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SOME HYPERGEOMETRIC TRANSFORMATIONS
AND GENERATING FUNCTIONS

PER W. KARLSSON

1. Introduction.

Transformations of infinite series the terms of which involve products
of hypergeometric functions depending upon the summation index were
investigated by Erdélyi [4; 5] and by Meixner [10], who considered
Kummer’s F, and Gauss’s ,F;; a typical result is [4, equation (16)]
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where («; r)=1I(x+7r)[I'(«x) is the Pochhammer symbol.

More general transformations of this kind have been obtained: The
hypergeometric functions may be of higher order, and the products,
being special hypergeometric functions of two variables, may be replaced
by certain general hypergeometric functions of two variables.

With an arbitrary number of variables, the mere notation of hyper-
geometric functions becomes difficult: to be of general use, the functional
symbol must, in addition to the parameters and variables, in some manner
indicate the ‘“‘parametric structure”, i.e., one must be able to infer with
which variables any particular parameter is associated. While such an
indication is trivially inherent in the current notations for hypergeometric
functions of one and two variables, hypergeometric functions of three
variables with general parametric structure require rather bulky symbols
as suggested by Bhagchandani [2] and by Srivastava [15]; in the case
of more than three variables, only special parametric structures have
been considered at all.

A further generalization of these transformations might thus be con-
sidered virtually impossible because of the notational difficulties en-
countered. However, in transformations of this kind the parameters change
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in a simple and systematic manner. Therefore, it has been possible to
introduce a contracted notation (section 2) which is satisfactory for the
purpose of establishing generalized transformations involving multiple
series the terms of which contain functions of twice as many variables
(section 4). Some generating function relations are derived from the
transformations (sections 6-8).

2. Preliminaries.

In order to obtain a suitably contracted notation, some conventions
are introduced. An ordered set of P elements («,,...,ap) is denoted by
(xp), and a similar rule applies to sets whose elements are of identical
structure; for instance, («,/B;,. . .,&p/fp) is written (x,/8,). (This symbol
must, of course, not be interpreted as a set when an operation over the
index is implied.) Multiple series are denoted by single summation signs
and the summation limits 0,cc are understood.

The functions in which we are primarily interested depend upon 2P
complex variables (z,), (¥,) and a number of complex parameters. The
definition is

a
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= Z(up),(vp) U((pp +myp), (v + 1)) ;};1

subject to convergence conditions (see below) unless this power series
reduces to a polynomial. (U((x,),(v,))) denotes an arbitrary multiple
sequence of complex numbers; it may depend upon other parameters
whose presence is indicated summarily by the set symbol #[(m,),(n,)]
on the left-hand side of (2.1); (m,) and (n,) are sets of non-negative
integers the significance of which will appear later. Thus F is not neces-
sarily a hypergeometric function although the elements of the sets (a,,),
(bp), (¢p), (d,) are of course hypergeometric numerator and denominator
parameters, each associated with one variable. Any of these four sets
may be empty; in such a case, the corresponding factors on the right-
hand side of (2.1) are replaced by unity. No denominator parameter may,
in general, be zero or a negative integer.

A simplified F-function will appear in section 6, and a function in-
volving hypergeometric parameters associated with two variables also
proves to be of interest (section 8).
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Convergence conditions for the series defined by (2.1), and in subse-
quent cases, will, for brevity, be sufficient conditions only, based upon
Abel’s lemma.

When the sets (a,), (b,), (¢,), (d,) are all present, a sufficient condition
for F to exist in a non-empty neighbourhood of the origin in C2P is

(2.2) lU((l‘p)’(Vp))‘ < Oyt Hp {:“p! vpl}s

Oy, O, etc., denote positive constants. In fact, from this inequality,
and from the elementary results

(2.3) (+m)!(u!m!) £ 2uim
and
(2.4) (o5 ) ~ Cppp~p!, o fixed

we readily find that the absolute value of the general coefficient of the
series in (2.1) is smaller than

Zp(up+rp) .
(0] A AN

convergence then follows from Abel’s lemma.

If the sets (a,), (b,), (c,), (d,) are not all present, the condition (2.2)
must be accordingly amended. In particular,

(2‘5) lU((.”’p)3 (vp))l é C’IVEP(”IWVP)

is a sufficient condition when the sets (c,), (d,) are empty.

3. Hypergeometric functions as special cases.

By proper choice of the U-sequence the function defined by (2.1)
will be expressible in terms of hypergeometric functions. Two examples
will illustrate this fact.

For arbitrary P, let

(3.1) U((up)s (7)) = (&3 Zpey ) (B5 Dh_1 )

and take (m,)=(n,)=(0); obviously, a product of two Lauricella func-
tions

FA[“)(a’p); (Cp); (xp)]FA[ﬂ, (bp)’(dp); (yp)]

is then obtained by insertion into (2.1).
Next, take P =1, suppress unnecessary indices, let

(3.2) Ulay) = 3=, (x; H@).(ﬂ; ,t't+9)Z"
(7; 0)o!
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and take m=n=0; in this case, F' becomes one of the functions consi-
dered by Saran [12], viz.,

FK[G,OC,OC,‘B,b,ﬂ; C7d,)/} x;y’z];

the U-sequence may thus contain additional variables as well as addi-
tional parameters.

In order to elucidate the significance of the sets (m,,),(n,), the first
example is considered again. Using the elementary identity

(3.3) (o ptv) = (o) x+v; p) = (x5 w)(x+p;v)
we find that (3.1) implies
(3.4) U((pp +my), (v, +ny))
= (5 D M)+ 21 My Dy ) (B3 Xy M) (B Dy s Dt V) -
It follows that the F-function now equals
(03 20y mp)F 4+ 30_ 1 my, (a,); (¢,); (2,)] %
X (85 Zpm1 M) F4lB+Zp o1 s (b); ()5 ()] -

In the general case it can be proved, similarly, that the following rule
holds:

Suppose that the general term of the sequence (U((u,),(r,))) is a
product of factors of the form

f=(x Z§=1 (pttp +Epvp)) =1

where (j,), (k,) are prescribed sets whose elements are equal to 0 or 1.
The function defined by (2.1) is then a hypergeometric function multi-
plied by a constant 4 ; to each f corresponds a factor

(“; Zf;l (Jpmyp + kp'"’p))il
in 4 and a numerator/denominator parameter
&+ 3pm1 G+ Eyny)

associated with the variables corresponding to non-zero elements of (j,)
and (k,).

4. The transformations.

In this section the transformations obtained for the F-functions in-
troduced in section 2 are stated. Each transformation will hold for suf-
ficiently small values of the variables if the U-sequence in question
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satisfies an inequality of the type considered in section 2 that implies
the existence of the F-functions involved. One of the transformations is
proved in section 5; the remaining ones are proved by similar methods.
In addition we mention some known results (mainly recent ones) that are
particular cases.

To Meixner’s first transformation [10, equation (19a)] and to Erdélyi’s
transformation (1.1) corresponds

(hp ) np)tpnp
Nyt

@) S F[ T a0, 0016, 0] TH,

’

= Tl 1,)7"7) x

X S F[(hp+np)z(kp+np)|%[ )]l ( 1) (%)] y

p
p [y my) [Ep?/ptp ]n,,
PR oyt L=ty )T
This transformation contains as special cases recent results due to Car-

litz [3, equation (1.6)], Sharma [14, equations (6), (17)], and to Srivastava
[18, equation (2.5)].

We show how to obtain one of the special cases from (4.1). Take P=1,
suppress unnecessary indices, and let

Ulp,v) = (a5 p+9)[(y; p+v) .

F then becomes an Appell function F; and the left-hand side of (4.1)
reads

h; n)t”
Z‘;.:;OFI[“; - —n; %xs?/]( !

Next, by the rule in section 3 we find that the right-hand side of (4.1)
now takes the form

xt i
(1=t 3 Fy [zx+2n h+n,h+n;y+2n; — Y ]

t—1"t—1
(h; m)(ox; 2n)(twy)™
nl(y; 2n)(1 —t)2n’

we have thus (apart from renaming) found Sharma’s result [14, equation

(6)].
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The second transformation is the confluent form of the first:

(—np):(_np)

>
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It provides a generalization of transformations due to Erdélyi [5, equa-

tion (16)] and to Meixner [10, equation (32a)]; moreover, a result re-

cently obtained by Carlitz [3, equation (1.8)] is a special case of (4.2).
The third transformation,

np)) (_np)

(_
(4.3) E(np) F[ » (1=hy,—n,)
= {TT}-1 (A —t;) ™)

X Z(n,,) F [(hp)

hy; mpt,"?
10, O1z,). 1) p_ (i molty™

n,!

b t — t ny
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) » !

generalizes a result due to Srivastava [19, equation (2.2)].
The generalization of Meixner’s second transformation [10, equation

(19b)] is
(4.4) zmp) F[( - ’np)) (hp + np)

= {ITp-1 (1—1,) "7} x

XE(HP)F[(hp+n o) (hy+ 1y, )l%[( ny), (1,)]] (t _1) (f%)] %

H

) xpyptp *
“IT;- 1{ [_(l—t,m] '
With P=3, t,=1¢;=0, and suitable U-sequences, recent results due to
Sharma [13, equations (19), (20)], and to Srivastava [16, equation (3.2)]
could be obtained from (4.4).

Finally, we have the generalization of Meixner’s third transformation
[10, equation (19¢)]:

o (B np)t,"P
|%[<0>,<0>]|<xp),(yp)] r_ Boitp)ly™

Nyt
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h,; n
10), Oy, )| T, P22

Ny .

(18) S B[ o0

b

= {Hf;l (1 —tp)‘hl'} X

S | O g, ) (i) (2]

X H11:=1 {(hﬁ; ny) [(xpyptpz] np},

n,,! 1-1,)

together with the related result

h (b hps mp)tp"
(46) z(nP)FI:( p‘l"ﬂp) ( p+np)]%[(o)’(0)]|(xp),(yp):| ;)):1,(,_17_::#10?13
b p-
= {TT}-1 (1 =t,) "} x
h , (R
><E<n,,>F[( p 1), ( p+np)l%[(np),(0)]|(xp), <——1?i”t )] x
) y 4

p Uy ;_'"’L) [ Tptp ]np
P ! L1t
The transformation (4.5) contains as particular cases (P =2,{,=0) recent

results due to Sharma [13, equations (17), (18)], and to Srivastava [16,
equation (3.3)].

5. Proof of the first transformation.

To prove formally the transformation (4.1) denote its left-hand side
by L and replace F by its power series. This yields

p (s mp)t"P( =y p,)a, P(— 1y v,)y,P

L = SopupopUp) 0p) TIpo = nz! uZ! :p! - o

Next, we apply the elementary identity
(5.1) (14+o0; —pu)(—o; ) = (—1), uintegral,
and obtain, after changing the order of summation,

(62) L= z(.“p),("p) U((pp), (vp)) ;)::1{(_—_%;2(_—'%;) pgb(:“p’vp’hp’tp)}’

tp! vy
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where we have defined

nl(h; n)t"

(n—p)! (n=n)!’

In order to transform this series, take n—pu as summation index and
utilize (3.3). As a result,

(5.3) D(u,v,h,t) = S,

(=) D(p,v, b, 8) = (ks pp! oF[1+ph+ps L+ p—w; ]
= t'h; ! L—=8) -1, Fil—v,1—v—h; 1+ u—v; ],

by one of Euler’s transformations. This hypergeometric polynomial is
written in reverse order, and (3.3) and (5.1) are utilized again. We then
find that

(5.4)  B(u,,h,)
= et —t) Pl (s @) 9) 3o ((w—n)! (r—n) ! (ks mem) 2

We now insert this expression into (5.2), change the order of summation,
and replace the inner summation indices w,,v, by w,+n,, v,+n,; the
result is

(6.5) L= {TTp-1 (1 =t) 7"} npiupop Uty + 1) 0+ 1)) X
EpYuto 17 Toto 17 Yolo 177 (s prp+70p) (P v7’+7@~)}
o i M et e -

—,2 g, —1] lf,—-1 (hys M)ty ! ! !

The right-hand side of (5.5) is readily transformed to that of (4.1); the
formal proof is thus complete.

Next, we utilize the inequality (2.5), which implies the existence of the
F-functions in (4.1), together with (2.4), to estimate the general coeffi-
cient B in the power series S on the right-hand side of (5.5) in the follow-
ing way:

(e + 1) 2t + 1)t (v, + 1) FP(w), + ) !
1

< Zpup+rp+2np) P
Bsly IL,- n ko L Ly In !
p Mp: fp: Vi Ty

bl

where k, denotes the real part of h,— 1. Next, by (2.3) we find that
B é CVIZP(up+1rp+np) .

Hence, by Abel’s lemma, 8§ is absolutely convergent for sufficiently small
values of its variables. It is readily seen that, for sufficiently small
values of the original variables, substitution in S leads to an absolutely
convergent power series which upon multiplication by P binomial series
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yields another absolutely convergent power series 7'((t,),(x,),(y,)), say.
Since the two sides of (4.1) are derangements of 7' and S, the proof is
now complete.

6. Generating functions (i).

The transformations in section 4 assume a particularly simple form
when (x,) or (y,) equals the zero set: only one term in the multiple
series of the right-hand side in question is non-zero and a generating
function of P variables is obtained. To state these results conveniently,
the notation will be simplified by writing % in place of #[(0),(0)] and by
omission of variables equal to zero and of parameters associated with
these variables. It should be noted that, in the equations of this section.
the two members contain the same set %, i.e., the same additional
parameters and variables.

The first generating function relation, obtained by taking (y,)=(0)
n (4.1), (4.3), or in (4.4), is

—_— ; tp’llp
(6.1) z(np)F[( np)l%pr)] f;l(_g )b,

o
np.

= ([T2., (1—t,) "7} F[(”P)m(ﬁﬁp—)] .

t,—1

A recent result due to Manocha [7, equation (5)] is a particular case of
(6.1).
Next, with (y,)=(0) in (4.2) we find the relation

n.

(62) S B 100)| T 225 = exp 55, 1) P (=0,

p*

which contains formulae given by Munot [11, equation (4.1)], and by
Jain & Sharma [6, equation (4)] as special cases.
When (z,)=(0) in (4.3) the relation

(k5 )"

(6:3) S B[y 0 )| TE

—h,—mny) n,!

= {TI5-1 (L=t,) "2} F[|%|(y,t,)]

is obtained; finally, (z,)=(0) in (4.4), (4.5), or in (4.6) yields
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"

h h,;
(6.4) S F[( p+np)|%|(yp)] Hf.ll(—’%
!

= @ - ¥ (52|

Some results due to Anandani [1, equations (2.1), (2.3), (2.4)] are special
cases of (6.4).

7. Generating functions (ii).

The multiple sums in section 4 are expressible in terms of known
functions for special U-sequences; in such cases the transformations
reduce to generating function relations. A non-trivial result of this kind,
involving two Lauricella functions, is

(7.1) Sny Fala,(—n,); (6p); @p)1F 416, (—1); (e)5(,)] TThes ~p’:p,)”

D

I

[Hf)’:l(l_tp)_cp][l_zf),:l%]—a[l__ P yptp]—bx

P, —1
x Fola,b; (c,); (X,)]

xrtr - Yelr
T Yptp(l —1t,)" [1_ L _1] [ =37, t—l]

tT

X

»

When P =1, the Lauricella functions ¥ , and F both reduce to Gaussian
hypergeometric functions and (7.1) specializes to a result due to Meixner
[10, equation (34)], also known as Weisner’s formula.

Equation (7.1) follows from (4.1) by taking

U((:u'p)s(vp)) = (CL; f))=1 :u’p)(b’ z:::l vp)/H£=1 {(cp; Iup)(cﬂ; yp)} :

The F-functions in (4.1) then become F ,’s multiplied by constants (cf.
the rule mentioned in section 3) and the left-hand side of (7.1) is readily
obtained from that of (4.1). The right-hand side of (4.1), with n=n,+
. +np, becomes
Tt

(TT5os (=67 Sy (@3 b0y 4 m,): eyt my)s (2]

x(b;n)FA[b+n,(cp+np);(cp+ n,); (y””ﬂx

1
P 1 pYpp "p
XH”“{(c )y '[a—t >] }
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This expression simplifies since
F [, (B0)s (By); (6,)] = [1=20_; 1%,

and the right-hand side of (7.1) is readily obtained.
Results similar to (7.1) follow from (4.4) and (4.5); they can also be
obtained from (7.1) by linear transformations of F,.

8. Generating functions (iii).

In this section we briefly mention two further generating functions
related to the transformations in section 4. Both belong to a class of

functions involving hypergeometric parameters associated with two vari-
ables and defined by

(8.1) G[((‘Z”; W) (m,)]](z,), (y,»]

(@y; py+9,) 2, 7Y,
= U((pup +my), (v, +n p T lp PR _
z(ﬂp),("p) ((lu]? 1’) ( 4 P)) p=1 (cp; Mp+vp)/"/p! ,vp!
The introduction of this class is suggested by the proof of the trans-
formation (4.4). In fact, the two sides of (4.4) are expressible in terms of
the G-function:
(hp; np)tﬁnp

—_ h
82 o 7|0 o, 001, )] T

>

N,!

- M1 -t~y o o, on) (;’%) ()]

and

(8-3) z(np) F[(hp+np)v(hp+np)

W[(np),(np)]l(up),(vp)] x

bl

p (s mp)(uyvy)™”
p=1"" ny!

h
- G[( "’1%[(0>,<0>1|(up>,<vp>].

Some generating function relations recently obtained are particular cases
of these results. Equation (8.2) contains results due to Manocha [7,
equation (9)], Manocha & Sharma [8, equation (35); 9, equations (2.2),
(2.8)], Srivastava [18, equation (2.2); 20, equation (6)], and to Srivastava
& Singhal [21, equations (6.7), (6.9)]. Equation (8.3) contains a formula
given by Srivastava [17, equation (11)] as a special case.
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