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A GENERALIZATION OF FOLNER’S CONDITION

JOSEPH MAX ROSENBLATT

Introduction.

Let G be a group acting on a set X and let 4 be a non-empty subset
of X. We consider here a problem first posed by von Neumann [10]:
when does there exist a finitely-additive G-invariant measure u defined
on all subsets of X and taking values in [0, 0] with u(4)=1? When the
group G is amenable it is well-known that this is equivalent to whenever
@y,...,a, are real numbers and g¢,,...,g, are in G then 37 a;%,,420
implies 37 ;a,20 where yg is the characteristic function of S. Several
equivalent versions of this translate property are derived. Let |-| be
cardinality. The translate property is in particular equivalent to having
a net of finite sequences {F,} in X such that

\F,ngd|/|F,nd|—1 forall ge@.

For arbitrary groups we prove a theorem characterizing when the
measure u exists; this is the case if and only if there exists a net {F,}
of finite sets in X such that

I(F A gF )NA[IF nA|

converges to 0 for all g € @ where A denotes the symmetric ditference.
A corollary of this is that when G is amenable a measure u as above
exists if and only if there exists a net {F } of finite sets in X such that

IF ngAl/IF.nA| >1 forall ge@.

These theorems can easily be generalized to other measures in X besides

lI-1-

0. Preliminaries.

We will use Z, Q, R for the integers, the rational numbers, and the real
numbers respectively. Let Z+, Q*, and R+ be the positive elements of
Z, Q, and R respectively. We will sometimes extend the real numbers
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by oo with @+ 00 = oo for all a € Ru{co}. We use the following set notation
for subsets 4 and B of a set X:

AuB ={xeX: z€d or xeB}
AnB ={xeX: x4 and z€ B}
A\NB = {xeX: z€ A and z ¢ B}
AAB = (ANB)uU(B\4).

x4 18 the characteristic function of A defined on X by 4 (x)=1if xe 4
and y,(x)=0 if z € X\ 4. ||4]| will denote the number of elements of a
finite set 4. If S=(s,,...,s,) is a finite sequence in X then ||S||=n. For
a set A< X and a sequence S=(s,,...,S,),

IANS| = 371 2a(8:) -

This is consistent with the case that § has no repetitions and is considered
as a finite set.

Let E be a real linear space. A cone in E is a non-empty set P such
that P+ P<P and rP<P for all r e R+. A rational cone in E is a non-
empty set P such that P+ P<P and ¢gP <P for all ¢ € Q*. Given a set
X cE the cone (rational cone) generated by X is the smallest cone
(rational cone) containing X. For instance, the rational cone generated
by X is

{3i-1¢:: ¢:€Q* and z,€ X} .

The span of X is as usual the smallest linear subspace of £ containing X.

Our use of topology and linear topological spaces follows the notation
in Kelley [5] and Kelley, Namioka, et al. [6]. We will in particular need
the following which we state here for convenience:

0.1 PrROPOSITION. Let A be a convexr set in a locally convex space (E, ).
A posnt x € E is not in the t-closure of A if and only if there exists f € E*
such that

SupaeA(.ﬁa') < <f,.’l?> .

0.2 CoroLLARY. Let A be a convex set in a locally convex space (E,7).
The zv-closure of A and the weak-closure of A are identical.

0.3 ProposrITION. Let {(E;,7;): ¢ € I} be a family of locally convex spaces.
Let F=T1;,E,; with the product topology TI;.;t;- Then the weak-topology
of (F, T1icr7;) 8 the product of the weak-topologies of {(E,,7,)}.
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0.4 PrROPOSITION. Given a locally convex space (E,t), a linear functional
@ on (B,7)* is weak*-continuous if and only if there exists x € E such that

(p.f)=Lf.x) for all f e (H,7)*.

Given a set X, by a finitely-additive measure on X we will always
mean a function u defined on all subsets of X taking values in [0, o]
such that when 4 and B are disjoint subsets of X, u(4AuB)=u(4)+ u(B).
For all notions in measure theory see Rudin [9] or Kelley, Namioka, et
al. [6]. An excellent reference for information on amenable groups is
Greenleaf [4]. This same source is good for a summary of von Neumann’s
work on the existence of invariant finitely-additive measures.

1. The translate property.

Let @ be a group acting on a set X. A finitely-additive measure u
defined on all subsets of X is G-invartant if and only if when g € G and
S<X then u(gS)=u(8). Let A be a non-empty subset of X. A problem
first posed in [10] is to decide when there is a finitely-additive G-in-
variant measure g defined on all subsets of X such that u(4)=1% It is
convenient to restate this question in terms of linear functionals.

A subset B=X will be called A-bounded if and only if there exist
g1+ - -,0n € G such that B<U? g.4. Given a function f: X — R let
suppf be {x € X: f(x)+0}. Let B,(X) consist of all bounded real-valued
functions f such that suppf is A-bounded. Under pointwise addition and
the usual scalar multiplication, B (X) is a real vector space. The group
action of G on X induces an action of G on B (X) defined by (gf)(z)=
flg7x) for all g € G, f e B,(X), and = € X. This represents G as a group
of linear transformations of B (X).

A function f e B,(X) is positive, written f2 0, if and only if f(x)=0
for all # € X. A linear functional 6 on B (X) is positive if and only if
{6,fY=0 whenever fe B,(X) and f=0. The linear functional 6 is G-
invariant if and only if {0,gf)=<0,f) for all g € G and f € B ((X).

1.1 PropPOSITION. There exists a finitely-additive G-invariant measure
u defined on all subsets of X such that u(A)=1 if and only if there exists a
positive G-invariant linear functional 0 on B (X) such that {0,y 4)=1.

Proor. See Greenleaf [4].

We say that there is an invariant for (@,X,A) when the condition of
1.1 holds. An invariant for (@,X,A4) will be a G-invariant positive linear
functional 6 on B (X) such that {8,y,>=1. It will be understood when
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(G,X,A4) is written that @ is a group acting on a set X and 4 is a non-
empty subset of X. Notice that G is amenable if and only if there is an
invariant for (G,G,G) with the group action just group multiplication.

In Section 3 and 4 criteria for the existence of an invariant with @
arbitrary will be given. For now, assume @ is amenable. Let S, be the
span of {y,,:9€G}. Then S, is a G-invariant subspace of B ,(X) and
in fact the smallest G-invariant subspace containing y,. A well-known
result for amenable groups goes as follows:

1.2. ProrosiTioN. If G is amenable there exists an invariant for (G,X,A4)
if and only if there exists a positive G-invariant linear functional ¢ on S,
such that {p,y>=1.

Proor. See Greenleaf [4].
From this proposition we get the following:

1.3 CororLLARY. When @ is amenable there exists an invariant for
(G,X,A) if and only if whenever g¢y,..., 9g,€G and a,,...,a, €R,
2105 2g,4 20 tmplies 37 1a;20.

Proor. Let us say (G,X,A) has the translate property when the above
condition holds. If it holds define ¢ on S, by

{p, 2im1 “ng,A> =0 10;.
@ is well-defined since if we have

n _ m
Ei=1 Qi Xgid = Zj:l ijqu

H = 2521 a’i%y,'A_z;'r;l ijng

is both positive and negative. Hence, 3 a;,—37.,b; is both positive
and negative by the translate property; so 37 ,a;=37.,b;. It follows
easily now that ¢ is a positive G-invariant linear functional on S, such

that (@, > =1.
Conversely, if such a ¢ exists then when 37_,a;x,.420,

0= <(P, ZLI a’ilg;A> = le a; .

then

1.4 ProPOSITION. (T'he translate property). Given (G,X, A) the following
are equivalent:
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1) For all a,,...,a,€R and ¢4,...,9, €@,

Dt 1@ xga 20 amplies 37T a; 2 0.

2) For all g4,...,9m Py . . h, €G,

py xq}.A—ZLl Xna = 0 implies m = n .
3) For all g4,...,9m 01« i1 €G,

22';1 Xg.'A_z;":il XhiA k 0.

Proor. Clearly 1) implies 2) implies 3). If 2) is not true, then there
exist some g¢,,...,9, € G and hy,...,h, € G with

D1 Kga— =1 %nia Z 0

and m <n. Assume m +n is minimal among all such possible sums. Then

DT Xoia— 251 Anpa 2 0
also; so minimality implies m =7 —1. Thus n=m+ 1. So we have a con-
tradiction of 3). Therefore 3) implies 2). For 2) implies 1), if 1) is not true
then some 37_,a,y,420 with 37_,a,<0. Choose 7,,...,r, € Q such that
r;>a; and r;—a; < ¢ for all s. Then we have

dtari =2 (ri—a)+ 37 e < me+ 37 a;,
and

Z?=1 TiXgia = z?=1 (n—ai)xa,-,ﬁZZ;l @i Xgd Z Z:'L=1 @i Yga = 0.

So if e<(—37_,a;/n) then we get 37 ,7r;<0. Let r;=p;/q; with p;e Z,
q; € Z+. Let ny=dr; where d is any common multiple of {g;: ¢=1,...,n}.
Then

2?=1 NiXgid = d2?=1 TiXga = 0

while 37 ,n;=d 3 ,r;<0. Each n; € Z, so repeating each g, exactly |n,|
times gives a form as in 2) with n>m. So 2) implies 1) and we have 1)
if and only if 2) if and only if 3).

If we specialize Proposition 1.4 to G=X and the G-action just group
multiplication, then there is another form of the translate property. For
a finite sequence (sy,...,s,) by [IBN(sy,...,s,)|| is meant 37_;xp(s;).

1.5 CorOLLARY. Given (G,G,A) then the translate property holds if and
only if when (s4,...,8,) and (ty,. . .,t,,) are finite sequences tn G with n>m
then there exists x € G with

42 0 (s, - 8 )l > 14z 0 (Ey,- . ot -
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Proor. Let H=3T, 7.4 —Z}'=1Xs,~ 4. The translate property for
(@,G,A4) was equivalent to given any H as above with n >m there exists
x € G with H(z)<0. But

H(z) = EE'LI xtiA(x)—Z;;l Xs,'A(x)
= Z;';l de—1(ti—1) —ZZ-Ll ZAI—I(Sj_l)
= ||[Az~tn (&7, L= A2 0 (7L L8,

So the translate property is equivalent to given any (fy,...,t,) and
(81, . .,8,) sequences in G' with » >m there exists y € G such that

My n ¢t < 1Ay (s 8,7

Take the sequences (¢,7,...,t,"1) and (s;7,...,8,”!) to begin with to
get the corollary.

ExamprEs. The most immediate example of when there does not
exist an invariant for (¢, G, 4) is when 4 is a subsemigroup of @ generated
freely by two elements « and y. Then xAuyd < 4 but xAnyA is empty;
hence, there cannot exist an invariant for (G, @, 4). It is in fact true that
for some non-empty 4 <@ and some z and y in G we have zr4Auyd<A
with x4 disjoint from yA if and only if x and y generate a free subsemi-
group. See [8] for a proof.

As for examples of when there is an invariant for (G,X,4), we have
the trivial cases of when G is finite or when A is finite. In the first case,
let oy € 4 and let u(S)=|SnGx,||/|ANGx,|. In the second case let u(S)=
ISI|/ll4]l. Less trivial examples are available. If @ is a nilpotent group
then there is an invariant for any (G, X,A4). We say a group G is supra-
menable if and only if there is an invariant for any (G, X, 4). A solvable
group is supramenable if and only if it contains no free subsemigroup on
two generators. This is also true for connected Lie groups. For proofs
of these facts and further exposition see [8].

2. The ratio property.

Given a group G acting on a set X and 4 <X which is non-empty,
we say (G,X,A4) has the ratio property if and only if there exists a net
{F,} of finite sequences in X such that for all g € ¢

lim, |[F, ngdA|/IF,n 4]l = 1.

We say (G,X,A) has the ratio property without repetstions if we can
choose the net {F,} as above with F, actually finite subsets of X. This
section contains a proof that the translate property is equivalent to the
ratio property.
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Let E be a real vector space of functions on X under pointwise addi-
tion and the usual scalar multiplication. We say that f=0 if f(z)=>0
for all ze X.

2.1. LemMmA. If ve B’ is positive then there exists a net {F,} of finite
sequences sn X and a net {D,} of positive integers such that for all f€ E,

Dy_l erFyf(x) g <7),f> .

Proor. Let P be the rational cone generated by the point evaluations
{e,: x € X}. Here {e,,f)=f(x) and e, € E’ for all xe X. Let P be the
w(E',E)-closure of P in E’. We claim v € P. If not since w(E',E) is a
locally convex topology for E’, 0.1 implies there exists a w(&', E)-con-
tinuous linear functional ¢ on E’ such that

suppeP<(p»p> < <‘p’v> .

But then 0.4 with v=discrete topology implies there exists f, € E such
that

suppeP <p’f0> < <1),f0> .

Hence each (p,f,) <0 since (v,f;> € R and ¢gP <P for all ¢ € Q*. There-
fore, sup,.p(p,fo)=0. Since for any x € X, e, € P, we have f,<0. But
then (v,f,)» <0 which is a contradiction.
So there exists a net p, in P such that p, — v in the topology w(E', E).
Each p, is
P, = i 9i*ez« Where ¢;*€ Q+ and z;~ € X.

Rewrite each p, with {g,°} over a common denominator to get p,=
D3, p e, where D, e Z+ and F, is a finite sequence in X.

Let G be a group acting on X. We can define for each g€ G and
f: X —> R, ¢f(x) =f(g~x). Then gf: X -~ R. We write GE < E when gf € E
if ge G and fe K.

2.2 PrROPOSITION. Let G be a group acttng on X and E as above with
GE < E. Suppose there exists a G-invariant positive linear functional 6 on E.
Then there exists a net {F .} of finite sequences in X and a net {D,} of positive
integers such that for all fe B, ge @

limaDa_l(zIEFaf(x) - zzeF, gf(x)) =0.
If €0,f) =0 then also we have
limu erF, gf(x)/z:teli‘af(x) = 1.
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Proor. Take D,~' 3, p e, — 0 in the topology w(E’,E) as in Lemma
2.1. Then since {6,gf>=<{0,f), we get

limaDa—l(zxeF“f(x) - Za:eF“ gf(x)) =0.

If <0.f)# 0 then eventually, D,~! 3 . f(x) is not zero. Dividing by this
and taking the limit gives

lim, (1-3cp, @)/ Zeer, f@) = (0,f)—<0,9/)[K0.f> = 0.

2.3 THEOREM. (GQ,X,A) satisfies the translate property if and only if
(G, X, A) satisfies the ratio property. If G is also amenable, there exists an
tnvartant for (Q,X,A) if and only if (G,X,A) satisfies the ratio property.

Proor. Apply Proposition 2.2 with
E =28, =span{y,,: geG}.

The translate property implies there is a G-invariant positive linear
functional 6 on E such that (0,y,)=1 and so there exists a net {F }
of finite sequences in X such that for all g € G,

lim, ExeF, gZA(x)/ZzeFa 2a(®) = 1.

This is the ratio property. For the converse, assume 37_,a;y, 42 0 with
a,...,a, €R and g¢,,...,9, € . Choose {F,} as in the definition of the
ratio property. We have

0= Za:eFu Z?=1 a’i%giA(x) = z;;l ai“giA n Fa” .

Dividing by ||[AnF,|| and taking the limit as « gets large gives
' 12;20. Now 1.2 finishes the proof.

REMARK. We shall see in Section 4 that when we have an invariant
for (@,X,A) we can get the ratio property without repetitions.

3. Weak*-Invariance.

The main purpose of this section and the next is to give necessary and
sufficient conditions that there exist an invariant for (G, X, A4) without
making any restriction on the group G. Except for trivial cases, the major
examples where an invariant exists are when (@ is an amenable group or
a supramenable group.

3.1 Given a net {z,} in a set X, we say {z,} is a universal net if and only
if for all 4 = X either {z,} is eventually in 4 or {z,} is eventually in X \ 4.
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We will need a few facts about universal nets. First, every net has a
universal subnet. Second, a universal net converges to each of its accu-
mulation points. For further details see Kelley [5].

3.2 LEMMA. Given a net of linear functionals {I.} on a linear space E
such that for each x € E, {{l,,%)} is eventually bounded, there exists a linear
functional 1 on E and a subnet {I,} of {1,} such that I, -l pointwise on K.

Proor. Let {,} be a universal subnet of {I,}. Then {¢l,,x)} is a universal
net of R for all z € E. Since {(l,,z)} is eventually bounded, {<I,,x)} is
also eventually bounded. But then {{l,,x)} has at least one accumulation
point. Since {(l,,)} is universal and converges to each of its accumula-
tion points, {(l,,x)} must converge. Define

{d,x) = lim, (,x) .

Because {(l,,x)} converges for each x€ E, | is a well-defined linear func-
tional on K.

Recall that [,(X) and [ (X) are paired spaces where for fel,(X) and
Hel (X),

<H’f> = zmeX H(x)f(x) .

3.3 THEOREM. T'he following are equivalent:

1) There exists an tnvariant for (G,X,A).
2) There exists a net {f,}<1,*(X) such that for all g€ G and for all
H e B (X) we have

(S H) = for§H))[fur 24> > 0 -

3) There exists a net of finite sequences {F,} in X such that for all g € G
and H € B 4(X) we have

(za:eF“ H(x) "zmeF“ gH(x))/”F,, n A” -0.

4) There exists a net of finite sequences {F .} n X such that for all g € G
and A-bounded M <X

(IF,n M- \F, 0 gM|)/|IF, 0 Al > 0.

Proor. For a finite sequence F in X let yz=3 . rés €, evaluation at
z. Given 1) choose an invariant ¢ for (G,X,4). By Proposition 2.2 there
exists a net {D_} in Z+ and a net of finite sequences {F,} in X such that
D, 4y, — @ pointwise on B (X). Since {p,1>=1,

“F:x n AH/Da = Da-1<XF“7XA> —-1.
Math. Scand. 33 — 11
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So ||F,nA4|yz, — ¢ pointwise on B ,(X). Since ¢ is invariant, {F,} satis-
fies 3). So 1) implies 3). If 3) is given for the net of sequences {F,} then
{xr,} satisfies 2) and {F,} satisfies 4). So 3) implies 2) and 3) implies 4).
Given a net {f,} as in 2), let H=y,. Then

1~ futgd{fwrxad >0 Horall ge@.

But for any H € B/(X) there exists K >0 and g,,...,g, € G such that
[H| =K 3%_1%g,4- Hence,

[ fur 2 ) ur HY| = K{for 207" 201 {Fr Aga) < 20K

eventually. For all « let ¢,=f,/{f,,x4)- Then ¢, is a positive linear
functional on B ,(X) and for all H € B(X) we have {(H,p,)} is even-
tually bounded. By Lemma 3.2 there exist a subnet {p,} of {p,} and a
linear functional ¢ on B (X) such that ¢, —~ ¢ pointwise on B ,(X). But
9,20 and {p,,x>=1 for all x implies =0 and {p,y,>=1. Since

lim, {(p,,gH—-H) = 0,
we have

So ¢ is G-invariant. Therefore ¢ is an invariant for (@, X, A4).
We need only show now 4) implies 1). As in 2) implies 1), 4) implies
that there exists a subnet of {||F, n 4|~y } which converges to a linear

functional ¢ on

span{y, : M is A-bounded} .
It follows that ¢ 20, ¢ is G-invariant, and {p,x,)>=1. Define a finitely-
additive measure u by u(S)={@,xs) if S is A-bounded and u(S)=oo
otherwise. Then y is positive, G-invariant, and u(4)=1. Proposition 1.1
implies there exists an invariant for (@, X, 4).

3.4 DEFINITION. Let
Py ={fel,*X): {fir=1}.

We say a net {p,} in P 4 converges to weak*-invariance relative to A if and
only if for all g€ G and H € B (X),

lim (@, H—gH) = 0.

REMARK. Theorem 3.3 says there exists an invariant for (@, X,A4) if
and only if there exists a net ¢, which converges to weak*-invariance
relative to 4. If 4 =X this weak*-invariance is Day’s notion of weak*-
invariance.
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3.5. COROLLARY. If there ewists a net {f,} in P4 which converges to weak*-
tnvariance relative to A then there exists an invariant ¢ for (G,X,A) and
a subnet {f,} of {f,} such that f, -~ ¢ pointwise on B 4(X).

Proor. Given the net {f,}, the proof of 2) implies 1) in Theorem 3.3
together with Lemma 3.2 gives us some subnet {f,} of {f,} which con-
verges to a linear functional on B ,(X). Weak*-invariance implies ¢ is an
invariant for (@, X, A4).

4. The relative Folner condition.

We have a notion of weak*-invariance which generalizes Day’s to
the relative case. We need a similar generalization for strong invariance.

4.1 DEFINITION. We say the Folner condstion relative to A holds if there
exists a net {F.} of finite sets in X such that for all g € G,

lgF,A F,)n Al/IF, 0 4] ~0.
The net {F,} s called a Folner net relative to A.

It should be understood that implicitly ||F,nA| >0 for all y when {F }
is a Fglner net relative to 4.

4.2 REMARK. By suitable indexing, the Fglner condition relative to 4

holds if and only if for all g,,...,9, € G and ¢>0 there exists a finite
subset F < X such that for all 1=1,...,n

(g FAF) n A||[|IF n A|| < &.
Notice also that for all g e @
L= IF 0 gAI/IF 0 Al| = |(F 0 Al ~lg™F 0 AID/IF n 4]
< |(FAg='F)n A||/I|F n A]| .

So if there exists a Fglner net relative to A, then (G, X, A) has the ratio
property without repetitions.

4.3 ProrosITION. The Folner condition relative to A holds f and only
if there exists a met {F,} of finite sets in X such that for all L <@ with the
sdentity e € L and L finite,

ILF, 0 A|[IIF, 0 Al| > 1.
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Proor. Suppose {F,} is given. Then let ¢ € L =@, L finite and symme-
tric. For all l e L,
ILF \LF, < L*F \F,
and
LF \ILF, < L*F \U'F,6 = L*F \F,.
So
ICLF,ALF,) 0 A|[|ILF, n A| < 2 |(L*F,\F,)n A||[|F,n 4] .

Since ||L2F, nA||/|F,nA| -1 and L*F > F,,
I(L2F,\F,) 0 AJIF, 0 A > 0.
Thus, for all £>0 there exists y such that
ICLF,ALF,) n A||[ILF,n Al <& forall leL.

To get such an estimate for an arbitrary finite Ly <G let L= Lyu {e}u Ly™1.
This gives us the Folner condition relative to 4. Conversely if {F,} is a
Folner net relative to 4 then by Remark 4.2

lgF, 0 Al/IF, n 4] > 1.
In addition, for all g,h e G
(gF,ARF )N A < [(gF,AF,)n AlU [(F,ARF,)nA].
An easy induction on |L|| for ee Lc@ with L finite implies

|LF,nA|/|F,nA| > 1.

4.4 THEOREM. If the Folner condition relative to A holds, then there exists
an snvariant for (G,X,A). If {F,} is a Folner net relative to A then there
exists an snvariant ¢ for (G,X,A) and some subnet {F,} of {F,} such that

F,0 Al Y, >

pointwise on B 4(X).

Proor. Let {F,} be a Fglner net relative to 4. Let f,=|F,nA|xz,.
For any H € B (X) there are g,,. . .,9, € @ with suppH <U?_,g,A. Then
H=3?_H;y,4 with |Hw=|H| for all 5. For g € G,

[{for H) =< f s gH))]
= |[Fo 0 A7 30, 271 (Hi(®)1g,4(%) — Hi(g7)15,4(9 7))
S Py Al e rangir, 2ie1 Hi2)254()]
2 Hllo 271 I(FAGTF,) n g, All[IF, 0 Al -
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Since
\(F.Ag~2F,) n g Al = |[(9,7F,Ag;Yg~2F,) n A]|

< (g FAF,) 0 A+ (F,Ag; g7 F,) n 4],
it follows that

201 I(FBg~F,) 0 g, A|l[IIF, n Al > 0.

Hence, {f,} is weak*-invariant. By Corollary 3.5 some subnet of {f,}
converges to an invariant for (G, X, 4).

We claim that the converse of this theorem is also true. The proof is
an adaptation of Namioka’s technique [7].

4.5 Lemma. If f € [, H(X) with suppf finite and ||f|l;=1 then there exists
Ao sy >0 with 370,24;=1 and there exists A,<...<A4, which are
Sfindte subsets of X such that

f= 2?:1 }*jXA,/”AjH .

Proor. Let 0<a, < ... <a,, be the distinct values of f. Forallm=j2>1
define

4, = @eX: ap ,sf@).
Then 4;<4;,, for all j=1,...,m—1. Also,

f = 0apt(@2a=0) )ty g+ - F (O = 1)1 4y -
Therefore
f= Z}'Ll }'jXA;/“AjH

where A; are finite sets such that 4;< 4;,, for all j=1,...,m—1. Since

ZzeXf(x) = ”f”1= 1, Z}ﬁll,: 1.

4.6 DErFINITION. Define the pseudo-norm |-||, on L(X) by ||fll.=
ISl xa)- Let

F 4 = {fel,*(X): suppf s finite and ||f| =1} .
Note that
F 4 = Pyn{fel(X): suppfis finite}.

4.7. LemMA. If there exists a net {f,} in F 4 such that ||f,—gf.llq— O
for all g € G then the Folner condition relative to A holds.
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Proor. We will show that for all >0 and g¢,,...,9, € G there exists
K < X finite with

Hg;: KAK)n A||[|KnA|| < ¢ forall i=1,...,n.

Fix «. Let D=3, xf.(x). Since f, € #, 0<D < oco. By Lemma 4.5 there
exist 4,...,4,,>0 with 372 ,4;=1 and finite subsets 4,<...<4,, of X
such that D-If, =37 ;4;7.4/ll4,|l. Let s, be

8 = max{j=1,...,m: 4;n A is empty}.
Since ||f,||,=1, we know sy<m. Let

v; = DAj|4; 0 A||[Il4,]]  for jzs,+1.
Then
fo=D3, liXAi/||Ai|l+z;!'=so+1 ijAj/”Aj nA4j.
We must have 1= 'Ifa[|A=z.;'"=80+l)/j'
Fix some g€ G. Let B=UT.,(4;\g4;). Since 4;=4;,, for all j=
1,...,m—1, we have (94;\ 4;,)= X\ B for any j=1,...,m. We know

”gfa —fa”A
2 z:ceAn(X\B) ID Zz‘ll 'y't(XyA,'(x) - XA;(:I:))/”Ai“ +
+ z_;'”=so+l yj(XgA,'(x)—Aﬂz))/“Ai n A” [ .

Since each y,,,—74,20 on X\ B,

l9fs—falla 2 Dacanx\m 2ks+1 Vj(XgA;u)—XA,-(z))/“Aj nAlf.

Therefore
l9fs—Fulla Z 2eseer vi lgd; N 4y) 0 AllfI|4; 0 Al

because each g4;\ 4;< X \ B. Similarly
9= a=Falla = 2oega l9fa—F.l(2)
2 Drcodn(x\B) Djmsgt1 Yilko s — Laj)/|14; 0 A
= st VillgA;\ 4;) ngA||[Il4; n A]|
= Dt er1 Vill(4;N\g74;) n AJ|/l4; 0 A]|.
Choose g¢,,...,9, € G and £¢>0. Let « be large enough so that
e > 230 lgefa—Fllat 19Tl -

Then by the estimates above,
€ > 2}"=so+1 Vi E?ﬂ (“(giAjAAj) nAf+(g;24;44;) n A4, n A .
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Since 37, 17;=1, there exists K =A4; for some j=s,+1,. . .,m such that

e > 27 (g:KAK) n A+ (g, KAK) n A|)/IK n A]| .
Certainly then for all =1,...,n we have
lg:KAK)n A|l[IKn 4|l < &.

4.8 LEMMA. Let (B, 1) be a locally convex linear topological space. Let G
be a set of linear mappings of K. Let C < E be a convex set. Then there exists
a net {e,}<C such that e,—ge, —~ 0 weakly for all g€ G if and only if
there exists a met {d,}<C such that d,—gd, — 0 in the t-topology.

REMARK. No continuity assumption is made on the set G.

Proor. Let F=(E,7)%=1]y(E,v) with the locally convex product
topology. Define T': E —~ F by T'(e)(g) =e —ge. Then T is a linear mapping
and T(C) is a convex set in F. There exists a net {e,}<C such that
e,—ge, —~ 0 weakly for all ge G if and only if there exists a net
{T'(e,)}=T(C) such that T'(e,) — 0 in the product of the weak topologies.
Since F is given the product topology, the product of the weak topologies
is the weak topology for F by 0.3. Thus if there exists a net {¢,}<C
such that e, —ge, -~ 0 weakly for all g € G, then T'(e,) - 0 weakly. Since
T(C) is convex in the locally convex space F' and 0 is in the weak-closure
of T'(C), 0 is in the product topology closure by 0.2. But then there exists
a net {d }=C such that T(d,) >0 in the product topology, that is
d,—gd, - 0 in the z-topology for all g € G. This is one direction of the
lemma; the other is immediate since the 7-topology is stronger than
the weak topology.

4.9 TeROREM. If there exists an invariant for (G,X,A) then the Folner
condition relative to A holds.

Proor. If there exists an invariant for (G,X,4) then by Theorem 3.3,

part 3, there exists a net of finite sequences {F,} in X such that for all
g€ G and H € B/ (X),

(zzeFa H(x) —zerf’, gH(x))/”Fa nA4j—0.

Let f,=||F,n A||"xp,. Then f,e F 4 and (f,,H—gH) — 0 for all ge @
and H € B(X). Since

ful—-gH) = {fi—97fuH),
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f.—kf, — 0 pointwise on B ,(X) for all k € G. Give 1,(X) the topology t
induced by ||-||. It is easy to see that

(LX), 1) g)* = B 4«X) .

First, because (I,(X),||*|l4) = (}(4), ] |,)®N where N is the |-|| ,-closure
of 0,

(XD 1 La)* = (Gl M- M) -

Second, (I,(4),]*]l})*=1x(A4) =B 4(X). Thus, we have a net {f,} in the
convex set & ,<[,(X) such that when /,(X) is given the locally convex
topology , f,—gf, — 0 weakly for all g € G. But then Lemma 4.8 implies
that there is a net {4} in & , such that ||h,—gh||, - O for all g€ G.
Lemma 4.7 shows that the Fglner condition relative to 4 holds.

4.10 THEOREM. Given (G,X,A) the following are equivalent:
1) There exists an invariant for (@, X, A).
2) There exists a net {F .} of finite sets in X such that for all g € G and
H e B (X)),
(Soer, H@) = Sep, gH@)/IF, 0 Al > 0.

3) There exists a net {f,}<F , such that

Wfa=gfully >0 forallge@.
4) There exists a Folner net relative to 4.

Proor. We saw in 3.3 and 4.9 that 2) gives 1) and 4). The proof of
Theorem 4.9 showed that 2) implies 3). Lemma 4.7 wag 3) implies 4).
If {F,} is a Folner net relative to 4 then it will satisfy 2).

4.11 CoroLLARY. If G ts an amenable group then there exists an inva-
rtant for (@, X, A) if and only if the ratio property without repetitions holds.

Proor. Theorem 4.10 1) implies 4) and Remark 4.2 prove the only if
part. The if part is Theorem 2.3.

5. The measurable invariant.

Many of the results of the preceding sections can be restated in the
case that (X,8,v) is a measure space and G is a group of measurable
transformations of X. We assume here that v is G-invariant in the sense
that v(gE)=v(E) for all g€ @ and E € 8. Given a subset of 4 € 8 with
v(4) >0 we say M € is A-bounded if and only if there exists g,,. . .,9, € G
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such that M <U?_,g,4 locally a.e. [v]. We let B,(X,v) denote the func-
tions f € L(X,v) such that suppfis 4-bounded. This is well-defined even
though suppf is defined only locally a.e. [v]. G acts linearly on B ,(X,v)
by gf(x)=f(g~x) for all g € G, f € B,(X,v), and z € X. We say there exists
an snvariant for (@,X,A4) in the above context if and only if there exists
a positive G-invariant linear functional ¢ on B,(X,v) such that
{px0=1.

In the case that G is a group acting on a set X, 8 is all subsets of X,
and v is counting measure, this is the problem we have been considering.
The following propositions can be shown by techniques similar to the
ones we have already used and are stated without proof.

5.1 ProrosITION. There exists an tnvariant for (G,X,A) if and only if
there exists a positive G-invariant finstely-additive measure u on all subsets
of X such that u(4A)=1 and u(M)=u(N) whenever yp = xn locally a.e. [v].

Let S denote the span of {y,,: g € G} in B (X,v). Let & denote the
functions f € L,*(X,v) such that »(supp(f)) < oo and f takes a finite num-
ber of real values locally a.e. [v]. Let

Fa={feF: \ufdv=1}
and

F(Z+) = {fe F : locally a.e. [v] f takes values in Z+}.

5.2 PROPOSITION. The following are equivalent:
1) There exists a positive G-invariant linear functional ¢ on S, such

that {p,x 4> =1.
2) Forallg,,...,9,€G and a,,...,a,€R, 37 ,0;%,.420 locally a.e. [v]
smplies 37 _,a,=0.
3) There exists a net {f,}<F such that for all g€ @

SaAfad”/ SAf W - 1.

5.3 CoROLLARY. If G is amenable there exists an tnvariant for (G,X,A)
sf and only if there exists a net {f,} <F such that for all g € @

SaAfad”/SAfad” 1.

5.4 THEOREM. There exists an invariant for (@,X,A) if and only if
there exists a net {f,} =F such that for all g € G and H € B (X,v)

o H—gH)[{fur 22> > 0.

Remark. In 5.2-5.4, #(Z+) can replace &#. & (Z+) is the measure-
theoretic version of the set of finite sequences.
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5.5 THEOREM. Let ||f|l,=(4If|dv for all fe L,(X,v). Assume that
(Ly(X), 1" IL)* = B 4(X,v). Then the following are equivalent:

1) There exists an tnvariant for (G, X, A4).

2) There exists a net {f,}<F , such that for all g G

”fa—gfa“A -0.
3) There exists a net {F,} of finite measure sets in X such that for all g € G

o((F,AgF,)n A)v(F,nA4) 0.

REMARK. 3) is equivalent to 2) and implies 1) with no restrictions on
(Ly(X), |+ 1l4)- It would also suffice to assume that L(4,8|4,v]|4)* = Ly(A4)
where |4 is {Bn4: B e f} and v|A(B)=v(BnA) for all B e . That is,
it is enough to assume (A4,5|4,v|4) is localizable.

5.6 COrROLLARY. If G is amenable then there exists an invariant for
(G,X,A) if and only if there exists a net {F,} of finite measure sets such
that for all g € G,

v(F,ngd)v(F,nA)~>1.

AckKNOWLEGDEMENT. This paper is based on part of the author’s dis-
sertation done at the University of Washington, Seattle under the super-
vision of Isaac Namioka.

REFERENCES
1. M. Day, Semigroups and amenability, Semigroups, Ed. K. Folley, Academic Press,
New York, 1969, 5-53.

2. J. Dixmier, Les moyennes tnvariants dans les semi-groupes et leur applications, Acta.
Sci. Math. (Szeged), 12 (1950), 213-227.

3. E. Feolner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.

4. F. P. Greenleaf, Invariant Means on Topological Groups and their Applications, (Van
Nostrand Mathematical Studies 16) Van Nostrand, New York, 1969.

5. J. Kelley, General Topology, Van Nostrand, New York, 1955.

6. J.Kelley and I. Namioka et al., Linear Topological Vector Spaces, Van Nostrand, New
York, 1963.

7. I. Namioka, Folner’s conditions for amenable semigroups, Math. Scand. 15 (1964),
18-28.

8. J. Rosenblatt, Invariant measures and growth conditions, Trans. Amer. Math. Soc. to
appear.

9. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
10. J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73—-116.

UNIVERSITY OF BRITISH COLUMBIA,!
VANCOUVER B.C. CANADA



