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THE THEOREMS
OF F. AND M. RIESZ FOR CIRCULAR SETS

FRANK FORELLI

1. Introduction.

1.1. Let V be a vector space over C of complex dimension » with an
inner product. We will denote (as is usual) by T the class of all zin C
such that 2z=1.

Let X<V be bounded, +0, and locally compact. (We define the
topology of X by means of the metric that is associated with the inner
product of V.) Thus X — X is closed. Furthermore let X be such that if
(2,2) e Tx X, then zx € X.

If A is a topological space, then we will denote (as is usual) by C(4)
the class of all continuous functions f: 4 -~ C and we will denote by Cy(4)
the class of all functions in C(4) that vanish at infinity. If 4 is a locally
compact Hausdorff space, then we will denote by M, (4) the class of
all Radon measures on A. Thus if x € M (4) and E <A, then u(#)=0.
We will denote by M(A) the complex linear span of those u in M (4)
for which u(A4)<oce. (Thus if A is compact, then M(A) is the complex
linear span of M (4).)

Let 0 € M(X), ¢+ 0. Furthermore let o be such thatif ze T and F <X,
then o(zE)=0(H).

We will denote by H(c) the w(M(X),Cy(X)) closure of the class of all
measures in M(X) of the form go where ¢ is in the polynomial ring
Cly: x € V*]. Thus if y e H(o), if F<Cy(X) is finite, and if £¢>0, then
there is a polynomial ¢ in C[y: ¥ € V*] such that

I$fdu—Sfgdo| < &

for every f in F.

If % is a positive integer, then we will denote by H, the class of all
members of the polynomial ring C[y: y € V*] that are homogeneous of
degree k. There is the following property which may or may not hold.

L1.1. If fe UX  H, and if fo+0, then o<fo.
The purpose of this paper is to prove the following two theorems.
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1.2. TEEOREM. If u € H(o) and if € >0, then there is a polynomial g tn
Cly: x € V*] such that ||u—go|| <e. Thus if u € H(o), then u<o.

1.3. THEOREM. Let the property 1.1.1 hold. If ue H(o) and sf u+0,
then o<u.

1.4. With regard to Theorem 1.2 we refer to [1], [4], and [6, Chapter 3].

1.5. If z and y are in V, then we will denote by (z,y) the inner product
of z and y. If x € [0, ), then we will denote by H* the Hausdorff measure
on X of dimension x. (We define H* by means of the metric that is
associated with the inner product of V. Thus if ze T and E<X, then
H*zE)=H%E).) With regard to 1.1, 1.2, and 1.3 we cite the following
example. Let

X={x:zeV,{(rz)y=1}

and let o= H?2*-1, Furthermore let

Y={y: yeV.{y,yp<1}.
We recall that the Poisson kernel of Y is the function : X x ¥ — (0, c0)
defined by
Ba,y) = [(1—<y,9))/(1— <z, 1)) (1 =<y, 2))]" .
We recall that if A and B are sets, if f is a function defined on the Carte-
sian product A4 x B, and if (s,t) € A x B, then f, and f! are the functions
defined on B and A respectively by f,(b)=f(s,b) and fi(a)=f(a,t). If
u € M(X), then for the purpose of this example we define u¥: ¥ — C by
1) = {Brdp .

Thus u* € 0°(Y). We will denote (as is usual) by D the class of all z
in C such that 2Z< 1. We recall the following fact of the theory of the
Poisson integral. If (z,f,u) € D x C(X) x M(X) and if z - 1, then

§f(@)ut(ex)do(z) - (fdu ,
thus if u* is holomorphic, then u € H(o).

2. On the theory of flows.

2.1. If 4, B, and N are sets, if p: 4 — B, and if y: 24 - N, then we
define @*(u): 28 -~ N by

¢*(p)E) = p({a: a€ 4, p(a) € E}).
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With regard to this definition we recall the following fact of measure
theory [2, page 72].

2.2. ProrosiTioN. If A and B are compact Hausdorff spaces, if
¢: A — B 1s continuous, and if ue M (A), then p*(u) € M (B). Thus if
neM(A), then p*(u) € M(B).

2.3. With regard to Proposition 2.2 we remark that if f € C(B), then

§fdp*() = (fopdp .

The following proposition (whose proof we omit) follows from Proposi-
tion 2.2.

2.4. ProproSITION. If A and B are locally compact Hausdorff spaces, if
¢: A — Bis continuous, if u € M (A), and if u(A) < oo, then p*(u) € M (B).
Thus if p e M(A), then ¢*(u) € M(B).

2.5. We recall that H*(R) is the class of all functions f in L*(R) such
that

SIm[l/(t—z)]f(t)dt

is holomorphic on {z:zeC,Im(2)>0}. Let (R,S8,7) be a topological
transformation group. (Thus by definition S is a locally compact Haus-
dorff space, T': R x § — 8, etc.) For the purpose of the proof of Theorem
1.2 we recall the following fact of the theory of flows [3, Theorem 4].

2.6. THEOREM. Let u € M(8S) and define f: R — M(S) by f(t)=(Ty)*(x).
If
Sgo T=du(z) € H*(R)

Sor every g in Cy(S), then f is continuous with respect to the norm topology

of M(S).

2.7. For the purpose of the proof of Theorem 1.3 we recall the follow-
ing fact of the theory of flows [3, Theorem 3].

2.8. THEOREM. Let u € M(S) and let E<S be of |u| measure 0. If
{goT=du(x) e H*(R)
Jor every g in Cy(S), then u(T(E))=0 for every t in R.
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3. The proof of Theorem 1.2.

3.1. We define Z: Tx X - X by Z(z,x2)=zx. Thus (T,X,Z) is a topo-
logical transformation group. We will denote by 7 the Lebesgue measure
on T such that z(T)=1. Thus if fe C(T), then

(fdv = (2r)2 (F"f(et) dt
We recall that if f € O(T), then f: Z - C is defined by
fie) = §2@)d() .
Furthermore we recall that A(T) is the class of all f in C(T) such that
fk)=0if E<o0.

3.2. ProrositioN. If u € H(o), if f € Cy(X), and if g in C(T) s defined
by
g = {foZrdu),
then g € A(T).

Proor. Let k € Z, let f¥ in Oy(X) be defined by

[t = (foZ,2kdx(z),
let ¢>0, and let A in C[y: y € V*] be such that

(8.1) I$f¥du—fFhdo| < ¢.
We have
(3.2) 9(—k) = Sz"[SfoZ duldz(z) = Sf“d,u

= ({\ffdu—\f*hdo)+\f*hdo .
Furthermore if z € T, then

(foZ,hdo = \fzZx)h(x)do(x) = (f(x)h(zx)do(x) ,
hence
§f¥hdo = ([{f(x)h(zx)do(x)]*d(2) ,

hence if h=c+3;.,k; where ¢ € C and h; € H;, then

(fihdo = (f@)[§(c+ Djzq by(x)2))2*dr(2)]do(x)
= {f(2) S(Cz"+27g1 hi(x)27+¥)d7(z)]do(x) .
Thus if k>0, then
(3.3) (f¥hdo =0,

hence by (3.1), (3.2), and (3.3) we have |§(—k)| <& which completes the
proof of Proposition 3.2.
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3.3. ProrosITION. Let pue M(X) and define f: T+ M(X) by f(z)=
(Z,)*(u). (We refer to section 2.1 for the definition of (Z,)*.) If ue H(o),
then f is continuous with respect to the norm topology of M(X).

Proor. If we define 7': R x X — X by T'(¢,x) =e*xz, then Proposition
3.3 follows from Proposition 3.2 and Theorem 2.6.

3.4. If A is a vector space, then we will denote (as is usual) by A’ the
class of all linear functionals on A.

3.5. PROPOSITION. Let A be a vector space over C, let N be a subspace
of A, and let B be a subspace of A'. If N s of finite dimension and if B
distinguishes points of A, then N is w(A,B) closed.

Proor. Since B distinguishes points of A4, the subspace of 4 of dimen-
sion 0 is w(4, B) closed. We assume that Proposition 3.5 holds for every
subspace of 4 of dimension m, and we let N be of dimension m+1.
Let {z,,...,2,.,} be a basis of N. If 1 <k<m+1, then by the induction
hypothesis and [5, Corollary 14.4] there is an «* in B such that a*(x;)=
0. Let y € A and let

xr = Zm+1

If y + 2, then since B distinguishes points of A there is a § in B such that
Bly) +Blx). It
y = IS—ZZ:}] ﬂ(xk)o‘k )
;) = B(x;) — 2R B0k = 0,
hence y =0 on N. Furthermore
YY) = By) = 20T Bl)ok(y) = Bly)— =) + 0
which completes the proof of Proposition 3.5.

then

3.6. ProrosITION. Let p€ M(X) and let f in C(T) be a trigonometric
polynomial. If u € H(o), then

Z*(frxp) = (FO)c+ Diar F(— K)gi)o

where ¢ € C and ¢, € H,,.

Proor. Let g e Cly: y € V*]. If (2,h) € Tx Cy(X), then (as before)

(hoZ,gdo = (h(zx)g(x)do(x) = (h(z)g(zx)do(z) ,
hence
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$hd(Z*(fr x go)) = ([ h(x)g(2x)do()]f(2)
hence if g=c+3,.,9, where c e C and g, € H;, then

(hd(Z*(fr x go)) = Sh(x [§ (¢ + Zkz1 9u(@)2%)f(2) d2(2)] do(x)
= Sh O)C+Zk21f k)gy)do ,
hence

(3.4) Z*(frx go) = (F(0)c+ Dpar f(—E)gi)o

For the purpose of the proof of Proposition 3.6 we will denote by N
the class of all measures in M(X) of the form Z*(frxgs) where
gcC[y: x€ V*]. Since the vector space H, is of finite dimension
(=(@*E-1), it follows from the identity (3.4) that the vector space N is
of finite dimension.

If h e Cy(X), then for the purpose of the proof of Proposition 3.6 we
define A¥ in Cy(X) by

B = §hoZ,f(z)dr(z)

If >0 and if F<Cy(X) is finite, then there is a g in C[y: y € V*] such
that
(3.5) I§h¥du—(h¥gdo| < &

for every h in F. If h e C((X), then
$hd(Z*(fr x u)) — Shd(Z*(fr x go))

= {[§hoZ,f(z)dr(2)dp —§ [§ ho Z,f(z)d(2)lgdo
= (h¥du—htgdo,

hence if & € F, then by (3.5)
[Shd(Z*(fr x p)) — Shd(Z*(fr x go))| < €.

Thus Z*(fr x u) is in the w(M(X),Cy(X)) closure of N, hence by Propo-
sition 3.5 Z*(frx u) € N. Thus there is a polynomial ¢ in C[y: y € V¥]
such that

Z*(frx p) = Z*(frxgo)

which by means of (3.4) completes the proof of Proposition 3.6.

3.7. We will now prove Theorem 1.2. If (4,9) € M(T) x C(o(X) and if
A(T)=1, then

Sgd(Z*(Ax p)—p) = §[§9d((Z,)* (1) —p)1dAR) ,

1Z*(2 > p) = pll = §1(Ze)* (1) - mlldIAI(2) -

hence
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Thus by Proposition 3.3 there is a trigonometric polynomial f such that

1Z*(frxp) —pll < &

which by means of Proposition 3.6 completes the proof of Theorem 1.2.

4. The proof of Theorem 1.3.

4.1. PROPOSITION. Let ue M(X) and let E<X be of |u| measure 0.
If ue H(o), then u(zB)=0 for every z in T.

Proor. If (as before) we define 7: Rx X — X by T'(t,x)=e~"z, then
Proposition 4.1 follows from Proposition 3.2 and Theorem 2.8.

4.2. We will now prove Theorem 1.3. If (4,f) € M(T) x Cy(X) and if ¢
in O(T) is defined by
g = {foZ=du(x)

§FA(Z*Ax p) = Sgdi.

If {fdu+0, then g=0 and hence §=0. Thus since =0 there is a j in Z
such that if e is the trigonometric polynomial defined by e(z)=2z/, then
Z*(er x u)+0. By Proposition 3.6 we have

then

(4.1) Z*(eTrx u) = go

where g e CUUL_  H,,. Let EcX be a Borel set of |u| measure 0. If
F cE, then by Proposition 4.1 u(zF)=0 for every z in T, hence if F is
a Borel set and if f is the characteristic function of F, then by (4.1)

§{pgdo = (fd(Z*(er x u))
= {[{/@Ex)du(@)]e(z)d(z) = 0,
hence
{zlgldlo| = 0,

hence by property 1.1.1 |o|(#) =0 which completes the proof of Theorem
1.3.
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