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ON THE SPECTRAL CATEGORY OF SOME RINGS

PETER STROMBECK

Introduction.

In [1] Gabriel and Oberst showed that if C is an arbitrary Grothen-
dieck-category then one can in a canonical way construct another
Grothendieck-category SpecC and a functor P:C — SpecC which makes
essential monomorphisms invertible. More explicitely: let SpecC have
the same objects as C and define

Homg oo ¢(C, D) = limHomg(C", D)

where ' — C is an essential monomorphism. P is the identity on objects
and takes f:C — D to its image in limHom(C", D). SpecC is indeed a
Grothendieck category in which every morphism splits (so that all ob-
jects are injective and projective). They also showed that if C is a spec-
tral category (that is, a Grothendieck category in which every morphism
splits), then € can be represented as the full sub-category of Mod R. of
direct summands of powers of B where R is a von Neumann-regular
right self-injective ring, and conversely if R is such a ring then the full
sub-category of Mod R. of direct summands of powers of R is a spectral
category. It follows that the ring of endomorphisms of an arbitrary ob-
ject in a spectral category is regular and right self-injective. It is also
easy to show that if I is injective in C then End¢/ — Endgp. ¢/ is sur-
jective and its kernel is the Jacobson radical of Endg /.

In [8] Roos continued the study of spectral categories and introduced
certain conditions on the lattice of sub-objects of an object to get a
decomposition of the spectral category in a direct product of three dif-
ferent types of spectral categories. Call an object C in a spectral cate-
gory C distributive if its lattice of sub-objects is distributive. Roos
showed that this is equivalent to End,C being strongly regular ([8]).
We thus get a decomposition

C =~ Cyiger X Cogistr

where the objects of Cgyy, are direct sums of distributive objects and
the objects of C, 4, cOntain no non-zero distributive sub-objects. Cygiqte
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can be further decomposed into types II and III where objects of type I1
are direct sums of AB5*-objects (see the definition in section 1.2 below)
and objects of type III contain no non-zero AB5*-objects. Roos also
gave examples of rings A such that SpecMod 4 has a non-trivial anti-
distributive part (its distributive part is always non-zero), but the prob-
lem if a commutative ring 4 with such a property could be found re-
mained open and in fact inspired much of this work.

Summary.

In section 1 I study the ring of endomorphisms of a vector space of
countably infinite dimension and show that its spectral category con-
tains a non-zero type III spectral category. The question whether there
exists a non-trivial type II part remains open but the problem is reduced
to studying A/I where I is a left ideal which cannot be generated by a
countable family.

The remaining part of the paper is devoted to the study of spectral
categories of commutative rings and section 2 gives some general criteria
for such a category to be of type I exclusively, and as an easy conse-
quence we get a sufficient condition for the existence of a non-zero non-
distributive part, which is used in section 3 in the study of the polyno-
mial ring in countably many variables over a field. It is probable that the
example given there is of type II, but this is far from proved. In section
4 T show that the spectral category of the ring of integer-valued functions
on a compact topological space is of type I and in section 5 I show some
results which might indicate the same result for the ring of continuous
functions on the closed unit-interval.

On the whole the results are sadly incomplete and only give an idea
of the difficulties which arise when trying to study the spectral category
of even the most common rings. Finally I wish to thank Jan-Erik Roos
for his interest in these problems, his suggestions and encouragement.

1.1. Let 4 be equal to Hom,(V, V) where V is a vector space over k
of countably infinite dimension, let I be the two-sided ideal in 4 con-
sisting of endomorphisms of finite rank (that is dim,Im (f) is finite) and
let B=A/I. Finally let P be the natural functor Mod 4 — SpecMod 4

(see [1]).

PropPOSITION 1. P(B) has no non-zero distributive sub-objects (see [8,
p- 160]).
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Proor. According to the proposition on page 161 in [8] it suffices to
prove that for every non-zero sub-object C' of P(B) there exist sub-objects
C" and C" of C such that C'nC" =0 and

HomSpecModA (0'50”) + 0.

By definition Homge.p0a.4(C, P(B))=1ngom 4(D,B) where D is essen-
tial in C (now regarded as an object in ModA). A monomorphism
1:C — P(B) can therefore be represented by a homomorphism j:D — B
which is necessarily a monomorphism since P is left-exact (see [1]). If
we now can find non-zero sub-modules D’ and D’ of D such that
D'nD""=0 and a homomorphism f:D’ - D"’ with non-essential kernel,
then P(D’) and P(D”) are non-zero sub-objects of P(D)=C with
PD'YnP(D'"y=P(D'nD")=0 and

HomSpeeModA(P(D,)’P(D”)) F 0.

Identify D with its image in B under j. Now choose an element f=+0 in
D and let it be represented by the endomorphism f on V. Im(f)="U is
infinite-dimensional since f +0. Let U=V'uW be a direct sum decom-
position of U with V' and W infinite-dimensional and let ¢ and 4 be the
projections of V onto V' and W respectively. It is clear that §,h=+0 and
that gAuhAd<fA.

It now remains to show that there exists an 4-homomorphism g4 — k4
with non-essential kernel (in fact the two right 4-modules are isomorphic,
cf. lemma 1 below). Let u’ be a k-isomorphism of V' onto W with invers
v' and extend u’ and ¢’ to endomorphisms » and v on V respectively.
Consider the A-homomorphisms s:g4 — k4 and ¢:hA4A — g4 defined by
s(ga) =uga and t(ha)=vha. Then we have

st(ha) = s(vha) = s(gvha) = ugvha = uvha = w'v'ha = ha

since vha =gvha (g being an idempotent). Similarly ¢s(ga)=ga. Moreover
uga has finite rank if and only if ga has so; hence s induces a mono-
morphism 3:§4 - hA (which is even an isomorphism onto k4 with
invers 2).

1.2. LEMMA 1. B is isomorphic to every non-zero cyclic sub-module.

Proor. Let 0+f4 <B and let Im(f)=U. Then U is infinite-dimen-
sional and the same argument as in the preceding proof shows the exis-
tence of 4-homomorphisms 3: f4 —~ A and ¢: A - fA which are inverses
of each other.
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DErINITION (see [8 p. 177]). An object C in a spectral category is an
AB5*-object if for every sub-object D of C and for every decreasing
filtered family {D;} of sub-objects of C' the canonical map

(N D)+ D~ N (D;+D)

is an isomorphism.

Lemma 2. If C is an AB5*-object in a spectral category C then the ring
R=Hom(C,C) is finite, that is, xy=1 implies yx=1 (see [3]).

Proor. The lattice of sub-objects of C is isomorphic to the lattice L
of principal right ideals of R under the correspondence D - Hom(C, D) =
eR where e?=¢ and ¢(C)=D (note that 2R =yR if and only if 2(C) = y(0),
and in that case they are both equal to HomC(C’,x(O))). The hypotheses
on C to be an AB5*-object then implies that R is a continuous regular
ring and not only upper-continuous (see [5 p. 156]).

Suppose zy =1 in R. Then there is a factor-correspondence ([ 5 p. 149])
t -yt and yxs — xs between R and yxzR, and Hilfssatz 1.4. of [5] shows
that R ~yxR, that is, R and yxR have a common complement in L which
must necessarily be equal to zero. But then yxR =R, so yxzr=1 for some
r € R; hence zyxr =z. Finally xy=1 so x=xyzr=2r and 1=yzr=yx.

LeMMA 3. There exist f and § in B with fg=1 and gf+1.

Proor. Let V=UuW with U and W infinite-dimensional and let g
be a k-linear isomorphism of ¥ onto W with invers f' and define an
element f in 4 by flu+w)=f'(w), ue U, we W. It is clear that fg=1
and Im(1 —gf)=U which implies that fj=1 and gf+1 in B since U is
infinite-dimensional.

ProrosiTiON 2. P(B) has no non-zero AB5*-subobjects.

Proor. Note first that B is von Neumann regular since A is so; in
particular B is right non-singular, so the injective hull E(B) ot By can be
given an natural ring-structure which makes it into a von Neumann
regular ring (see [9, section 8 and proposition 20.1. p. 113]). Since P(B) ~
P(E(B)) we have

HomSpecModA (P(B):P(B)) = HOIIIA (-E(B)’E(B))/J

where J is the Jacobson radical of Hom ,(E(B), E(B)) (see [8 p. 176]).
But J=0 by [9 proposition 20.1] because End,(E(B))=Endy(E(B)).



ON THE SPECTRAL CATEGORY OF SOME RINGS 217

Hence B can be embedded in Endgpecioa4(P(B)) and lemma 3 shows
that the latter is not finite, so according to lemma 2 P(B) cannot be an
ABb5*-object. But by lemma 1 every non-zero sub-object C of P(B) has
a sub-object which is isomorphic to P(B) so C cannot be an AB5*-object.

1.3. In order to look for objects of type II it is enough to study ob-
jects of the form P(A4/J) where J is a right ideal in 4, for these objects
constitute a set of generators for the category SpecMod A (see [8])

Prorosition 3. If J is a right-ideal in A with J>1I and if J can be
generated by a countable set of elements then P(A[J)~1] P, where P,~ P(B)
for all 4.

Proor. Let z;, ¢=1,2... generate J and let V,=Im(xz;). One can
suppose that V;< ¥V, for ¢ <j, for since 4 is regular every finitely gener-
ated right-ideal is generated by an idempotent and z; can then be replaced
by idempotents e; such that

e;d =z, A+ ... +x;4.

If W is not contained in any V, then WnV, has infinite codimension in
W for every ¢; for if WnV,+ U=W with U finite-dimensional then if
Im(y)=WnV,; and Im(2)=U, both y and z belong to J which implies
that y4 + 24 =eA <J where Im (e) = W, a contradiction (z € J iff Im (z) =
V, for some ). Let U; be a complement of WnV, in W such that
U;> U, for i<j, and construct an infinite-dimensional sub-space W' of
W such that dim, W'nV, is finite for all ¢, by choosing inductively
y; € U, such that y,,...,y, are linearly independent (which is possible
since the U, are all infinite-dimensional), and let W'=II32 ky;. It is
clear that W’ has the required properties.

Let L be a non-zero sub-module of 4/J and let f+0 in L be repre-
sented by fin 4. f¢J so by the above argument there is an infinite-
dimensional sub-space W' of Im (f) such that W’n V, is finite-dimensional
for every 1. Choose ¢ in 4 with Im(g)=W’'. Then g4 <fA4 and if he
gAnd then Im (k)= W nV, so h has finite rank, that is he I so gAndJ =
gAnI. Therefore

(gA+J)I =~ (gA+1I)/I.

But g ¢ I and by lemma 1, (94 +1)[I~A/I=B, so L has a sub-module
isomorphic to B.

Consider now the family F of direct sums of cyclic sub-modules of 4/J
isomorphic to B. F is not empty according to the preceding paragraph
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and is inductively ordered by inclusion on the indexing sets, hence has
a maximal element [I(f;4+J)/J by Zorn’s lemma. Suppose that
LI(f;A+J)/J is not essential in A/J. Then there exists 0+ L<=A[J
such that

(L1 (f;A+ ) J)nL =0.

But L has a non-zero sub-module isomorphic to B contradicting the
maximality of IT(f;4 +J)/J. Therefore I1(f;4+J)/J is essential in 4/J
which implies that

P(4}J) = P(LL (f,A+))J) = [T P((fid+D)J) = L1 P,
where P,~ P(B) for all i.

2.

Let now A be an arbitrary commutative ring. According to [8 propo-
sition 2 p. 161] an object C in a spectral category C is distributive if
and only if Hom(C,,C,) =0 for all sub-objects C;,C, of C with C;nC,=0.
An element f4 0 in Homg .04 4 (C, D) can be represented by an 4-homo-
morphism g: ¢’ - D where C’ is essential in C and Ker (g) is not essential
in C'. But then there is a cyclic sub-module a4 40 of ¢’ such that
aA nKer(g)=0 and the restriction of ¢ to a4 is a monomorphism into D.
If moreover b=g(a) then g induces an isomorphism a4 ~bA4. 4 is com-
mutative implies that (0:a)=(0:b).

If now P(C) is not distributive then there exist sub-objects P(C,) and
P(C,) of P(C) with P(C,)nP(C,)=0 and a non-zero morhism f: P(C,) -
P(C,). One can suppose that C, and C, are submodules of C (cf. the proof
of proposition 1) so by the argument above one can find non-zero a and
b in C with (0:a)=(0:b). Moreover C;nC,=0 implies that a4 nb4 =0.

Conversely suppose there exist non-zero a,b in C with (0:a)=(0:b)
and aAnbAd=0. Then a4 ~b4 and P(ad)>~P(bA) are non-zero sub-
objects of P(C) with intersection =0, so P(C) cannot be distributive.
We have therefore proved the following result:

ProrosiTioN 4. Let A be a commutative ring and C a non-zero A-module.
Then P(C) is a distributive object tn SpecMod 4 if and only if there are
no non-zero a,b in C with aAnbA4A =0 and (0:a)=(0:b).

CoroLLARY. Let I be an tdeal in A and a € A —1. If there i.s no be A
such that ab ¢ I and a?b® € I then P((ad + I)[I) is distributive. In pamcular

P(A[I) is distributive if I= VI.
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Proor. If P((ad4 +1I)/I)is not distributive then there exist, according
to proposition 4, b and ¢ in A4 such that (I:ab)=(:ac)+ A and (ab4d +1)n
(acA +1)=1. But then abac € abAnacA<1I so ab e (I:ac)=(I:ab).

To show that SpecMod 4 is locally distributive (of type I) it suffices
to show that P(A4/I) is a direct sum of distributive objects for every
ideal I in A, for these objects constitute a system of generators for
SpecMod A (see [8]). In order to show this, it is enough to show that
every cyclic non-zero module a4 +I/I contains a non-zero cyclic sub-
module ab4 + II such that P(abA4 + I[I) is distributive. For if 111,/ is
a maximal element in the family & of direct sums of modules I,/I such
that P(I,/I) is distributive and if [11,/I is not essential in A4/ it is pos-
sible to find a strictly bigger direct sum which belongs to #. Therefore
111,/ is essential in 4/I and

P = P(ITI4D) = 11 PUJD) -

According to the corollary to proposition 4 one can suppose that a’e I;
for either there is no b such that ab ¢ I and a2?b? € I and then P(ad +I/I)
is distributive (by the corollary) or there exists such a b and then a can
be replaced by ab (if ab4 +I/I) contains a cyclic non-zero sub-module
which is distributive in SpecMod 4 then so does a4 + I/I). Thus we have:

ProrosiTION 5. Let A be a commutative ring. If for every a € A and
ideal I in A satisfying a & I, a® € I there exists b € A such that P(abA +I]/I)
18 non-zero and distributive, then SpecMod 4 is locally distributive.

The following result is also an easy corollary of proposition 4 and will
be used in the next paragraph to show the existence of a commutative
ring with a spectral category that is not locally distributive.

ProposiTiON 6. Let A be a commutative ring and I an ideal in 4.
Suppose there are elements a;,b, tn 4 —1 such that

(1) (@A +D)n(bA+D)=1,
(2) (T:ay)=(1:by),
(3) for every c & I there is a k such that a,c ¢ 1.

Then P(A[I) contains no non-zero distributive sub-objects (is anti-distribu-
tive).

Proor. Let ¢4 +I/I be an arbitrary non-zero cyclic sub-module of
A[I. Tt is clearly sufficient to show that P(c4 +I[I) is not distributive.
Take a,; such that a,c ¢ I. Then we have
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(axcA+I)In (bped+I)I =0
and
(L:ahe) = ((L:ay):e) = ((L:b):c) = (I:b;¢),

so according to proposition 4, P(c4 + I[I) is not distributive.

3

Let nowd =k[X,,Y,,X,,Y,,...] be the polynomial ring in countably
many variables over a field k. Let I be the ideal generated by X2, Y2
and X,;Y,,¢=1,2,... . We have:

ProrosiTion 7. SpecMod A is not locally distributive. More explicitely
we have that P(A[I) is anti-distributive (that is contains no non-zero dis-
tributive sub-objects).

Proor. All we have to do is to check properties (1)—(3) in proposition
6 for the pair of elements X, Y, , which is quite trivial. For example (1):
Suppose the contrary and take

Pe (X A+D)n(Y, 4+1)-1I.

Since all the ideals are generated by monomials one can suppose that P
is a monomial which must contain both X, and Y, (since 4 is a unique
factorisation domain) and thus belong to I, a contradiction. For (2) note
that if P e ([:X,) then every monomial of P must belong to (I:X;)
and therefore contains a X, or Y, if it is not already in /. (3) is immediate
since an element in 4 is a finite sum of monomials.

CoNJECTURE. P(A4/[I) is of type II, that is more precisely: it is an
ABb5*-object or its ring of endomorphisms in SpecMod 4 is continuous.
This seems however hard to prove.

4,

Let now 4 =C(X,Z) be the ring of continuous integer-valued functions
on a compact topological space (see [7]). I shall show that SpecMod 4
is locally distributive. Let I be an ideal in 4 and f an element in 4 —1
but such that f2 e I. X is compact and f is continuous so the range of f
is finite and X can be decomposed as X =U?% X, where the X, are open
and closed in X and pair-wise disjoint and f is constant on every X,.
If one lets g;=1 on X; and =0 otherwise then g; is continuous and f=

19.f. f ¢ I implies the existence of an ¢ such that g,f ¢ I. By substituting
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this g,f for f one can suppose from the beginning that X=X ,uX,,
X nX,=0 and X, is open and closed in X and that f=0 on X, and
f=a+0 on X, (also that X,+® for f+0). If a=TI}p;, p; primes, and
if one sets f;(X,)=p;, f;(X;)=0, then f; is continuous and f=TI}f;. Let
f'=fTIT""'f; where m is the first integer such that fII}'f;e I (this
exists and is =1 since f¢ 7 and f2el), so f'efd—1I, and if g(X,)=p
and g(X,)=1 then gf' € I.

If E is open and closed in X, define the element ky in 4 by
hg(X —E)=1 and hg(E)=p,,. Let & be the family of such E such that
hgf' € 1. & is not empty as was shown above.

m

LemMa 4. & s a filter, that is,

(1) of E € & and F > E where F is open and closed in X then F € &,
(2) iof E and F € & then EnF e &.

Proor. (1) Suppose that F is open and closed in X and contains B
in &. Define k(E)=1, k(F—-E)=p, and kKX —-F)=1. Then ke A,
khgy=hg and khgf' €1, s0 Feé.

(2) Define k(E — EnF)=0and =1 otherwise and define g(¥ — EnF)=1
and =0 otherwise. Then we have k,g € A4,

khg+ghy = hgop and  (khg+ghp)f' €l
by the assumption on £ and ¥ so EnF e &.

Define ¢(&)=E where E varies over &. ¢(&) is non-empty for X is
compact, the E’s are closed in X and every finite intersection is non-
empty.

Lemma 5. If E is open and closed in A and E>c(&) then E € &.

Proor. X —E is compact and (X — E)nE; are closed in X — F and
Moo (X-E)NE) = 0.
But then some finite intersection N% (X — E)n E;)=@, thatis, E> N} E,,
so B € & by lemma 4.
Lemma 6. If g(z) € p,, Z for all x in ¢(&) then gf' € 1.

Proor. g-1(p,, Z)="U is open and closed in X and U>¢(&) so Ue &
and if ¢’ is defined by ¢'=9 on X—U and ¢'(x)=g(2)/p, on U then
g €d and g=g'hy. But hyyf €1 so gf' =g'hyf' € 1.
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Lemma 7. If (L:gf")=(L:hf’), x € ¢(&) and ¢() € p,, Z then h(x) € p,, Z.

Proor. Suppose the contrary. Since ¢ and % are continuous and Z
discrete one can find an open and closed neighbourhood U of x such that
g and h take a constant value on U. Let k(U)=1, k(X —-U)=9p,,. Then
kg(x)=k'h x(x) for all z in X and some k' € A. Now hxf' €1 so kgf' €l
that is ke (I:gf’). Hence it is now sufficient to show that k & (I:Af").
Choose a,b € Z such that

akh(z)+bp,, =1, xeU,

and define elements « and §in 4 by «(U)=a and « = 0 otherwise, §(U)=b
and =0 otherwise. Then we have xkh+pfhy=hx_, and Unc(&)+0
implies hy_yf' €1 by the definition of ¢(&). But now Ayf el so
khf' & 1.

ProrosrtioN 8. If (L:gf )= :hf’) then gf' Anhf' A 1.

Proor. (I:gf')+A implies that gf' € I which in turn implies that
9(z) ¢ p,, Z for some z in ¢(&) by lemma 6. But then lemma 7 gives that
h(z) € p,,Z. Now g and A are continuous and Z discrete so one can sup-
pose that g and A are constant on some open and closed neighbourhood
U of z. Thus on U we have g(x)h(z) € p,,Z. In the same way as in lemma 7
for the function kh one can now deduce that ghf’ & I (the only properties
of kh that were needed were (1) that Unc(&)+@D and (2) that
(k(x)h(z),p,) =1,z € U). But ghf'egf’Anhf’A so the proposition is
proved.

Now proposition 8 is the crucial result which together with the gen-
eral considerations in section 2 immediately gives the following

TrEOREM 1. SpecMod C(X,Z) is locally distributive.

Proor. According to proposition 5 it suffices to show that if fe 4 —1
and f2 € I, then fA +I[I contains a non-zero cyclic sub-module which is
distributive in SpecMod 4. But by propositions 4 and 8, P(f'4+1/I) is
distributive and +0 and f' € f4.

5.1. The last aim of this paper is to study the ring of continuous real-
valued functions on the unit interval which turns out to be unexpectedly
complicated. Therefore I start with a similar but more easily handled
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ring. Let X be the set {I/n |n=1,2,...}u{0} and 4 =C(X) the ring of
continuous (real) functions on X. The goal of this section is to prove

THEOREM 2. SpecMod A4 s locally distributive.

Let J be the ideal {g | (0)=0} in A. Then the following proposition
plays the same essential part in proving theorem 2 as did proposition 8
in proving theorem 1.

ProproSITION 9. Let I be any ideal in A and suppose that ([:f)=
(I:9)%J. Then fAngA¢1.

Proor. Choose G € J—(I:f). Then also G'=|GQ[* belongs to J —(I:f)
so one can suppose that G20 and that G2 J —(I:f). Let

V = {n] f(1j)g(1fn)+0} U {0} .

Prove to begin with that Gf,, Gg, ¢ I, where I, is the set of restrictions
of functions in I to V. Let

V' = {l/n| f(1/n)+0} u {0}
and define H=G@G? on V' and =0 otherwise. Then Hf=G2f¢ I so Hg ¢ 1.
Let H=H on V and H'=0 otherwise. Then Hg=H'g¢ 1 so H'f¢ 1.
If now Gf=Fk on V where keI then if ¥'=G on V and k' =0 otherwise
so K'k=k'Gf=H'f ¢ I a contradiction for ke I. In the same way one
proves Gy, ¢ Iy.
Next let

U={fneV| |f(/m)gn) £1}u{0} and W = (V-U)u {0}

and show that Gify ¢ I, or Gify, & I,,. Suppose not, that is, G¥f=~h
on U and G¥f=k on W where h,k € I. Let A=G* on U and =0 otherwise
and let u=G* on W and =0 otherwise. Then 4 and u are in 4, and
Ah+uk € I and equals G*h=Gf on U and =Qk=Gf on W, so Ah+ uk=Gf
on V, a contradiction since Gfy ¢ I;,. In the same way one shows that
Gtgy ¢ Iy or Gigy ¢ Iy

Now one wants to show that Gify, & I, or Gigy, & I, Suppose the
contrary. Then by the above result we have Gig,; ¢ I;; and we shall use the
hypotheses (I:f)=(I:g) to get a contradiction. Let h=G* on U and =0
otherwise and let k=G* on U and =0 otherwise. » and k belong to 4
and hf=kGf=kf' where f' € I is some element such that Gif=f" on U.
Thus we have he(l:f)=(l:g) so hgel. But hg=Gly on U while
Qg ¢ I; so we get what we wanted.
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Hence one has Qify ¢ I, or Qigy, & I;,. Suppose the first relation
holds (the argument is quite analogous if Gigy, ¢ Iy;,). Let h=G* on U
and k=0 otherwise. A is continuous and Af ¢ I. Let k=Af/g on U and k=0
otherwise. k is continuous since |f/g|<1 on U and A(0)=0. Finally
hf=kg so hf e fAngA —1I.

Proor or THEOREM 2. Let I be any ideal in 4 and f an arbitrary ele-
ment in 4 —1. It is enough to show that f4 + 1/l contains a non-zero
cyclic module fgA + /I which is distributive in SpecMod A (by propo-
sition 5). If fA +I/I has a simple sub-module this is clear. If f4 +1 /I
does not contain any simple sub-module, then we cannot have (I:fg)=
for any g; for J is a maximal ideal and we would then have fg4 + 1 /I ~
A/J which is a simple module. Suppose now that (I:fg)=(I:fh)+A4.
Then also (I:fg)+J, and proposition 9 implies that

fgA+I[InfrA+I[I + 0,
so P(fA +1/I) is distributive by proposition 4.

5.2. Let X be any closed subset of the closed unit-interval [0,1] and
let f be a continuous function X — R. Then f can be extended to a con-
tinuous function F on [0, 1] (see e.g. [2]). This can be restated in the fol-
lowing way: let A =C([0,1]) and B=C(X). Then the natural restriction
homomorphism 4 — B is surjective. Let now I be an ideal in B. Then
one can find an ideal J in A such that B/I~A4/J. If now P(4/J) is a
direct sum of distributive objects in SpecMod A the same is true for
P(B[I) in SpecModB and since the objects P(B/I) form a system of
generators of SpecMod B we conclude that SpecMod B is locally distri-
butive if SpecMod A is so. The following proposition gives some sort of
a converse.

ProrosrrioN 10. If SpecMod C(X) ¢s locally distributive for every to-
tally disconnected compact subset X of [0, 1] then so is Spec Mod C([0,1]).

Proor. Let 4 =C([0,1]) and let f and g be two arbitrary elements in 4.
Define

U=U;, = {| If@)<lg@) or |f(y)=1g(y)| +0 for all y in
some neighbourhood of x}
V="V, = {a| If@]>g)I}

U and V are open in [0,1] and can be represented as the intersection of
[0,1] with the at most countable disjoint unions of open intervals
U (a;,b;) and U (c;,d;) respectively.



ON THE SPECTRAL CATEGORY OF SOME RINGS 225

Let h be an element in 4 with A(a;)=h(b;) =0 for all . Then define
a function Ay on [0,1] by Ay =h on U and hy =0 otherwise. I claim that
hy is continuous on [0,1], hence is an element of 4. This is clearly true
for every inner and outer point of U. Let now « belong to the border of U.
Then there are z; € U converging to x. Now z; € (ay;,by;) for some i(j),
so we have either x < a,; < x; or ;> b,; = . By choosing in the first case
ay; and in the other b,; one can find a sequence of a,; and b; converging
to x. But now h(a;)=h(b;)=0 so by continuity h(z)=0. Moreover we

have b ()~ hp(@)| < 1h(y) k) |

so h continuous in x implies that A, is continuous in x and hence every-
where in [0,1]. Similarly if h(c;)=h(d;)=0 for all ¢, define h,=h on V
and =0 otherwise. One shows in the same way that h;, is continuous.
Finally if both %y and h, are defined let A’ =hy + by

Let now I be an arbitrary ideal in 4 and fe A—1I. According to
proposition 5 it suffices to prove that f4 +I/I contains a non-zero cyclic
sub-module which is distributive as an object in Spec Mod 4. First suppose
there is a gf € 4 —I such that

(I:fg) = I(X) = {f| f(X)=0},
where X is some compact and totally disconnected subset of [0,1]. Then
fgA+1I|I ~ A|(I:fg) ~ B|J

where B=C(X)~A/I(X). But according to the hypotheses SpecMod B
is locally distributive, so B/J is a direct sum of distributive objects in
SpecMod B, and therefore the same conclusion holds for fg4+I/I in
SpecMod 4. In particular fg4 + I/I contains a non-zero cyclic sub-module
C such that P(C) is distributive.

Secondly suppose that there is no fg e 4 —1I such that (I:fg)>I1(X)
for some compact totally disconnected subset X of [0,1]. Suppose that
(I:fg)=(I:fh)+A. We want to show that fg4 nfh4 is not contained in I.
Define U=Uy, g, V="Vy, ; and a,,b;,¢;,d; as above for the functions fg
and fh in place of f and g. Take

&€ I({ai’bbci’di}) - (I :fg) .
(This is possible since the closure of {a;,b;,¢;,d;} is compact and totally
disconnected.) Then we have
ofg = o'fg = apfg+apfgél,

so either ay fg or apfg is not in I. Suppose for example that oy fg ¢ 1
(if not the reasoning is quite analogous, we only have to change the roles

Math. Scand. 33 - 15
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of fg and fh). Define the function g by f=oy fg on U and =0 otherwise.
p is continuous on U and if ¢ U then B(x)=oay(z)=0. Moreover
1B()| £ |xy(y)| for all y in [0,1] since |g/h| <1 on U. Hence g is continu-
ous everywhere since oy is so. But now fh=«y;g on U and outside U
both 8 and ay are =0 so equality holds everywhere. That is, we have
found a function oy fg € fgAnfh4 — 1 as required. Now the proposition
follows from proposition 4 which implies that P(f4 + I/I) is distributive.

ProposiTioN 11. Let A=C([0,1]) and let I be an ideal in A such that I
contains a function G with Z(G)={x | G(x)=0} having at most one cluster
point. Then P(A]I) is a direct sum of distributive objects.

Proor. Let f and g be two arbitrary elements in 4. For every Ae R
define

Uy = Usye = {z| If@)+4G()| < lg(@)| or |f(y)+AG(y)|=g(y)| +0
for all y in some neighbourhood of z} ,

Vi= Vit = {x | |f(@)+AG(z)| > |g(x)]} ,

and let E, be the border of V,nU,. Note that E, is closed and that we
have

If(®)+4G(@)| = |g(x)| on E,.
If A0 we have

Eyn E; < {z| |f(@)+2G(2) =|f(x)[}
= {z | G x) 0 or G(x)+0 and A= — 2f(z)/Q(x)} .

Hence if A4 =+0 we have E,nE,nE,<Z(G).

For E an arbitrary closed subset of [0,1] let I(E)={f| f(¥)=0}. If
E=N}E,; then we have trivially I(E)>37I(E,;). But the opposite in-
equality also holds. For E=[0,1]—E; is an open covering of E° s0 1
can be written 37H;, where H;=0 are continuous on E°¢ and support
(H;)< E (see for example [4 p. 171]). If now A € I(E) then h=hlg=
ShH,; on E° and hH;=0 on E,—E. If one lets k;=hH, on E° and k;=0
on E then h=3k; everywhere and the k; are continuous. In fact they
are obviously so on E¢, and if x € E we have

(ki(y) — k@) = k@) = 1b(Y)| = [h(y) — A=)

since H;<1, and as A is continuous in z it follows that k; is so. Finally
k;=0 on E; so k; € I(E,), and thus h € 37 I(E,).
In particular we have

I(Z(@) < I(E,n Eyn B,) = I(E)+1(B)+1(E,) .
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for A4 p+0, so we have two possibilities for (I:f): either (1) I(Z(Q@))<
(Z:f) or (2) there is a 4 € R such that I(E,)t(I:f).
In case (1) we have

fA+IIT = A[I:f) = AJIZ@)I:)I(Z@),

and since the ring A4/I(Z(@)) has a locally distributive spectral category
(see section 5.1.), it follows that P(f4 + I/I) is a direct sum of distributive
objects.

In case (2) choose h € I(E,)— (I:f). Let hyy=h on U and hy =0 other-
wise; let Apy=h on V and h,=0 otherwise. Ay and h, are continuous
(see the proof of proposition 10). Suppose also that (I:f)=(I:g). Then

Mf+AG) = hy(f+2A@) +hp(f+2G) & T,

8o one can suppose that for example hy(f+AG) & I (if Ay (f+AG) € I one
continues quite analogously). Let A’ =A(f+ AG)/g on U and A’ =0 other-
wise. Then A4’ is continuous (see the proof of proposition 10), and

kg =h{f+A@) e (fA+I)n (gA+1)-1

so fA+I[IngA+1I[I+0.

Let now f e 4 — I and suppose there is no fg € 4 — I such that (I:fg)>
I(Z(@)) and let fg and fh be such that (I:fg)=(I:fh)=+A. Then there is a
A€ R such that I(E,)¢(I:fg) (E, is here constructed with respect to fg
and fh instead of f and g above) and according to case (2) above we have

feA+I[InfhA+I[I £ 0,

that is P(fA +1/I) is distributive by proposition 4.

If on the other hand fg is such that 4 +(I:fg) > I(Z(®)) then fgd +1I/I
is a direct sum of distributive objects in SpecMod 4 according to case
(1) above. In both cases P(fA+I[I) contains a non-zero distributive
subobject, so P(4/I) is a direct sum of distributive objects by Zorn’s
lemma (cf. the proof of proposition 5).

Nore. Proposition 11 holds with the same proof if Z(G') has at most
finitely many cluster points. One only has to modify the proof of theorem
2 to hold also for C(X) where X is closed in [0,1] and has finitely many
cluster points.
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