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TOPICS IN MARKOV ADDITIVE PROCESSES

E. ARJAS and T. P. SPEED

The theory of bivariate Markov processes {(X,,8,):¢e I} in both
discrete and continuous time which are additive in the second compo-
nent (see section 1 for a precise definition of this concept) has been devel-
oped from a number of viewpoints recently, see Cinlar [10] and Cheong,
de Smit and Teugels [8] for many references. In one sense such processes
are slightly generalized Markov renewal processes, in another semi-
Markov processes, but to give them one of these names is almost to
prescribe a particular point of view, and in fact one different from the
one taken below. Thus we have adopted the name Markov additive process
(abbreviated MAP) used by Cinlar [10], [11] in the continuous time case.
As we view them, MAP’s are most like random walks defined on a Mar-
kov chain, see Miller [23], and this best describes the approach we take.
Particularising in one direction gives random walks with Markov-depen-
dent increments, and general state Markov chains arise as another case.

Our main concern is passage-time problems and related topics. For
example, if we consider hitting times of the second component to half
lines, we are also led quite naturally to study modified processes such as
those obtained by adding an impenetrable barrier, and also the maxi-
mum process. The problem of first passage from a finite interval is also
discussed and we obtain results extending those of Wald [33] and those
of other writers e.g. Phatarfod [24]. Some examples to illustrate the
formulae we obtain are given. It is hoped that the methods we describe
below appear naturally suited to the problems discussed, and that many
other special cases will be worked out in detail by others.

1. Preliminaries.
l.a. Intuitive description of the process.

The processes which we are considering can be roughly described as
follows: We have an underlying Markov process with arbitrary state space
(B,&) beginning at z € E and proceeding X,,X,,...,X,,...; we also
have an R™-valued process beginning Y =0, and proceeding Y,,Y,,..
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Y,,..., where for n>1, the distribution of Y, depends on X, _, and
X,, and, given (X,,X,,...,X,), the random variables (Y,,Y,,...,Y,)
are mutually independent. Our main interest is in the process
{(X,,8,): n=0} where 8,=37Y,. This process is sometimes called a
random walk defined on an underlying Markov process.

Some special cases are:

(1.1) The chain has only one state. Here we are back to the case of a
random walk which is the sum of a sequence of i.i.d. random variables,
and in this case our treatment is most like that in Feller [14].

(1.2) The random variables {Y,} may in no way depend upon X, or
X,,_1; in this case we have case (1.1) with an independent Markov process
alongside.

(1.3) The Markov process {X,} may be general, and Y, =f(X,) where
f: E - R™ is a fixed &-measurable function.

(1.4) The state space (E, &) may be discrete and the random variables
{Y,} non-negative. We are then dealing with a variant of the semi-
Markov or Markov-renewal processes.

For further discussion and historical remarks, we direct the reader to
our basic references Cinlar [10], [11].

1.b. Semi-Markov transition functions.

Our approach and notation will be based as far as possible upon Cin-
lar [10], [11] which in turn, is modelled upon Blumenthal and Getoor [6].
We recall some terminology. If (G, %) and (H,5#’) are measurable spaces
and if f: G — H is measurable with respect to ¥ and 5# then we write

fe@|#. If H=Rl=[—o0,00] and # =2, the Borel subsets of RY, then
we write f € ¢ instead of f e ¥/5#°. Further
b9 = {fe ¥ : fisbounded}, ¥, = {fe¥: f20}

and b¥9, =b9n9%,.
A mapping N: Fx% —[0,1] is called a transition function from
(F,%) into (G, 9) if

a) A > N(x,A) is a measure on ¢ for all fixed z € F, and
b) z - N(x,A) is in bF for all fixed 4 € .

Analogously, we define a mapping @: E x (& x &™) - [0,1] to be a
semi-Markov transition function (abbreviated SMTF) on (E,&,%™) if

a) z - Q(x,Ax B) is in b& for every A€ &, Be 73
b) A x B - Q(x,A x B) is a measure on & X ™ for every z € E.
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If Q,R are two SMTF’s on (E,& ,jm) we may define the conwvolution
product @R as the function

(1.5) (z,4 x B) - (@ * R)(x,A x B)
= \z (in Q(z,dz’ xds)R(z',A x (B—35)) .
Qx*R is easily checked to be an SMTF. For any SMTF @ we define
@°=1 where I(x,A x B)=0,(A)d,(B), and for n=1, @Qr=Q"1xQ.
There are many different ways of viewing a SMTF @, and at various
times we will be doing this. Thus @ may be viewed as a positive contrac-
tion valued measure defined on (R™,%™) by the map B — @Q(B), where

(@B 4)(x) = Q(x,A x B) (I,is the indicator function);

as a transition function on (E x R™ & x #&™) which is homogenous in
the second component by the map

((x,8),4 x B) > Q(z,4 x (B—3));

as a transition function from (E,&) to (E x R™, & x &™) by (x,4 x B) -
Q(x,4 x B) (cf. Cinlar [10] (1.2)); and finally as giving a sequence
{@™; n 2 0} satisfying Definition (1.1) of Cinlar [11].

Any SMTF @ induces a family {Q(B); 6 € R™} of contractions on the
Banach space b& by writing

(@(B)f)(x) = SE' S'Rm Q(x,dx’ x dy)f(x')ei(e’y) ,

where (-,-) denotes the usual inner product in R™. We call {é(ﬂ)} the
Fourier transform of Q.

l.c. Description of the basic process.

We will consider a (discrete time, temporally homogeneous) Markov
process (with translation operators) and with state space (£,&) to be a
sextuple

X=Q#MH4,X,56,P (xek),

and all such processes are assumed to be non-terminating. (For defini-
tions see Blumenthal and Getoor [6]. Recall that, for all k,120, X006, =
X,.41.) Following Cinlar [11] we have:

(1.6) DeFIiNITION. Let X be a Markov process with state space
(#,8), write (F,%)=(R"‘,.%m), and let S={8,:n=0} be a family of
functions from (2, .#) into (F,%). Then (X,8)=(2, 4, M ,,X,,8,,0,,P%)
is called a (discrete time) Markov additive process (abbreviated MAP)
provided the following hold:
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a) 8;=0 as.;
b) for each n20, S, € A ,[F;
c¢) for each 20, 4 € &, B € &, the mapping

x> P¥X,€A,8, eB)
of E into [0,1] is in &, ;

d) for each k,120, S;,;=8,+ 8,08, a.s.;
e) for each k,120, x€ B, A€, Be ¥

Px(X06, € A, S;o0,€ B| #,) = PXx(X,e A, S;e B).

We follow Cinlar [11] in our notation for objects associated with the
definition, viz.
Q(.’E,C) = Px{('XhSl)eC} (Ceé’x.ﬂ'),
P(x,A) = Qz,AxF) (Aed);

the completed o-fields generated by the Markov process X (respectively
MAP (X, S)) are denoted by {¢",} (respectively {-#,}) and the limiting
o-fields by A" (respectively .#). Further, we refer the reader to Cinlar
[10], [11] for statements of all the fundamental results which amplify
and illustrate the definitions.

2. Some general identities.
2.a. Passage-time identities.

Let Sy=0 and S,=37Y, (n=1) be a one-dimensional random walk
with i.i.d. increments {Y,}, and consider the following hitting time:

(2.1) N =inf{n>0: §,¢B} BeR;

special cases include B=(— ,0], (0,00). In determining the joint distri-
bution of (N,8y) in the case B=(— o0,0] Feller [14, p. 600] and Spitzer
[29, p. 177] make elegant use of the following identity, valid for real 6
and |7|<1:

(2.2) B[S~ wneSe)[1 — <B[¢*"1]] = 1 - B[x¥eSn) .

Spitzer points out that (2.2) is valid for a general stopping time N rela-
tive to the increasing sequence {o(Y;,...,Y,)} of o-fields, but that its
main use appears to be in the special cases where N is the hitting time
to an open or closed half-line. Also for these special cases Miller [23]
derived a matrix analogue of (2.2) for a random walk defined on a Mar-
kov chain with a finite state space, and used the result to obtain a
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matrix Wiener-Hopf factorisation. More recently one of us, Arjas [1],
has derived and applied a version of (2.2) valid for a general MAP.
These applications show that despite the relative ease with which one
obtains (2.2), it can be surprisingly effective in a variety of contexts.
Suppose now that X is a Markov process with state space (£, &), and
N a stopping time relative to {o¢,}. For any f € b&, and |t| < 1 we have:
(2.3) B30 e f(X ) = eEX (X)) = (@) - B e X p)]
where we adopt the convention that t¥=0 on {N =oco}. This identity is
implicitly used in the theory of discrete-time Markov chains, see e.g.
Feller [13], Kemeny, Snell and Knapp [19], and has been explicitly for-
mulated by Ito [15] and by Port and Stone [25] in the continuous-time
case. Equation (2.3) is called a passage-time identity and we note in
passing that if X is a random walk with i.i.d. increments, and if f(z)=
¢ (here E =R!), then (2.3) reduces to (2.2). Kemperman [20], although
he has not actually mentioned stopping times, makes an identity like
(2.3) the key tool in his analysis of the passage problem for stationary
Markov chains. The termination times (called “absorption’’) of Kemper-
man are not stopping times relative to {of",}, but can readily be shown
to be 8o relative to an enlarged sequence of o-fields.

2.b. The passage-time tdentity.

We now come to the basic tool in this paper. The identity we obtain
includes all discrete time results mentioned in 2.a above.

Suppose (X, S) to be an MAP with SMTF @ on (£, &,%#™). If N is any
stopping time relative to {.#,} we define the maps Gy = Gy (T,6) and
Hy = 8, (T,0):

(2.4) (Guf)(@) = B[St exp (0, 8,) ) (T )(X,)] »
(Hnf)(@) = E=[exp(i(0, 8x) )TV )(X )],

where z € E, 6 e R™, fe b& and T is a bounded linear operator on b&
with ||T'||<1. We continue to adopt the convention of 2.a that V=0
on {N =oo}. Recalling the definition of 0=0(6) in 1.b and denoting the
identity operator by I we can state:

(2.5.) THEOREM. (Passage-time tdentity). If T commutes with Q(@) and
1T <1, then:
(2.6) Gu(T, )L - TQ(0)] = 1—A(T,0).

Proor. This proof is an extension of the one given by Spitzer [29] in
the i.i.d. case. Take fe b& and z € E. Then
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(1 - TQ(0)1 ~ Gy(T’ ) (@)

= B350 exP(4(0, Sy 1) (TN Hf)( Xy 11)]

= Befexp(i(0, Sy)) S B=[exp(i(0, Sxo0y)) (TN +)(X408y) | Ay ]]
by the general properties of conditional expectations, and this equals

B30 exp(i(0,8,)) 2o BX[exp(i(0, 8:))(T™*f)(X;)]; N =n]
by the Markov property (cf. Cinlar [11] (1.4)). Now this equals

B30 exp(i(6,8,)) 35 0( ) T+f)(X,); N=n]

= E*lexp(i(0, Sy))(T™VI - TQ 1) X )]

by the commutativity of 7' and Q(O), and finally this equals
(BT, 0)T - TQ(6)]7) (=)
and the proof follows by the inversion of [I —TQ(@)]—1

(2.7) Alternative proofs. At least two other distinet proofs can be given
of the preceding result and we will just mention these. Firstly, one can
adapt Meyer’s [22] martingale proof of the continuous-time analogue to
our context. Alternatively, a proof can be given by integrating a suitable
Chapman-Kolmogorov forward equation, cf. Arjas [1].

(2.8) REMARK. In many situations there exists a P-excessive measure
m on (¥,£) and then, under mild regularity assumptions, it is possible
to extend the operators Q @, A to act on the spaces LP(x). When this is
done the identity just proved remains valid.

(2.9) ReMaRk. If the definition (1.6) of an MAP is extended to allow
a general starting point S,= Y, for the second component the passage-
time identity becomes

(2.10) On(T,0)[I-TQ(6)] = F(6)—Hy(T,0),
where
(2.11) (Bf)(x) = Eo[e®S0f(z)] .

The proof of (2.10) is almost identical to that given above.

2.c. Lesser identities.
In this section we specialise (2.6) and thus see more fully its relation
to previous work.
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One result which can be obtained immediately is (2.3) — simply put
T=+l, |1|<1, and 0=0. As remarked in 2.a this identity is due to
Kemperman [20] for a special type of stopping time and is undoubtedly
more widely known but we are unable to give a specific reference to it.

Let us turn to another kind of specialisation of (2.6). Suppose the
identity to be valid for operators @, Q, A on a Banach space B which
may be b & or L?(x) (1 < p £ oo) where 7 is a P-excessive measure. Suppose
further that for 6 € J < R™ there exists an eigenvalue x(6) and eigenfunc-
tion u,y(+) € B for Q(O) that is

(2.12) Q(O)uo = %(0)u, 0O€d.

For example, since Pl:é(O)l:l, the function 1 and the number 1
form an eigenfunction-eigenvalue pair and so for small || there will
often be a pair u, and x(0) satisfying u,=1 and »(0)=1, see e.g. Kato
[18]. The theory of positive operators (Karlin [17]) provides, at least
for ¢0 real, another approach to the existence of such eigenvalues. We
do not consider this problem here, but simply examine the consequences
of assuming the existence of eigenvalues. Define the functions

(2.13) y = Quy, 5 = Au,,

where G=Gy(7,0) and A =Hy(z,0) for suitable 6, v, N and T =-+l.
Then also

Y = yN(Tye")r X = ZN(T’ 0")
and we have

(2.14) ProrosiTioN. For each x € H,
y(7,0,2)[1 —t%(0)] = uplz)—x(7,0,z) .

The proof is immediate. In the special case where the chain has only
one state, so that {S,} is a random walk with i.i.d. increments, one may
readily check that x(6), the common characteristic function of the incre-
ments, is an eigenvalue, and wu,=1 the corresponding eigenfunction, of
Q(G) This provides another derivation of (2.2).

We close this section by mentioning the important special case in
which the state space & of X is finite. Here all the operators may be
considered as matrices relative to a fixed basis, and we obtain Miller’s
[23] result:

(2.15) ProposITION. Suppose the chain X to have a finite state space.
Then the following matriz identity is valid: for |T||<1 and T commuting
with Q:

(2.16) GI-TQ) =I1-1.

Math. Scand. 83 — 12
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2.d Wald identities.

One of the uses to which Miller [23] and Kemperman [20] put their
identities was to derive generalisations of Wald’s fundamental identity
of sequential analysis. Formally all that is required is that there be a 6
such that for v=1/%(0), y(7,0,2) < for all x € E, and then in (2.14)
this substitution leads to Wald’s identity. Feller [14] also uses this
method, and Arjas [1] in the general state space situation. Clearly we
can adopt this approach here, but before we do so we make a few remarks.
We suppose in this section that m=1.

Recall that in (2.6) the free variable 7' was permitted to be an operator
on B more general than v/ which had been considered by previous
authors (Miller, Arjas etc.). The reason for this can now be made clear.
Suppose that the identity (2.6) holds not only for certain purely imaginary
complex numbers A=46 but possibly more generally for numbers 1=
og+1i0 € C where we use the natural definition of Q(l) viz.

(2.17) (Q)f)(@) = B (X))

The reason we restricted the earlier discussion was simply to display
the methods and avoid any doubts concerning the regions of validity
of (2.6) as 4 € C varies. Of course on any wider domain than the imaginary
axis the operators Q( ) and A ~(T', ) are not necessarily contractions.

(2.18) THEOREM. (Wald’s identity) Suppose that 4 4s a complex number
such that

(i) the passage-time sdentity (2.6) is valid;
(i) Q(A)‘1 exists as a bounded linear operator on B;

(i) |G@A),A) < oo
Then:
(2.19) AQu 12 =1.
Explicitly, for any feB:
(2.192) Ee[eSPQA)Nf(Xy)] = f(z), zeE.

Proor. The proof is immediate from (2.6) as described in the intro-
duction to this section.

We can say a little more. It is not reasonable to think that a zero
eigenvalue should, in the case £={1,2,...,n}, prevent some form of
the Wald identity from holding. Nor does 1t for if we suppose that Q(i.)
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has a commuting generalised inverse T(A) i.e. that there exists a bounded
linear operator 7'(1) on B such that

QUTMOM) = @), TWHRMWTM) = T(),

TAR(A) = QATA),

then we easily obtain

(2.20) THEOREM. Suppose that A is a complex number such that:
(i) t]\w passage-time identity (2.6) is valid;

(ii) Q(A) has a commuting generalised inverse T(A);

(i) [G(T(A),A)]| < oo

Then:
(2.21) A(T(A),A)T(A) = T(4) .

Proor. We put T'=T(4) in (2.6) and multiply on the right by 7'(4).

In the case E is a finite set a simple sufficient condition for Q(l) to
have a commuting generalised inverse is that the zero eigenvalue of
Q(l), if such exists, is simple.

Next we suppose that Q(l) is an operator on B and possesses an eigen-
value x(A) and eigenfunction w,(-) for A in some J =C, a slight extension
of the situation described in (2.12) above. Then arguing as before we have,
with the obvious extension of the notation (2.13):

(2.22) ProrositioN. Let A € C be such that:

(i) the identity (2.6) ss valid ;

(i) Q(A) has an eigenvalue x(1) and eigenfunction u,(-);
(iii) y(7,A,x) < oo at v=1[x(A) for all x € K.

Then y(1/x(2),A,x)=u,(x). Explicitly:
(2.23) B[V 1)n(A)Nu(Xy)] = uy(x), z€ k.

(2.24) REMARK. In the form (2.23) the Markovian Wald identity has
a longer history. A result of this form was sketched by Bellman [5] and
later proved with a fuller discussion by Tweedie [32], Miller [23] and
Phatarfod [24]. See also § 2.23 of Barlett [3].

2.e A moment identity.

In the case of a random walk {S,} with i.i.d. increments one of the
standard results relating to randomly stopped sums is the following
identity of Wald [33]:
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(2.25) E[Sy] = E[Y,]E[N],

where the existence of any two of the three expectations involved en-
sures the existence of the third and the validity of (2.25). Feller [14]
gives an even better result for the case where E[Y;] does not exist but
the characteristic function of the increment distribution has a derivative
at zero. Since (2.25) was discovered, and a similar relation for Var[Sy],
many moment identities relating the moments of N and S, have been
given e.g. by Brown [7].

We now consider the extension of (2.25) to stopped MAP’s. To shorten
the notation we write

B f] = {u.f) = (f(x)u(de)

for u4 a measure on (¥, &) and fe LY(u).

Suppose that the passage-time identity is valid on some Banach space
of functions when 7'=1, m=1 (the additive process is one-dimensional),
and that we may expand Q(G), @N(I,G) and Hy(1,0) as:

Q(6) = P+i6Q,+0(0) (Q(0)=P)
(2.26) Gy(1,0) = Gy+16G, +0(0)
A,(1,0) = Hy+i6H, +0(0) .

Then upon substituting the above into (2.6) and equating constant terms
we obtain:

(2.27) G I-P)=1-H,.
To interpret (2.27) we need to specialise drasticially. Suppose that

(i) X has an invariant probability measure = i.e. #P =x and n(£)=1;
(ii) the stopping time N is such that G, is invertible and H, is proper
i.e. Hyl=1 where Hy=H(1,0).

These assumptions are fulfilled in a number of interesting special
cases. Then it follows easily from (2.27) that =G, is H,-invariant and
so if ¢;71=(w,Gy"*1) we have @#=c,(nG,™!) an invariant probability
measure for the imbedded process X ={X,:n20} which arises from
“sampling” the original process X at times n=N,,N;+N,,...,N;+
...+N,,... where each N, is a proper random time distributed as N.
Conversely, if 7 is an invariant probability measure for X then ¢,~17G,=x.
We collect these remarks in the following:

(2.28) ProposiTION. Suppose that the operator G, is invertible and
Hyl=1. Then the map n — c,nGy~ defines a bijection between finite P-
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tnvariant measures and finite H-snvariant measures on (E,&). The snverse
correspondence 18 7T — ¢, 7G, where the constant ¢, is given by
(2.29) ¢, = FF[N].

Proor. The majority of the proposition is clear from the remarks
preceding. For the equation (2.29) we simply note that

01 = {7,Gy1) = (&, B350 1) = (7, B*[N]) = E*[N].

(2.30) REMARK. Apart from the fact that norming would be impos-
sible, the correspondence above applies to not-necessarily-finite invariant
measures and in fact to excessive measures as well.

We go on now to consider the terms in (2.6) expanded according to
(2.26) which are linear in 6. Thus we have

(2.31) Gy(I-P)—GoQ, = —H, .

From this equation we obtain a form of (2.25) valid for MAP’s. For if
n is P-invariant we have 7 =c,nG,! is Hj-invariant when H, is proper
and @, invertible, and under these assumptions:

(2.32) ProposrTioN. E*[Sy]=E*[N]E"[Y,].
Proor. From (2.31) we have
<ﬁ’H11> = (&, [Gle'—Gl(I—P)]1>

= (@,F,Q,1) since P1=1,
= ¢, {(nG;71,G,@Q,1) Dby definition of 7,
= Cl<n:Q11>

¢, E"Y,] = E*[NE"[Y,],
as required.

2.f An example.
We close this chapter by considering briefly one situation where it is
possible to determine certain expressions quite explicitly.

(2.33) The one-step autoregressive process. Let {¢;} be a sequence of
i.i.d. random variables with distribution F and characterstic function &.
For |g| <1 write

X,=0
2.34 0 ’
( ) {Xn+1 = QXn+6n+1’ nz0,
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and consider the MAP (X,8) based upon the Markov chain X with
S,=30X,. It is easy to see that the maximal eigenvalue x(6) of the
operator Q(6) on the space associated with the above autoregressive
process is x(0)=£&(0/1—p) with eigenfunction wu,(x)=-exp (10021 —p).
Moreover, if {¢;} are normally distributed with mean 0 and variance 1,
then X has an invariant measure n with

(2.35) n(dx) = (27) (1 —0?)} exp{— }(1 —p?)22}dx ,

where dx denotes Lebesgue measure on the state space E=R1.

3. Processes associated with a single boundary.

3.a Orientation.

In this final chapter we consider a number of applications. Most of
the results proved can be obtained in other ways but we give only one
way and leave the task of modelling alternative proofs to the reader.

All the results obtained share with the i.i.d. case the problem of finding,
in particular cases, explicit formulae. We have a number of examples
(relating to simple cases like negative exponential and gamma type
increments) where this can be done but do not present them here.

3.b. Maxima tn Markov chains.

In this section we will consider an ordered state space (E; <) for X;
explicitly we assume that the binary relation < satisfies the following:
for all w,x,2’ € E:

@) =
(3.1) (ii) =
(iii) =

x;
w and w S 2’ implies z = o'
2 orx’' Lzx.

IIA TIA HIA

Let us define equivalence ~ by z~2’ iff ' <z and 2<2’. Then we
write 2’ <z if 2’ <z and 2z’ ~x is false. Then in terms of this we further
suppose

(3.2) {(',2): &' <x}eEXE .

Following these preliminaries cf. Dinges [12], we can define the
(first strict ascending) ladder index N+ by:

(3.3) N+ =inf {n: X,> X} .

Putting Ny+=0, N,*= N+, subsequent ladder indices are defined in
the obvious manner. Further, for any » >0 we define L, , the first posi-
tion of the maximum up fo time n by

(3.4) L,=Fkiff X, > X;, (05j<k) and X, =2 X}, (k<lZm).
n k P} J
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Finally the maximum state M, at time n can be defined as
(3.5) M, = XLn, n=0.

The aim of this section is to obtain an expression for the resolvent of
the process {(M,,S,): n=0} which we will refer to as (M,S). When X
is a random walk with i.i.d. increments the corresponding process M
has been extensively studied; in particular Spitzer’s famous identity
gives an exponential formula for the resolvent. We discuss this point
briefly in 3.e below.

To obtain the result we desire we use an operator I similar to the
sweeping-up projection which Kingman [21] calls a Wendel projection.
In our case IT is an idempotent linear transformation on the set of all

operator-valued measures defined on (R’",é’"), and I7 induces a trans-

formation I7 on the family of all Fourier transforms of these. We define
IT as follows: Let x € E and define &,: B — E by £,(z')=x. Then for T

an operator-valued measure on (I—’\"‘,g_?"‘) IIT is defined by
(3.6) (IIT)(x, A x B) = T(=,(£,7X(4)) x B),,
zeE, Ae &, Be %™ From (3.6) follows immediately that
3.7) (ITIT)f)(x) = (T1)(x)-f(x), feB.

The definition of I is also clear.
As stated above, our aim is to obtain an expression for the resolvent
of (M, 8); this is defined by: Forz e B,0<7<1,0 e R™and feB

(3.8) (P(z,0)f ) (@) = E*[3m o exp($(6,8,))t(M,)] .

The main result is the following

(3.9) THEOREM. ¥(7,0) = [I — Hy., (v, 0)]-tTGy(z, 0).
Proor.
(P(z,0)f)(@) = B[S exp(i(6, 8,))"f(M,,)]
= B350 SaH TV exp(i(0, Sy n)) T T f(X )]
= E*[35 o exp(i(0, Sy,+)) " *"
- BT GI00 oxp(i(0, 8,00y,4)) 7" | Ayl f(X )]
= B[ Tpo xp(4(0, Syys)) T (Oua(7,0)1) (X ) S X ppe)]
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by the (strong) Markov property, and by (3.7) this equals
B33 exp(i(0, Sy,)) TV F (LG y+(7, 0))f(X v, )]

= (k-0 Hy+(7, 0)(IIGy+(7,0))f) (@)

= ([ — Hy+(7,0)] (IIGy+(7,0))f)(x) .
The probabilistic interpretation of (3.9) is as follows: the maximum M,
at time » is achieved by following a sequence of ascending ladder indices
and then keeping below or equal to the position achieved. Notice that
we are simply recording S at time n together with the position of the
maximum up to that time. If, however, we desire to record S at the time

L, at which the maximum M, up to time » is achieved, then a modifica-
tion of the above proof gives with

(3.10) (Pi(%,0)f)(@) = B*[Z,_, exp(4(0, 8y,)) v f(M,)]

(3.11) TEEOREM. Wi(7,0) = [I — Hys(7,8)]-* [1Gy4(z,0) .

The formulation we have just given makes it possible for us to enquire
after the transform of the ulttmate mazimum M, which X achieves (if
such exists), and the position S, of § when this ultimate maximum is

achieved. We have the following:

(3.12) THEOREM. [f M =lim, _, X, exists and

(3.13) (P(0)f)(@) = E=lexp((0, S1.))f(Me)]
then
(3.14) $(6) = [ — Hye(1,0)1 I — [TH y.(1,0)].

Proor. We use an Abelian argument on (3.11) giving
(F(0)f) (@) = limyy, (1 — o) — Hys(z, 0)1 Y {TGy.(7,0)) f)()

= limgy, (1 — o) — Hya(7,0)] Gy (7, 0)1-f) ()
by (3.7),

= lim,y, (1 - 7)({I — A y+ (7,001 — A y.(7,0)]-
- (= 2Q(0)171-f))() by (2.6) ,

= lim (I — Hy(7,0)] I — Hy+(7,0)]1-f))() X
by @(0)1=1,

= (U - Hy:(1,01 — [THy(1,0)]f) (=) by (3.7).
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The above theorem is a Markovian generalisation of a result due
originally to Ticklind [31] and later derived by Spitzer [28]. (See, how-
ever, the remarks on exponential formulae in 3.e.) It is also closely re-
lated to work of Baxter [4] and Stone [30] although these authors do
not consider the limiting properties.

3.c Maxima in the additive processes.

We turn now to a topic closely related to that of the last section, but
with the emphasis on the second component of the MAP (X, S). Assume
throughout this section that § is one-dimensional i.e. that m=1, and
that S,=0 a.s.; it is then clear that the following are well defined:
(3.15) N+ =inf{n: 8,>0};

(3.16) L, =k iff S; > S;, (0sj<k) and S, = §;, (k<l=n).

The ladder indices Ny+=0, N;t=N+ N,+,... and the times of first
attaining the maximum are interpreted exactly as in the previous sec-
tion, the only difference being the fact that they refer to S rather than X.
There seems no danger in using the same notation as in 3.b for in any
particular case it will be clear which is intended. Thus we define the
maxima of the additive process S by
(3.17) M, =8, nz0.

As one would expect, our aim i8 to obtain the resolvent of the process

(X, M) = {(X,,M,): n=0}

and again this generalises, in a different way, the work relating to maxima
of partial sums of i.i.d. random variables. For x € B, 0<t<1, 6eR?
and fe B define

(3.18) (P(7,0)f)(@) = B3, exp(i0M,) 7f(X,)] .
(3.19) THEOREM. D(7,0)=[I — Hy(7,0)] Cys(,0).
Proor. The proof is similar to that of Theorem (3.9).

The probabilistic interpretation of (3.19) is as that of (3.9) in the last
section, but with emphasis on the second component of the MAP (X, S).

Another possibility is to consider the process {(X;, ,M,): n2 0}, that
is to record the values of X at the times a maximal value is obtained
in 8. If

(3.20) (By(7,0)f)(@) = B[S, exp(i60M,) v"f(X1)] ,

then a minor modification in the proof of (3.9) gives, with II as in (3.6),
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(3.21) THEOREM. ®,(7,0)=[I — Hy (7, 0)]"* [1G ys(7,0).

Observe that the right hand sides of (3.21) and (3.11) are formally
identical. We can also state the corresponding limiting result here, the
proof being exactly the same as for (3.14).

(3.22) THEOREM. If M=lim, , S; <oo a.s. and

(D(0)f)(@) = E*[exp(i6Mo) f(X1.)]
then

(3.23) D(6) = [I—Hy.(1,0)I — [TH 1 (1,0)] .
3.d. MAP’s with one impenetrable barrier.

One of the more important processes associated with the one-dimen-
sional random walk {S,,} with i.i.d. increments {Y,} is the process modi-

fied by the placing of an impenetrable barrier at zero i.e. the process
{W,} defined recursively by

(3.24) Wo = Yo;
Waia = (Wo+ Yn+1)+> nz0.

A classical result which goes back to Wald [34] is that when Y =0
a.s. {W,} and {M,} (see (3.17)) have the same distribution. As has been
mentioned this distribution was later elegantly expressed by Spitzer
[28]; see also Kingman [21] for an alternative derivation based on (3.24).
Let us define the (first weak descending) ladder index N of {S,} by

(3.25) N =inf{n>0: 8,0}

and N,,N,,. .. have the obvious definitions following Ny=0 and N, =N.
Further we define the position of the last minimum up to time n:

(8.26) L, =Fkiff S, £ 8, (05j<k) and S, < 8, (k<lsn).
In terms of the above we can easily check that
(3.27) W,n = Sﬂ—SLn = zk (Sn_Sk)I{Ln=k} .

Turning now to our MAP (X,S) (with m=1) we define a related
bivariate process called (X, W) as follows:

(XO)WQ) = (XO’ Y0+);

3.28
( ) (Xn+19Wn+1) = (X'n+ls(W'n+ Yn+1)+)’ ngo *
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The resolvent of (X,W) is denoted A(,0), that is for z€ B, 0<7v<1,
0eR!and feB

A

(3.29) (A(z,0)f)(@) = BZ,_, exp(i0W,) T"f(X,)] .

With N, L, defined as in (3.25), (3.26) we have the following result
where for simplicity we suppose S,=Y,=0 a.s. (see 3.e for a more gen-
eral result).

(3.30) THEOREM. If Sy=0 a.s. then
(3.31) A(z,0) = [I - Hyg(z,0)]G(7,0) .
Proor.
(A(z,0)f)@) = B35, exp(0W,) wnf(X,,)]
= B350 S exp (i0(Sg,4n—Sm,) T (X gpan)]
= B35 o T B3N 0 exp (i6(S,005,))-
* (X poly,) | Ay,
= B35 o TV HAx(z. 0))( X 5,)]
by the (strong) Markov property, and finally this equals
(30 Hx(7,0*Gx(z,0)f)@) = (I - Ay(x,0)]Cx(z,0)f)(@).

As is ususally done we go on to obtain an expression for the limiting
distribution of W, when it exists. In the i.i.d. case one has the result
that W, and M, have the same distribution and so when lim, , .M, <o
a.8. a limiting distribution for W, also exists. The situation here is more
subtle — see the next section — so we simply postulate the existence of
the distribution.

For the limiting distribution in (X,W) to exist some regularity con-
dition must be assumed on X. Referring to Sidak [27] for the necessary
definitions we state the following:

(3.32) AssumpTioN. The chain X is irreducible and positive recurrent
with a unique P-invariant measure x; further we require that the con-
dition CD be valid with d =1 (aperiodicity) and PS (positivity for some n).

Under this assumption, for any 4 € & with n(4) >0 we have

(3.33) lim,_,on1 33" PY(x,A) = n(4) for a.e. x(n) .
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(3.34) LeMMA. Under Assumption (3.32), if f e L\ (n),
(i) lim, (0! ZRZ0P*) (@) =E7[f] for a.e. z(n);
(ii) lim,y; (1 —7)([ — eP1Yf)(x) = E™[f] for a.e. x(x).

Proor. (i) is a consequence of the ergodic theorem and results in
Sidak [27] and (ii) follows from the fact that (pointwise)

limy, (1 - 2)(( — zP]7Yf)(®) = lim,_,(n~ 337" P*f)(x)
which follows from a familiar Abelian argument (see Feller [14]).
Let now

(3.35) (A(O)f)(@) = B =f(Xo0)]
whenever W, =lim, . W, <o as. and X, =lim
define P, by

(3.36) (P1f)(x) = E"[f] (constant).

noooXn exists, and

Then the following limiting result holds:

(3.37) THEOREM. If W =lim, , W, < a.s., then under Assumption
(3.32)

(3.38) A(0) = P,B51(1,0)85(1,0) .
Proor. Arguing as before,

lim,y, (1—)A(7,0) = limyy, (1— o) — Hy(z,0)]* Gy, 0)

= lim,y, (1—7){ — 7Q(0)] 1G5 (7,0)@x(z, 0)
by (2.6)
= P,Gx(1,0)G5(1,0) .

As before the limit is to be taken as a pointwise limit when operating
on functions f € L(n).

Ignoring the chain completely gives us an expression for the transform
of the limiting random variable. Here (P,f)(z)=E™f(X 5)] where # and

¢, are defined as in 2.e with N=0N.

(3.39) COROLLARY. E*[¢">)=c,~(P,Gg(1,0)1)).

A

Proor. E=[¢?®">]=(A(0)1)(x) and (3.39) arises after we note (with the
notation as in 2.e) that

¢\ = n@N—l(l,O) implies ¢,71P, = Pl@N'l(l,O) .
This completes the proof.
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3.e Remarks on the preceding sections.

The reader can hardly fail to note a number of points which have
not been explained after reading the two preceding sections. Firstly, the
striking similarity between (3.19) and (3.31), and also that between
(3.23) and (3.38); secondly we have used a number of times the fact
that for certain stopping times N the operators Gy(z,6) are invertible.
Finally we have not fully explained why the random variables W, of
the preceding section should have a limiting distribution. It turns out
that all of these points are aspects of the same phenomenon — dualsty.

Recall that at the beginning of 3.d we remarked that Wald had proved
(for Yy=0a.s.) {M,} and {W,} have the same distribution; it is apparent
when the proof of this fact is examined that the only requirement on
the increments is reversibility: that {Y,...,Y,} has the same distribu-
tion as {Y,,...,Y,}. Armed with this knowledge it is natural to ask
whether a duality exists between (X, W) and a process (X, M) where the
reversing of the increments is done in some suitable manner. This is
indeed the case as we have shown elsewhere [2], and so for a suitable
dual (reversed) process {(X,, ¥,): n =0} we can prove that the resolvents
of the processes

(3.40) {(X,, W,): n20} and {X,, M,): nz0}, or
{(X,,M,): n20} and {X,, W,): n=0}

are adjoints.

This duality completely explains the similarities noted above; in
fact (3.19) can be obtained from (3.31) (or vice-versa) by taking adjoints,
and so only one of these results needs to be proved. Similarly we can
show that .

6’31\7_1 = [I-H*3,]
where

(3.41) N+ = inf{n: S,>0}

and * denotes adjoint, and so the problem concerning the inverses of the
G-operators is solved. Finally whenever the monotone increasing random
variables {#M,} have a proper limiting distribution the relation (3.40)
shows that the same is true for the random variables {W,}. All these
points are fully explained in Arjas and Speed [2].

Another point which suggests itself after studying the previous two
paragraphs is the absence of any exponential formulae like that of
Spitzer’s for the resolvents. Let us see why this should be so. In the i.i.d.
case with the notation of Feller [14] XVIII we have
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(3.42) 35 T E[e*Mr] = [1— y(7,0)]"1y(7,0)

which of course is very like (3.19). To obtain explicit expressions for
%(7,0) and y(z,0) Feller writes the passage-time identity (2.2) in the form

(1—7E[e®"1])-1 = exp(log(1 —(7,0))* +logy(7,0)), 0=7<1,

and expands the logarithms. This shows just where such an approach
breaks down in our situation — we are dealing with operators and it is
just not true that exp(logU+logV)=UV in that case. When all the
relevant operators commute the above result holds and we obtain the
following extension of a result of Baxter [4].

(3.43) THEOREM. For N+ as tn (3.15) let us suppose that @N+ and By,
commute. Then the following formulae are valid for 0 < v<1, 6 € R!:

(3.44) I—HAy.(z,0) = exp[— 3=, n-177T(Q(6)")]
(3.45) Gyi(7,0) = exp[Tr., vt v [1 - TYQ(O)")]

where I' is a suitable projection operator.

Proor. We omit the straightforward proof. It is very similar to the
i.i.d. case in Feller [14] where in our case the action of I" can be described
as follows: for fe B

(3.46) (I(@QO™f)@) = E*[nf(X,); 8,>0].

We close these remarks by stating without proof an analogue of (3.30)
which is valid for an arbitrary initial random variable Y, rather than
Y,=0 a.s. To do this we need another projection operator II which
“sweeps up”’ analogously to the one defined in 3.b above. To avoid
lengthy preliminaries we simply state that if for some transform operator
U we have

(Uf)x) = Bo[x(Xgs- - s Xy o -3 805+ 38ps . 2)]
then
(ITUf)(z) = B*[x(Xy,- . .1 Xy -5 8t 8t 0]

(3.47) TaEOREM. With a general starting distribution defining the oper-
ator F(0) as in Chapter 2, we have

(3.48) A(z,6) = I(F(O)I — Hy(v,0))")G(7,0) .
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