappa(m^s \otimes_{E(A)} n^t) = (m \otimes_A n)^{s+t}$. This obviously well-defines κ since the right-hand expression is independent of the choice of representatives m, n and is bilinear in m^s, n^t . Clearly κ is a natural transformation and $\kappa(M, N)$ is always an epimorphism.

For M = A we have a morphism $\tau: A \otimes_A N \to N$ in filt_AM given by $\tau(a \otimes_A n) = an$. Now τ is an isomorphism in _AM and

$$F_pN = 1 \cdot F_pN \subset F_0A \cdot F_pN \subset \tau F_p(A \otimes_A N) \subset F_pN.$$

Consequently $\tau F_p(A \otimes_A N) = F_p N$ and thus $\tau^{-1} F_p N = F_p(A \otimes_A N)$ so that τ is an isomorphism in filt_AM. We have a commutative diagram in $\operatorname{gr}_{E(A)}M$

$$E(A) \otimes_A E(N) \xrightarrow{\varphi} E(N)$$

$$\downarrow^{(A,N)} \qquad \qquad \downarrow^{E(\tau)}$$

$$E(A \otimes_A N) \xrightarrow{\varphi} E(N)$$

where $\varphi(b \otimes_{E(A)} y) = by$. It follows that $\varkappa(A, N)$ is an isomorphism. Similarly $\varkappa(M, A)$ is always an isomorphism. We summarize in

Lemma 3. There is a natural epimorphism

$$\varkappa(M,N) \colon E(M) \otimes_{E(A)} E(N) \to E(M \otimes_A N)$$

given by $\kappa(m^s \otimes_{E(A)} n^t) = (m \otimes_A n)^{s+t}$. Furthermore, $\kappa(A, N)$ and $\kappa(M, A)$ are isomorphisms in $\operatorname{gr}_{E(A)}\mathfrak{M}$ ($\operatorname{gr}\mathfrak{M}_{E(A)}$).

Using \varkappa we get the following result

LEMMA 4. Let A be a filtered ring and let $N \in \operatorname{filt}_A \mathfrak{M}$. Suppose that F_*A , F_*N are discrete and exhaustive and that E(N) is gr-flat. Then N is flat.

PROOF. Let J be a right ideal in A. Filter J by $F_pJ=J\cap F_pA$ that is, give J the filtration making the inclusion $i:J\to A$ a strict morphism in filt \mathfrak{M}_A . Then $E(i):E(J)\to E(A)$ is a monomorphism by lemma 1. Consider the commutative diagram

$$E(J) \otimes_{E(A)} E(N) \stackrel{E(i) \otimes_{E(A)} 1}{\longrightarrow} E(A) \otimes_{E(A)} E(N)$$
 $\downarrow^{\text{iso}} \downarrow^{\text{iso}} \downarrow^$

Since E(N) is gr-flat we infer that $E(i) \otimes_{E(A)} 1$ is a monomorphism. Thus $\varkappa(J,N)$ is a monomorphism and hence an isomorphism. It follows that $E(i \otimes_A 1)$ is a monomorphism. Now $F_*(J \otimes_A N)$ is discrete and exhaustive and so, by lemma $1, i \otimes_A 1$ is a monomorphism. This proves that N is flat.

LEMMA 5. Let A be filtered ring and let $N \in \operatorname{filt}_A \mathfrak{M}$. Suppose that F_*A and F_*N are discrete and exhaustive. Then

$$l.w.dim_A N \leq gr.l.w.dim_{E(A)} E(N)$$

PROOF. Suppose that the right-hand side is $\leq n$. Let

$$0 \to L \xrightarrow{\ f \ } L_{n-1} \xrightarrow{f_{n-1}} \ldots \xrightarrow{\ f_2 \ } L_1 \xrightarrow{\ f_1 \ } L_0 \xrightarrow{\ f_0 \ } N \to 0$$

be a strict exact sequence, where L_0, \ldots, L_{n-1} are filt-free and $F_*L_0, \ldots, F_*L_{n-1}, F_*L$ are discrete and exhaustive. This gives us an exact sequence

$$0 \to E(L) \xrightarrow{E(f_1)} E(L_{n-1}) \to \ldots \to E(L_1) \xrightarrow{E(f_1)} E(L_0) \xrightarrow{E(f_0)} E(N) \to 0$$

in $\operatorname{gr}_{E(A)}\mathfrak{M}$, where $E(L_0),\ldots,E(L_{n-1})$ are gr-free and consequently gr-flat. Thus E(L) is gr-flat, which by lemma 4 implies that L is flat. Consequently l.w.dim_A $N \leq n$ and the proof is complete.

Theorem 1. Let A be a discretely and exhaustively filtered ring. Then

$$\operatorname{gl.w.dim} A \leq \operatorname{gr.gl.w.dim} E(A)$$

PROOF. Suppose that the right-hand side is $\leq n$. Let $N \in {}_{A}\mathfrak{M}$. Filter N by $F_pN = F_pA \cdot N$. Then $N \in \operatorname{filt}_{A}\mathfrak{M}$ and F_*N is discrete and exhaustive. Thus $\operatorname{l.w.dim}_{A}N \leq \operatorname{gr.l.w.dim}_{E(A)}E(N) \leq n$ and it follows that $\operatorname{gl.w.dim}_{A} \leq n$ and this concludes the proof.

Now let us consider a graded ring B. Let $M \in \operatorname{gr} \mathfrak{M}_B$, $N \in \operatorname{gr}_B \mathfrak{M}$. Then $M \otimes_B N$ is a graded Z-module (this is due to the fact that there is an exact sequence

$$M \otimes_{\mathsf{Z}} B \otimes_{\mathsf{Z}} N \stackrel{\varphi}{\longrightarrow} M \otimes_{\mathsf{Z}} N \to M \otimes_{B} N \to 0$$

where $\varphi(m \otimes_{\mathsf{Z}} b \otimes_{\mathsf{Z}} n) = mb \otimes_{\mathsf{Z}} n - m \otimes_{\mathsf{Z}} b n$). Give B, M, N the associated filtrations i.e. $F_p B = \bigoplus_{n \leq p} B^n$ etc. Note that $(M \otimes_B N)^q$ is the Z-submodule of $M \otimes_B N$ generated by elements of type $m \otimes_B n$, where $m \in M^s$, $n \in N^t$ and s+t=q. Thus the associated filtration of $M \otimes_B N$ is given by letting $F_p(M \otimes_B N)$ be the Z-submodule of $M \otimes_B N$ generated by elements of type $m \otimes_B n$, where $m \in M^s$, $n \in N^t$ and $s+t \leq p$. But this

submodule $F_p(M \otimes_B N)$ is then also the Z-submodule of $M \otimes_B N$ generated by elements of type $m \otimes_B n$, where $m \in F_s M$, $n \in F_t N$ and $s+t \leq p$ that is, the earlier introduced filtration, induced by F_*M , F_*N , coincides with the associated filtration. Note that the associated filtration is exhaustive and separated for any graded module. In particular $F_*(M \otimes_B N)$ is exhaustive and separated. If we re-examine the proof of lemma 4 we find that in order to conclude that $i \otimes_A 1$ is a monomorphism we really only need $F_*(J \otimes_A N)$ to be separated (instead of discrete). Furthermore it is clear that $N \in \operatorname{gr}_B \mathfrak{M}$ is gr-flat iff $J \otimes_B N \to B \otimes_B N$ is a monomorphism for each graded (even f.g. graded) right ideal J. Furthermore, "E(B) = B, E(M) = M, E(N) = N" as graded objects.

All this adds up to,

Lemma 6. Let B be a graded ring and let $N \in \operatorname{gr}_B \mathfrak{M}$. Then N is gr-flat iff it is flat.

In the same way as before we obtain

THEOREM 2. Let B be a graded ring and let $N \in \operatorname{gr}_B \mathfrak{M}$. Then

$${\rm gr.l.w.dim}_B N \,=\, {\rm l.w.dim}_B N \;,$$

$$\operatorname{gr.gl.w.dim} B \, \leqq \, \operatorname{gl.w.dim} B$$

with equality also on the last line if B^* is discrete.

PROOF. The inequalities \leq are both trivial. The reverse inequality on the first line follows from lemma 6 using a gr-flat resolution of N. On the second line the reverse inequality follows from theorem 1 when B^* is discrete since then the associated filtration of B is discrete.

In analogy with [7] we also obtain,

Theorem 3. Let B be a positively graded ring. Suppose that gl.w.dim B^0 = 0 that is B^0 is von-Neumann regular. Then

$$\operatorname{gl.w.dim}_B B^0 = \operatorname{r.w.dim}_B B^0 .$$

PROOF. Let $M \in {}_B\mathfrak{M}$ and give B the associated filtration. Filter M by $F_pM=0$ for p<0 and $F_pM=M$ for $p\geq 0$. Then $E^p(M)=0$ for $p\neq 0$ and hence E(M) is annihilated by the ideal $J=\bigoplus_{n>0}B^n$, which shows that we can consider E(M) as a module over $B^0=B/J$. By lemma 5 and [3, exercise 5 page 360] we have

$$\begin{split} \mathrm{l.w.dim}_B M \; & \leq \; \mathrm{l.w.dim}_B E(M) \; \leq \; \mathrm{l.w.dim}_B B^{\mathrm{o}} + \mathrm{l.w.dim}_{B^{\mathrm{o}}} E(M) \; = \\ & = \; \mathrm{l.w.dim}_B B^{\mathrm{o}} \; . \end{split}$$

Since M is arbitrary we get gl.w.dim $B = l.w.dim_B B^0$ and by symmetry also gl.w.dim $B = r.w.dim_B B^0$.

3. Direct sums, suspensions and the natural transformation x.

In the following A is supposed to be a filtered ring.

LEMMA 7. Let

$$f_{\alpha} \colon M_{\alpha} \to M, \ \alpha \in I$$

be morphisms in filt $_A\mathfrak{M}$. Then (1) is a direct sum system in filt $_A\mathfrak{M}$ iff it is a direct sum system in $_A\mathfrak{M}$ and

$$F_p M = \sum_{\alpha} f_{\alpha}(F_p M_{\alpha})$$
.

PROOF. Suppose that (1) is a direct sum system in $_{A}\mathfrak{M}$ and

$$F_p M = \sum_{\alpha} f_{\alpha}(F_p M_{\alpha}) .$$

Let $g_{\alpha} \colon M_{\alpha} \to N$, $\alpha \in I$ be morphisms in filt $A\mathfrak{M}$. Then there is a unique morphism $g \colon M \to N$ such that $gf_{\alpha} = g_{\alpha}$ for each $\alpha \in I$. But

$$gF_pM = g\sum_{\alpha} f_{\alpha}F_pM_{\alpha} = \sum_{\alpha} g_{\alpha}F_pM_{\alpha} \subset F_pN$$
.

Thus (1) is a direct sum system in filt_A \mathfrak{M} . Now assume that (1) is a direct sum system in filt_A \mathfrak{M} . Let $g_{\alpha} \colon M_{\alpha} \to N$, $\alpha \in I$ be a direct sum system in _A \mathfrak{M} . Filter N by

$$F_p N = \sum_{\alpha} g_{\alpha} F_p M_{\alpha}.$$

Clearly this makes N an object in filt_A \mathfrak{M} and it follows from what we have already proved that it is a direct sum system in filt_A \mathfrak{M} . Thus there is a unique isomorphism $f \colon N \to M$ in filt_A \mathfrak{M} such that $fg_{\alpha} = f_{\alpha}$ for each $\alpha \in I$ and this implies that

$$F_p M = \sum_{\alpha} f_{\alpha} F_p M_{\alpha}.$$

Note that the proof above at the same time shows that filt $_{A}\mathfrak{M}$ has arbitrary direct sums.

LEMMA 8. Let

$$f_{\alpha}: M_{\alpha} \to M, \quad \alpha \in I$$

be a direct sum system in filt M. Then

$$E(f_{\alpha}): E(M_{\alpha}) \to E(M), \quad \alpha \in I$$

is a direct sum system in $\operatorname{gr}_{E(A)}\mathfrak{M}$ (and thus also in $E(A)\mathfrak{M}$).

PROOF. Let $m^p \in E^p(M)$. Then $m \in F_p M$ and $m = \sum_{\alpha} f_{\alpha} m_{\alpha}$, where $m_{\alpha} \in F_p M_{\alpha}$ and all but a finite number is 0. Consequently

$$m^p = (\sum_{\alpha} f_{\alpha} m_{\alpha})^p = \sum_{\alpha} (f_{\alpha} m_{\alpha})^p = \sum_{\alpha} E(f_{\alpha}) m_{\alpha}^p$$
.

On the other hand suppose that $E(f_{\alpha})m_{\alpha}^{\ p}=0$. Then

$$f_{\alpha}m_{\alpha}\in F_{p-1}M=\sum_{\beta}f_{\beta}F_{p-1}M_{\beta}$$

and it follows that $f_{\alpha}m_{\alpha} = \sum_{\beta} f_{\beta}n_{\beta}$, where $n_{\beta} \in F_{p-1}M_{\beta}$. Then $m_{\beta} = 0$ for $\beta \neq \alpha$ and $m_{\alpha} = n_{\alpha} \in F_{p-1}M_{\alpha}$. Thus we get $m_{\alpha}^{p} = 0$, which concludes the proof.

DEFINITION. Let $M \in \text{filt}_A \mathfrak{M}$. Then the *n*th suspension $s^n M \in \text{filt}_A \mathfrak{M}$ is defined by $s^n M = M$ as A-module but with filtration

$$F_p s^n M = F_{p+n} M$$
.

Similarly if B is a graded ring and $N \in \operatorname{gr}_B \mathfrak{M}$ then the *n*th suspension $s^n N$ is N as a B-module but with grading $(s^n M)^p = M^{p+n}$.

It is clear that $L \in \operatorname{filt}_{A}\mathfrak{M}$ is filt-free iff L is the direct sum in filt ${}_{A}\mathfrak{M}$ of suspensions of A considered as a filtered left A-module. Furthermore, if $\{(x_{\alpha},p(\alpha))\}_{\alpha\in I}$ is a filt-basis for L then $L=\bigoplus_{\alpha\in I} s^{-p(\alpha)}A$ in filt ${}_{A}\mathfrak{M}$. We have $E(s^nM)=s^nE(M)$ and

$$s^m M \otimes_{\mathcal{A}} s^n N = s^{m+n} (M \otimes_{\mathcal{A}} N)$$

in filt_Z \mathfrak{M} (or gr_Z \mathfrak{M}) if A is a filtered (or graded) ring. If $f: M \to N$ is a morphism of filtered (graded) modules then we get a morphism $s^n f: s^n M \to s^n N$, where $s^n f = f$ as a morphism of modules. It is clear that under these identifications we also have

$$\varkappa(s^mM,s^nN) = s^{m+n}\varkappa(M,N)$$
.

In particular $\varkappa(s^mM,s^nN)$ is an isomorphism iff $\varkappa(M,N)$ is an isomorphism.

Now suppose that $f_{\alpha} \colon M_{\alpha} \to M$, $\alpha \in \mathfrak{A}$ and $g_{\beta} \colon N_{\beta} \to N$, $\beta \in \mathfrak{B}$ are direct sum systems in filt \mathfrak{M}_{A} and filt $A\mathfrak{M}$ respectively. This gives us a direct sum system

$$f_{\alpha} \otimes_{\mathcal{A}} g_{\beta} \colon M_{\alpha} \otimes_{\mathcal{A}} N_{\beta} \to M \otimes_{\mathcal{A}} N$$

in $_{\mathbf{Z}}\mathfrak{M}$ and $f_{\alpha}\otimes g_{\beta}$ are morphisms in filt $_{\mathbf{Z}}\mathfrak{M}$. Let $x\in F_{p}(M\otimes_{A}N)$. Then

$$x = \sum_{i \in I} m^{(i)} \otimes_{\mathcal{A}} n^{(i)} ,$$

where $m^{(i)} \in F_{s(i)}M$, $n^{(i)} \in F_{t(i)}N$ and s(i) + t(i) = p. Consequently

$$m^{(i)} = \sum_{\alpha} f_{\alpha} m_{\alpha}^{(i)} ,$$

where $m_{\alpha}^{(i)} \in F_{s(i)} M_{\alpha}$ and $n^{(i)} = \sum_{\beta} g_{\beta} n_{\beta}^{(i)}$, where $n_{\beta}^{(i)} \in F_{t(i)} N_{\beta}$. Thus

$$m_{\alpha}^{(i)} \otimes_{\mathcal{A}} n_{\beta}^{(i)} \in F_{\mathcal{D}}(M_{\alpha} \otimes_{\mathcal{A}} N_{\beta})$$

and

$$x = \sum_{i} m^{(i)} \otimes_{\mathcal{A}} n^{(i)} = \sum_{\alpha, \beta} f_{\alpha} \otimes g_{\beta} \sum_{i} m_{\alpha}^{(i)} \otimes_{\mathcal{A}} n_{\beta}^{(i)}$$
,

which shows that

$$F_p(M \otimes_A N) = \sum_{\alpha,\beta} f_{\alpha} \otimes_A g_{\beta} F_p(M_{\alpha} \otimes_A N_{\beta}).$$

We have proved,

LEMMA 9. Let $f_{\alpha}: M_{\alpha} \to M$, $\alpha \in \mathfrak{A}$ and $g_{\beta}: N_{\beta} \to N$, $\beta \in \mathfrak{B}$ be direct sum systems in filt MA, filt M respectively. Then

$$f_{\alpha} \otimes_{A} g_{\beta} \colon M_{\alpha} \otimes_{A} N_{\beta} \to M \otimes_{A} N, \quad (\alpha, \beta) \in \mathfrak{A} \times \mathfrak{B}$$

is a direct sum system in filt, M.

Let the situation be as in lemma 7 and consider the commutative diagram

$$E(M_{\alpha}) \otimes_{E(A)} E(N_{\beta}) \xrightarrow{\times (M_{\alpha}, N_{\beta})} E(M_{\alpha} \otimes_{A} N_{\beta})$$

$$\downarrow^{E(f_{\alpha}) \otimes_{E(A)} E(g_{\beta})} \downarrow^{E(f_{\alpha} \otimes_{A} g_{\beta})}$$

$$E(M) \otimes_{E(A)} E(N) \xrightarrow{\times (M, N)} E(M \otimes_{A} N)$$

for $\alpha \in \mathfrak{A}$, $\beta \in \mathfrak{B}$. By lemmas 8 and 9 it follows that both systems of vertical arrows are direct sum systems. Hence $\varkappa(M,N) = \bigoplus \varkappa(M_{\alpha},N_{\beta})$ is an isomorphism if every $\varkappa(M_{\alpha},N_{\beta})$ is an isomorphism. If we combine this result with lemma 3 we get,

LEMMA 10. If either $M \in \text{filt } \mathfrak{M}_A$ or $N \in \text{filt }_A \mathfrak{M}$ is filt-free then $\varkappa(M,N)$ is an isomorphism.

Lemma 10 gives us an alternative proof of lemma 5 as follows: Let

$$\rightarrow L_{\mathbf{2}} \rightarrow L_{\mathbf{1}} \rightarrow L_{\mathbf{0}} \rightarrow N \rightarrow 0$$

be a strict filt-free resolution of N, where every F_*L_n is discrete and exhaustive. Let $M \in \text{filt } \mathfrak{M}_{A}$. We get a commutative diagram

which implies that

$$\begin{split} E_1^{*,n}(M \otimes_A L_*) &= H_n E(M \otimes_A L_*) = H_n \big(E(M) \otimes_{E(A)} E(L_*) \big) \\ &= \operatorname{Tor}^{E(A)}_n \big(E(M), E(N) \big) \;. \end{split}$$

Thus $\operatorname{Tor}^{E(A)}_{n}(E(M), E(N)) = 0$ yields $E_{1}^{*,n}(M \otimes_{A} L) = 0$, whence $\operatorname{Tor}^{A}_{n}(M, N) = H_{n}(M \otimes_{A} L_{*}) = 0$

if $F_*(M \otimes_A L_*)$ is exhaustive and complete (cf. [4, page 18]). In our particular case we even have $F_*(M \otimes_A L_*)$ exhaustive and discrete.

We have proved,

LEMMA 11. Suppose that F_*A is discrete and exhaustive. Let $M \in \operatorname{filt} \mathfrak{M}_A$ and $N \in \operatorname{filt}_A \mathfrak{M}$, where F_*M and F_*N are discrete and exhaustive. Then $\operatorname{Tor}^{E(A)}_n(E(M), E(N)) = 0$ implies that $\operatorname{Tor}^A_n(M, N) = 0$.

Now lemma 5 follows easily from lemma 11 since we can filter any $M \in \mathfrak{M}_A$ by putting $F_n M = M \cdot F_n A$.

The following result implies proposition 7 in [8] by considering K as a filtered ring with $F_pK=0$ for p<0 and $F_pK=K$ for $p\geq 0$.

LEMMA 12. Let A be a filtered ring and let $M \in \operatorname{filt} \mathfrak{M}_A$, $N \in \operatorname{filt}_A \mathfrak{M}$. Suppose that F_*A , F_*M , F_*N are all discrete and exhaustive. Then $\varkappa(M,N)$ is an isomorphism if either E(M) or E(N) is flat (which is equivalent to gr-flat by lemma 5).

PROOF. Assume that E(M) is flat. Let

$$0 \to S \xrightarrow{f} L \xrightarrow{g} N \to 0$$

be strict exact, where L is filt-free and all filtrations are discrete and exhaustive. Consider the commutative diagram

Since (1) is strict exact and E(M) is flat it follows that the upper row is exact. Hence $E(1 \otimes_A f)$ is a monomorphism and $E(1 \otimes_A g)$ is an epimorphism. Now $F_*(M \otimes_A S)$, $F_*(M \otimes_A L)$, $F_*(M \otimes_A N)$ are all discrete and exhaustive. Thus by lemma 1 (b) (with L=0) $1 \otimes_A f$ is strict and by lemma 1 (c) or (d) (with N=0) $1 \otimes_A g$ is strict.

By lemma 4 M is flat so that

$$0 \to M \otimes_{\mathcal{A}} S \xrightarrow{1 \otimes_{\mathcal{A}} f} M \otimes_{\mathcal{A}} L \xrightarrow{1 \otimes_{\mathcal{A}} g} M \otimes_{\mathcal{A}} N \to 0$$

is strict exact. Thus the lower row above is exact by lemma 1 (a). The 5-lemma now shows that $\varkappa(M,N)$ is an isomorphism.

The proof that $\varkappa(M,N)$ is an isomorphism when E(N) is flat is of course analogous.

4. Injectivity.

Let $M, N \in \text{filt}_A \mathfrak{M}$ and filter $\text{Hom}_A(M, N)$ by letting $F_n \text{Hom}_A(M, N)$ be the homomorphisms $M \to N$ of filt-degree p (cf. [4, page 19] and [6]). This gives us a functor

$$\operatorname{filt}_{A}\mathfrak{M}\times\operatorname{filt}_{A}\mathfrak{M}\to\operatorname{filt}_{Z}\mathfrak{M}\;.$$

It is clear that $F_* \operatorname{Hom}_A(M,N)$ is exhaustive. However, we need not have $\operatorname{Hom}_A(M,N) = \operatorname{Hom}_A(M,N)$ even if M is filt-free and N = A is discrete and exhaustive (let M has a filt-basis $\{(x_i,0)\}_{1\leq i\leq\infty}$ and let $f\colon M\to A$ be given by $f(x_i) = a_i$, where $a_i \notin F_i A$, which is possible if $A \neq F_p A$ for every p). We have,

LEMMA 13. Let $M, N \in \text{filt } _{A}\mathfrak{M}$. Then

- (a) If F_*M is exhaustive and F_*N is separated then $F_*Hom_A(M,N)$ is separated.
- (b) If F_*M is exhaustive and F_*N is discrete then $F_*Hom_A(M,N)$ is discrete.
- (c) If F_*M is exhaustive and F_*N is complete then $F_*Hom_A(M,N)$ is complete.

PROOF. (a) Suppose that $f \in \bigcap_p F_p \operatorname{Hom}_A(M, N)$. Then $fF_p M \subseteq$ $\bigcap_s F_{p+s} N = 0$. Thus $fM = f \bigcup_p F_p M = 0$. The same argument proves (b).

(c) We have to show that the projective system

Math. Scand. 33 - 16

represents $\operatorname{Hom}_{A}(M,N)$ as $\operatorname{projlim} \operatorname{Hom}_{A}(M,N)/F_{p} \operatorname{Hom}_{A}(M,N)$.

Suppose that we are given $f_p \in \operatorname{Hom}_A(M,N)/F_p \operatorname{Hom}_A(M,N)$, for each $p \in \mathsf{Z}$, such that $\varphi_q{}^p f_p = f_q$ when p > q. Then we have to show that there is a unique $f \in \operatorname{Hom}_A(M,N)$ such that $\varphi_q f = f_q$, for each $q \in \mathsf{Z}$. Since each φ_p is an epimorphism we have $f_p = \varphi(g_p)$ where $g_p \in \operatorname{Hom}_A(M,N)$. The uniqueness of f, if it exists, follows from (a). As for existence, let g_p be given as above. Then $g_p - g_q \in F_q \operatorname{Hom}_A(M,N)$ for q > p and consequently $(g_p - g_q)F_sM \subset F_{s+q}N$ for each integer s. Let $s \in M$. We may assume that $s \in F_tM$, for some t, since F_sM is exhaustive. Then

$$g_p(x) - g_q(x) = (g_p - g_q)(x) \in F_{t+q}N$$
,

which shows that $(g_p(x))$ is a Cauchy-sequence in N. Since N is complete we may define a function $f: M \to N$ by

$$f(x) = \lim_{p \to \infty} g_p(x) .$$

It is clear that $f \in \operatorname{Hom}_{\mathcal{A}}(M,N)$. Note that for $x \in F_tM$

$$g_p(x) \in g_q(x) + F_{t+q}N, \quad p \ge q$$

whence $f(x) \in g_q(x) + F_{t+q}N$. Thus $(f-g_q)F_tM \subset F_{t+q}N$ so that $f-g_q \in F_q \operatorname{Hom}_A(M,N)$. We conclude that $f \in \operatorname{Hom}_A(M,N)$ and that $\varphi_q f = f_q$ for every integer q.

DEFINITION. Let $M \in \text{filt}_{A}\mathfrak{M}$. We say that M is filt f.g. if there exists a finite set $\{(x_i, p(i))\}_{1 \leq i \leq n}$, where $x_i \in M$ and p(i) are integers, such that

$$F_p M = \sum_{s+p(i) \leq p} F_s A \cdot x_i.$$

In particular, every f.g. filt-free object in filt_A $\mathfrak M$ is filt f.g. Following [2] page 41 we get,

LEMMA 14. Let $M \in \text{filt}_A \mathfrak{M}$. Assume that F_*A is complete and F_*M is separated and exhaustive. Then M is tilt f.g. if E(M) is f.g.

PROOF. Let $\{x_i^{p(i)}\}_{1 \leq i \leq n}$ be a homogeneous set of generators of E(M). Let L be filt-free with filt-basis $\{(y_i, p(i))\}_{1 \leq i \leq n}$. Define $f: L \to M$ by $f(y_i) = x_i$. Then E(f) is an epimorphism. By lemma 2(f) F_*L is complete and thus, by lemma 1(e) (with N = 0), f is an epimorphism, which shows that M is filt f.g.

LEMMA 15. Let $M, N \in \text{filt}_A \mathfrak{M}$. Assume that M is filt f.g. and F_*M is exhaustive. Then

$$\operatorname{Hom}_{\mathcal{A}}(M,N) = \operatorname{Hom}_{\mathcal{A}}(M,N).$$

PROOF. Let $\{(x_i, p(i))\}_{1 \leq i \leq n}$ be as in the definition of filt f.g. and let $f \in \operatorname{Hom}_{A}(M, N)$. Then there is an integer s, such that $f(x_{i}) \in F_{p(i)+s}N$ for $1 \le i \le n$. It is then obvious that

$$f \in F_s \operatorname{Hom}_A(M,N) \subset \operatorname{Hom}_A(M,N)$$
.

We can construct a natural transformation (cf. [6])

$$\varphi = \varphi(M,N) \colon E\operatorname{Hom}_{A}(M,N) \to \operatorname{Hom}_{E(A)}(E(M),E(N))$$

by $\varphi(f^p)(x^q) = f(x)^{p+q}$, between functors from filt $\mathfrak{M} \times \mathrm{filt}_{\mathcal{A}} \mathfrak{M} \times \mathrm{filt}_{\mathcal{A}} \mathfrak{M}$ to $\mathrm{gr}_{\mathbb{Z}} \mathfrak{M}$.

LEMMA 16. Let $\varphi(M,N)$ be as above. Then $\varphi(M,N)$ is always a monomorphism and it is an isomorphism if M is filt-free.

PROOF. Suppose that $\varphi(f^p) = 0$. Then $f(x)^{p+q} = 0$ for every $x \in F_q M$ and every integer q and hence $fF_qM \subseteq F_{p+q-1}N$, for every integer q. Thus $f \in F_{p-1} \operatorname{Hom}_{A}(M, N)$, which shows that $f^{p} = 0$.

Now assume that $\{(x_i, p(i))\}_{i \in I}$ is a filt-basis in M. Then $\{x_i^{p(i)}\}_{i \in I}$ is a homogeneous basis in E(M). Thus, if $g \in \operatorname{Hom}_{E(A)}(E(M), E(N))^p$, then we have

$$gx_i^{p(i)} = y_i^{p(i)+p}$$

so that if we define $f: M \to N$ by $f(x_i) = y_i$ then $\varphi(f^p) = g$.

LEMMA 17. Suppose that B is a graded ring. Let $N \in \operatorname{gr}_{R}\mathfrak{M}$. Then the following statements are equivalent,

- (a) N is gr-injective (i.e. injective in $\operatorname{gr}_B\mathfrak{M}$).
- (b) $hom_{\mathcal{B}}(\cdot, N)$ is exact.
- (c) $\operatorname{Hom}_{R}(\cdot, N)$ is exact.
- (d) $\operatorname{Hom}_B(i,1)$: $\operatorname{Hom}_B(B,N) \to \operatorname{Hom}_B(J,N)$ is an epimorphism for every homogeneous left ideal J in B.

Proof. Obviously (a) and (b) are equivalent and (c) implies (b) and (d). That (b) implies (c) follows by using suspensions, noting that

$$\operatorname{Hom}_B(M,N)^p = \operatorname{hom}_B(s^{-p}M,N) .$$

Finally (a) follows from (d) as in [3, page 9].

LEMMA 18. Let B be a graded ring and let $N \in \operatorname{gr}_B \mathfrak{M}$. Then N is grinjective if N is injective.

Proof. Consider a diagram

in $\operatorname{gr}_B\mathfrak{M}$, with exact row. Then there is an $h \in \operatorname{Hom}_B(L,N)$ such that hg = f. Let $H \colon K \to N$ be given by $H(k_n) =$ the component in N_n of $h(k_n)$, where $k_n \in K_n$. Then $H \in \operatorname{gr}_B\mathfrak{M}$ and Hg = f. Thus N is gr-injective.

THEOREM 4. Let $N \in \text{filt}_A \mathfrak{M}$, where F_*A is exhaustive and F_*N complete. Suppose that E(N) is gr-injective. Then

$$\mathbf{Hom}_{\mathcal{A}}(i,1) \colon \mathbf{Hom}_{\mathcal{A}}(A,N) \, = \, \mathbf{Hom}_{\mathcal{A}}(A,N) \to \mathbf{Hom}_{\mathcal{A}}(J,N)$$

is an epimorphism for every left ideal J of A i.e. every homomorphism $f: J \to N$ of finite filt-degree can be extended to a homomorphism $A \to N$.

PROOF. Filter J by $F_pJ=J\cap F_pA$ so that $i\colon J\to A$ is a strict monomorphism. Consider the commutative diagram

$$E \operatorname{Hom}_{A}(A,N) \xrightarrow{E \operatorname{Hom}_{A}(i,1)} \to E \operatorname{Hom}_{A}(J,N)$$

$$\downarrow^{\varphi(A,N)} \downarrow^{\operatorname{iso}} \qquad \qquad \downarrow^{\varphi(J,N)}$$

$$\operatorname{Hom}_{E(A)}\big(E(A),E(N)\big) \xrightarrow{\operatorname{Hom}_{E(A)}(E(i),1)} \operatorname{Hom}_{E(A)}\big(E(J),E(N)\big)$$

E(i) is mono and E(N) is gr-injective. Thus $\operatorname{Hom}_{E(A)}(E(i),1)$ is epi. Hence $\varphi(J,N)$ is an epimorphism and therefore also an isomorphism. It follows that $E\operatorname{Hom}_A(i,1)$ is an epimorphism. Now $F_*\operatorname{Hom}_A(A,N)$ and $F_*\operatorname{Hom}_{(A)}(J,N)$ are exhaustive and complete by lemma 13(c). Thus $\operatorname{Hom}_A(i,1)$ is an epimorphism by lemma 1(e) (with N=0).

DEFINITION. Let C be a ring. Then $N \in {}_{C}\mathfrak{M}$ is said to be principal-injective if every homomorphism

$$f: Cx \to N, \quad x \in C$$

can be extended to C.

THEOREM 5. Let $N \in \operatorname{filt}_A\mathfrak{M}$, where F_*A is exhaustive, F_*N complete and $F_pN=N$ for $p \geq t$. Suppose that N is principal-injective and E(N) is gr-injective. Then N is injective.

Proof. Let J be a left ideal in A and give J the induced filtration. Suppose that $f: J \to N$ is a homomorphism. By theorem 4 it is sufficient to prove that f is of finite filt-degree. Assume the contrary. Then there is an $a \in F_p J$ such that $f(a) \notin F_{p+t} N$. Consider $f/Ca: Ca \to N$. This homomorphism has an extension $A \to N$ and consequently f(a) = ac for some $c \in N = F_t N$. Thus $f(a) \in F_{n+t} N$ which is a contradiction.

REMARKS. (a) A filtration which stops as above is obtained e.g. if one filters with ideals.

- (b) By lemmas 14, 15 and theorem 4 it follows that if F_*A is exhaustive and complete and E(A) is noetherian and self-injective that is a QF-ring then A is a QF-ring (thus F_*A will automatically be discrete if $F_0A = A$ since A is artinian). In this way J.-E. Roos in [6] gives a very short proof of the main result in [1]. At the same time he strenghtens this, using a spectral sequence, to:
 - E(A) noetherian, F_*A exhaustive and discrete yields

$$\mathrm{l.inj.dim}_{\mathcal{A}}A \, \leq \, \mathrm{gr.l.inj.dim}_{E(\mathcal{A})}E(A) \; .$$

This works even if F_*A is only assumed to be complete instead of discrete.

(c) Let B be any non-left-noetherian ring. Grade B by $B^0 = B$ and $B^n=0$ for $n \neq 0$. Let $J_1 \subseteq J_2 \subseteq \ldots$ be a strictly increasing sequence of left ideals in B and put $J = \bigcup_{1 \le i < \infty} J_i$. Define $M \in \operatorname{gr}_B \mathfrak{M}$ by

$$M = \bigoplus_{1 \leq i < \infty} I(J/J_i) ,$$

where $I(J/J_i)$ is the injective envelope of J/J_i in $_{B}\mathfrak{M}$ (as a matter of fact any injective module in $_{R}\mathfrak{M}$ containing J/J_{4} will do). Let $f: J \to M$ be given by

$$f(j) = \bigoplus_{1 \leq i < \infty} (j + J_i) .$$

Then f is well-defined, since $j + J_i = 0$ for $i \ge n(j)$, and f is a homomorphism in $_{B}\mathfrak{M}$. This homomorphism has no extension $F: B \to M$ since then we would have

$$F(1) \in \bigoplus_{1 \leq i < n} E(J/J_i)$$

and thus $f(J) \subseteq \bigoplus_{1 \le i < n} E(J/J_i)$, whence

$$f(J) \subset \bigoplus_{1 \leq i < n} J/J_i$$
.

This implies $J \subset J_n$, which is a contradiction. Consequently M is not injective. Now let L be a left ideal in B and let $g \in \operatorname{Hom}_B(L,M)^p$ that is $g: L \to E(J/J_p)$. Since $E(J/J_p)$ is injective there is an extension $G: B \to B$ $E(J/J_p)$ of g, which shows that M is gr-injective. Hence M is a positively graded ring which is gr-injective but not injective. If we give B and M

the associated filtrations we get a discretely and exhaustively filtered ring B and a discretely and exhaustively filtered $M \in \operatorname{filt}_B \mathfrak{M}$ such that E(M) is gr-injective but M is not injective.

5. More about direct sums.

We have the following slight strengthening of [5, page 72].

LEMMA 19. Let A be a complete topological ring, which has a fundamental neighborhood system of 0 consisting of additive subgroups. Let $\varphi: A \to B$ be a ring-homomorphism such that every $x \in \ker \varphi$ is topologically nilpotent that is $x^n \to 0$ when $n \to \infty$. Then every idempotent in $\operatorname{im} \varphi$ can be lifted to A.

PROOF. Let $b \in \operatorname{im} \varphi$ be an idempotent. Suppose that $b = \varphi(a)$. Thus $\varphi(a^2 - a) = 0$ so that $n = a^2 - a \in \ker \varphi$. Put

$$c = a + d(1 - 2a)$$

where d is to be determined (note that 1-2a=f'(a), where $f(x)=x-x^2$). Suppose that d commutes with a. Then $c^2=c$ is equivalent to

$$(1) (d^2-d)(1+4n)+n = 0$$

which has the formal solution

$$d = \frac{1}{2} (1 - (1+4n)^{-\frac{1}{2}}) = \frac{1}{2} \sum_{1 \le k < \infty} (-1)^{k-1} {2k \choose k} n^k.$$

Now $\frac{1}{2}\binom{2k}{k}$ is an integer since $\binom{2k}{k}$ is the coefficient of $1^k(-1)^k$ in the binomial expansion of $(1-1)^{2k}=0$ and the other terms occur pairwise and thus have an even sum. It follows that the expression obtained for d is a power-series in n with integer coefficients and since any sequence $a_k n^k$, where a_k are integers, tends to 0 we conclude that the power-series converges. We find that d given by this series really commutes with a and hence satisfies (1). Consequently c=a+d(1-2a) is an idempotent and since

$$d = n \sum_{1 \le k < \infty} \frac{1}{2} (-1)^{k-1} {2k \choose k} n^{k-1} \in \ker \varphi$$

we conclude that $c-a \in \ker \varphi$. This shows that c lifts a.

LEMMA 20. Let A be a filtered ring and let $M \in \operatorname{filt}_A \mathfrak{M}$, where F_*M is exhaustive and complete. Assume that $f \colon M \to M$ is a homomorphism in $\operatorname{filt}_A \mathfrak{M}$ such that $E(f)^2 = E(f)$. Then there is a homomorphism $g \colon M \to M$ in $\operatorname{filt}_A \mathfrak{M}$ such that $g^2 = g$ and E(g) = E(f). The homomorphism g is automatically strict.

PROOF. Consider the mapping

$$\varphi \colon \mathrm{hom}_{\mathcal{A}}(M,M) \to \mathrm{hom}_{E(\mathcal{A})}\big(E(M),E(M)\big)$$

given by $\varphi(h) = E(h)$. Note that $\hom_A(M,M)$ and $\hom_{E(A)}(E(M),E(M))$ are rings with multiplication defined by composition and that φ is a ring-homomorphism. Filter $\hom_A(M,M) \subset \operatorname{Hom}_A(M,M)$ by the induced filtration. Since

$$\hom_{\mathcal{A}}(M, M) = F_0 \operatorname{Hom}_{\mathcal{A}}(M, M)$$

we see that $\hom_A(M, M)$ is closed in $\hom_A(M, M)$. Thus $\hom_A(M, M)$ is complete by lemma 13(c). Note that $\hom_A(M, M)$ is a topological ring since

$$f \in F_{-p} \operatorname{hom}_{\mathcal{A}}(M, M), \quad g \in F_{-q} \operatorname{hom}_{\mathcal{A}}(M, M)$$

implies that $fg \in F_{-n-q} \text{hom}_{\mathcal{A}}(M, M)$. Now

$$\ker \varphi = F_{-1} \hom_A(M, M)$$
.

Let $h \in F_{-1}hom_A(M, M)$. Then $h^n F_p M \subseteq F_{p-n} M$ that is

$$h^n \in F_{-n} \hom_A(M, M)$$

and we find that $h^n \to 0$ when $n \to \infty$. Hence, by lemma 19, every idempotent in $\operatorname{im} \varphi$ can be lifted. It only remains to prove that any idempotent g in $\operatorname{hom}_A(M,M)$ is strict. Suppose that $g(x) \in F_pM$. Then g(g(x)) = g(x) so that $g(x) \in gF_pM$ that is g is strict.

Let M be as in lemma 20. Then every $f \in F_{-1} \text{hom}_A(M, M)$ is topologically nilpotent. Thus 1 - f has an inverse $\sum_{0 \le n < \infty} f^n$, which shows that

$$F_{-1} \operatorname{hom}_{A}(M, M) \subset \operatorname{Radhom}_{A}(M, M)$$
.

Following [5, page 73], we obtain,

COROLLARY. Let M be as in the previous lemma. Then any finite or countable orthogonal set of idempotents in

$$\operatorname{im} \varphi \subset \operatorname{hom}_{E(A)}(E(M), E(M))$$

can be lifted to $hom_A(M, M)$.

Note that φ is an epimorphism if M is filt-free. Furthermore we know that each gr-free object $N \in \operatorname{gr}_{E(A)}\mathfrak{M}$ equals E(L) for some filt-free object $L \in \operatorname{filt}_A\mathfrak{M}$.

THEOREM 6. Let A be a filtered ring, where F_*A is exhaustive. Let $\overline{P} \in \operatorname{gr}_{E(A)}\mathfrak{M}$ be projective (which is equivalent to $\operatorname{gr-projective}$). Assume that either F_*A and \overline{P}^* are discrete or \overline{P} finitely generated and F_*A complete. Then there is a $P \in \operatorname{filt}_A\mathfrak{M}$ such that $E(P) = \overline{P}$. Furthermore, if $M \in \operatorname{filt}_A\mathfrak{M}$ then any homomorphism $\overline{g} : \overline{P} \to E(M)$ of degree p can be written $\overline{g} = \text{``}E(g)\text{''}$, where $g : P \to M$ is a homomorphism in $A\mathfrak{M}$ of filt-degree p.

PROOF. Let \overline{L} be gr-free and let $\overline{f}\colon \overline{L}\to \overline{P}$ be an epimorphism in $\operatorname{gr}_{E(A)}\mathfrak{M}$. If \overline{P} is f.g. we assume that \overline{L} is f.g. There is a right inverse $\overline{\imath}\colon \overline{P}\to \overline{L}$ of f in $\operatorname{gr}_{E(A)}\mathfrak{M}$. Put $\overline{h}=\overline{\imath}\circ\overline{f}\colon \overline{L}\to \overline{L}$. Then $\overline{h}^2=\overline{h}$. We can assume that $\overline{L}=E(L)$, where L is filt-free and f.g. if \overline{P} is. Since F_*A is exhaustive it follows that F_*L is exhaustive. If F_*A is complete and \overline{P} , and therefore \overline{L} , is f.g. then F_*L is complete. If F_*A and \overline{P}^* are discrete then we may assume that F_*L is discrete. Thus in either case we may apply lemma 20 to find an idempotent $h\in \hom_A(L,L)$ such that $E(h)=\overline{h}$. Let $P=\operatorname{im} h$. We get

$$h: L \xrightarrow{f} P \xrightarrow{\text{mono}} L$$
.

Filter P by the filtration induced by f. Since h is strict we have

$$F_pP = fF_pL = hF_pL = \operatorname{im} h \cap F_pL = P \cap F_pL$$

that is the filtration on P is also induced by i. Thus f and i are strict and this gives us

$$E(h) \colon E(L) \xrightarrow{E(f)} E(P) \xrightarrow{E(i)} E(L)$$

which shows that we can identify E(P) with \overline{P} and put $\overline{f} = E(f)$, $\overline{\imath} = E(i)$. Now suppose that $M \in \operatorname{filt}_{\mathcal{A}}\mathfrak{M}$ and that $\overline{g} \colon E(P) \to E(M)$ is a homomorphism of degree p. By using a suitable suspension of M we may assume that p = 0. We have

$$\bar{g} = \bar{g} \circ E(f) \circ E(i) .$$

But $\bar{g} \circ E(f) : E(L) \to E(M)$. Thus we can put $\bar{g} \circ E(f) = E(k)$, where $k \in \text{hom}_{A}(L, M)$. It follows that $\bar{g} = E(ki)$, where $ki \in \text{hom}_{A}(P, M)$.

Acknowledgement.

The author wants to thank Jan-Erik Roos for his kind interest and valuable guidance during the work on this paper.

REFERENCES

- 1. P. R. Bongale, Filtered quasi-Frobenius rings, Math. Z. 106 (1968), 191-196.
- N. Bourbaki, Algèbre Commutative, Chapitre 3 (Act. Sci. Ind. 1293), Hermann, Paris, 1961.

- 3. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
- 4. S. Eilenberg and J. C. Moore, Limits and spectral sequences, Topology 1 (1962), 1-23.
- 5. J. Lambek, Lectures on rings and modules, Blaisdell publishing Company, London, 1966.
- 6. J.-E. Roos, The Weyl algebras are Gorenstein rings. Generalizations and applications (to appear).
- 7. A. Roy, A note on filtered rings, Arch. Math. (Basel), 16 (1965), 421-427.
- 8. R. Sridharan, Filtered algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100 (1961), 530-550.

STOCKHOLM UNIVERSITY, SWEDEN