THE THEOREMS OF F. AND M. RIESZ FOR CIRCULAR SETS

FRANK FORELLI

1. Introduction.

1.1. Let V be a vector space over C of complex dimension n with an inner product. We will denote (as is usual) by T the class of all z in C such that $z\bar{z}=1$.

Let $X \subset V$ be bounded, $\neq \emptyset$, and locally compact. (We define the topology of X by means of the metric that is associated with the inner product of V.) Thus $\overline{X} - X$ is closed. Furthermore let X be such that if $(z,x) \in T \times X$, then $zx \in X$.

If A is a topological space, then we will denote (as is usual) by C(A) the class of all continuous functions $f\colon A\to \mathbb{C}$ and we will denote by $C_0(A)$ the class of all functions in C(A) that vanish at infinity. If A is a locally compact Hausdorff space, then we will denote by $M_+(A)$ the class of all Radon measures on A. Thus if $\mu\in M_+(A)$ and $E\subseteq A$, then $\mu(E)\geq 0$. We will denote by M(A) the complex linear span of those μ in $M_+(A)$ for which $\mu(A)<\infty$. (Thus if A is compact, then M(A) is the complex linear span of $M_+(A)$.)

Let $\sigma \in M(X)$, $\sigma \neq 0$. Furthermore let σ be such that if $z \in T$ and $E \subseteq X$, then $\sigma(zE) = \sigma(E)$.

We will denote by $H(\sigma)$ the $w(M(X), C_0(X))$ closure of the class of all measures in M(X) of the form $g\sigma$ where g is in the polynomial ring $C[\chi:\chi\in V^*]$. Thus if $\mu\in H(\sigma)$, if $F\subset C_0(X)$ is finite, and if $\varepsilon>0$, then there is a polynomial g in $C[\chi:\chi\in V^*]$ such that

$$|\int f d\mu - \int f g d\sigma| < \varepsilon$$

for every f in F.

If k is a positive integer, then we will denote by H_k the class of all members of the polynomial ring $C[\chi:\chi\in V^*]$ that are homogeneous of degree k. There is the following property which may or may not hold.

1.1.1. If $f \in \bigcup_{k=1}^{\infty} H_k$ and if $f \sigma \neq 0$, then $\sigma \ll f \sigma$.

The purpose of this paper is to prove the following two theorems.

Received January 15, 1973.

- 1.2. THEOREM. If $\mu \in H(\sigma)$ and if $\varepsilon > 0$, then there is a polynomial g in $\mathbb{C}[\chi : \chi \in V^*]$ such that $||\mu g\sigma|| < \varepsilon$. Thus if $\mu \in H(\sigma)$, then $\mu \ll \sigma$.
- 1.3. THEOREM. Let the property 1.1.1 hold. If $\mu \in H(\sigma)$ and if $\mu \neq 0$, then $\sigma \ll \mu$.
 - 1.4. With regard to Theorem 1.2 we refer to [1], [4], and [6, Chapter 3].
- 1.5. If x and y are in V, then we will denote by $\langle x,y\rangle$ the inner product of x and y. If $\alpha \in [0,\infty)$, then we will denote by H^{α} the Hausdorff measure on X of dimension α . (We define H^{α} by means of the metric that is associated with the inner product of V. Thus if $z \in T$ and $E \subset X$, then $H^{\alpha}(zE) = H^{\alpha}(E)$.) With regard to 1.1, 1.2, and 1.3 we cite the following example. Let

$$X = \{x : x \in V, \langle x, x \rangle = 1\}$$

and let $\sigma = H^{2n-1}$. Furthermore let

$$Y = \{y: y \in V, \langle y, y \rangle < 1\}.$$

We recall that the Poisson kernel of Y is the function $\beta: X \times Y \to (0, \infty)$ defined by

$$\beta(x,y) \, = \, [(1-\langle y,y\rangle)/(1-\langle x,y\rangle)(1-\langle y,\pmb{x}\rangle)]^n \; .$$

We recall that if A and B are sets, if f is a function defined on the Cartesian product $A \times B$, and if $(s,t) \in A \times B$, then f_s and f^t are the functions defined on B and A respectively by $f_s(b) = f(s,b)$ and $f^t(a) = f(a,t)$. If $\mu \in M(X)$, then for the purpose of this example we define $\mu^{\sharp} \colon Y \to C$ by

$$\mu^{\sharp}(y) = \int \beta^{y} d\mu .$$

Thus $\mu^{\sharp} \in C^{\infty}(Y)$. We will denote (as is usual) by D the class of all z in C such that $z\bar{z} < 1$. We recall the following fact of the theory of the Poisson integral. If $(z, f, \mu) \in D \times C(X) \times M(X)$ and if $z \to 1$, then

$$\int f(x)\mu^{\sharp}(zx)d\sigma(x) \to \int fd\mu$$
,

thus if μ^{\sharp} is holomorphic, then $\mu \in H(\sigma)$.

2. On the theory of flows.

2.1. If A, B, and N are sets, if $\varphi: A \to B$, and if $\mu: 2^A \to N$, then we define $\varphi^*(\mu): 2^B \to N$ by

$$\varphi^*(\mu)(E) = \mu(\{a: a \in A, \varphi(a) \in E\}).$$

With regard to this definition we recall the following fact of measure theory [2, page 72].

- 2.2. PROPOSITION. If A and B are compact Hausdorff spaces, if $\varphi: A \to B$ is continuous, and if $\mu \in M_+(A)$, then $\varphi^*(\mu) \in M_+(B)$. Thus if $\mu \in M(A)$, then $\varphi^*(\mu) \in M(B)$.
 - 2.3. With regard to Proposition 2.2 we remark that if $f \in C(B)$, then

$$\int f d\varphi^*(\mu) = \int f \circ \varphi d\mu$$
.

The following proposition (whose proof we omit) follows from Proposition 2.2.

- 2.4. PROPOSITION. If A and B are locally compact Hausdorff spaces, if $\varphi: A \to B$ is continuous, if $\mu \in M_+(A)$, and if $\mu(A) < \infty$, then $\varphi^*(\mu) \in M_+(B)$. Thus if $\mu \in M(A)$, then $\varphi^*(\mu) \in M(B)$.
- 2.5. We recall that $H^{\infty}(\mathbb{R})$ is the class of all functions f in $L^{\infty}(\mathbb{R})$ such that

$$\int \operatorname{Im}\left[1/(t-z)\right]f(t)\,dt$$

is holomorphic on $\{z: z \in C, \operatorname{Im}(z) > 0\}$. Let (R, S, T) be a topological transformation group. (Thus by definition S is a locally compact Hausdorff space, $T: R \times S \to S$, etc.) For the purpose of the proof of Theorem 1.2 we recall the following fact of the theory of flows [3, Theorem 4].

2.6. Theorem. Let $\mu \in M(S)$ and define $f: \mathbb{R} \to M(S)$ by $f(t) = (T_t)^*(\mu)$. If

$$\int g \circ T^x d\mu(x) \in H^\infty(\mathsf{R})$$

for every g in $C_0(S)$, then f is continuous with respect to the norm topology of M(S).

- 2.7. For the purpose of the proof of Theorem 1.3 we recall the following fact of the theory of flows [3, Theorem 3].
 - 2.8. THEOREM. Let $\mu \in M(S)$ and let $E \subseteq S$ be of $|\mu|$ measure 0. If $\int g \circ T^x d\mu(x) \in H^{\infty}(\mathbb{R})$

for every g in $C_0(S)$, then $\mu(T_i(E)) = 0$ for every t in R.

3. The proof of Theorem 1.2.

3.1. We define $Z: T \times X \to X$ by $Z(z,x) = \bar{z}x$. Thus (T,X,Z) is a topological transformation group. We will denote by τ the Lebesgue measure on T such that $\tau(T) = 1$. Thus if $f \in C(T)$, then

$$\int f d\tau = (2\pi)^{-1} \int_0^{2\pi} f(e^{it}) dt$$
.

We recall that if $f \in C(T)$, then $\hat{f}: Z \to C$ is defined by

$$\hat{f}(k) = \int \bar{z}^k f(z) d\tau(z) .$$

Furthermore we recall that A(T) is the class of all f in C(T) such that $\hat{f}(k) = 0$ if k < 0.

3.2. Proposition. If $\mu \in H(\sigma)$, if $f \in C_0(X)$, and if g in C(T) is defined by

$$g = \int f \circ Z^x d\mu(x) ,$$

then $g \in A(\mathsf{T})$.

PROOF. Let $k \in \mathbb{Z}$, let f^{\sharp} in $C_0(X)$ be defined by

$$f^{\sharp} = \int f \circ Z_z z^k d\tau(z) ,$$

let $\varepsilon > 0$, and let h in $C[\chi : \chi \in V^*]$ be such that

$$|\int f^{\sharp} d\mu - \int f^{\sharp} h \, d\sigma| < \varepsilon.$$

We have

(3.2)
$$\hat{g}(-k) = \int z^k [\int f \circ Z_z d\mu] d\tau(z) = \int f^* d\mu$$
$$= (\int f^* d\mu - \int f^* h d\sigma) + \int f^* h d\sigma.$$

Furthermore if $z \in T$, then

$$\int \!\! f \circ Z_z h \, d\sigma \, = \, \int \!\! f(\bar{z}x) h(x) \, d\sigma(x) \, = \, \int \!\! f(x) h(zx) \, d\sigma(x) \, \, ,$$

hence

$$\int f^* h d\sigma = \int [\int f(x)h(zx) d\sigma(x)] z^k d\tau(z) ,$$

hence if $h = c + \sum_{j \ge 1} h_j$ where $c \in C$ and $h_j \in H_j$, then

$$\int f^{\sharp} h d\sigma = \int f(x) \left[\int (c + \sum_{j \ge 1} h_j(x) z^j) z^k d\tau(z) \right] d\sigma(x)
= \int f(x) \left[\int (c z^k + \sum_{j \ge 1} h_j(x) z^{j+k}) d\tau(z) \right] d\sigma(x) .$$

Thus if k > 0, then

hence by (3.1), (3.2), and (3.3) we have $|\hat{g}(-k)| < \varepsilon$ which completes the proof of Proposition 3.2.

3.3. PROPOSITION. Let $\mu \in M(X)$ and define $f: T \to M(X)$ by $f(z) = (Z_z)^*(\mu)$. (We refer to section 2.1 for the definition of $(Z_z)^*$.) If $\mu \in H(\sigma)$, then f is continuous with respect to the norm topology of M(X).

PROOF. If we define $T: \mathbb{R} \times X \to X$ by $T(t,x) = e^{-it}x$, then Proposition 3.3 follows from Proposition 3.2 and Theorem 2.6.

- 3.4. If A is a vector space, then we will denote (as is usual) by A' the class of all linear functionals on A.
- 3.5. PROPOSITION. Let A be a vector space over C, let N be a subspace of A, and let B be a subspace of A'. If N is of finite dimension and if B distinguishes points of A, then N is w(A,B) closed.

PROOF. Since B distinguishes points of A, the subspace of A of dimension 0 is w(A,B) closed. We assume that Proposition 3.5 holds for every subspace of A of dimension m, and we let N be of dimension m+1. Let $\{x_1,\ldots,x_{m+1}\}$ be a basis of N. If $1 \le k \le m+1$, then by the induction hypothesis and [5, Corollary 14.4] there is an α^k in B such that $\alpha^k(x_j) = \delta_j^k$. Let $y \in A$ and let

$$x = \sum_{k=1}^{m+1} \alpha^k(y) x_k.$$

If $y \neq x$, then since B distinguishes points of A there is a β in B such that $\beta(y) \neq \beta(x)$. If

$$\gamma = \beta - \sum_{k=1}^{m+1} \beta(x_k) \alpha^k ,$$

then

$$\gamma(x_i) = \beta(x_i) - \sum_{k=1}^{m+1} \beta(x_k) \delta_i^{\ k} = 0$$

hence $\gamma = 0$ on N. Furthermore

$$\gamma(y) = \beta(y) - \sum_{k=1}^{m+1} \beta(x_k) \alpha^k(y) = \beta(y) - \beta(x) \neq 0$$

which completes the proof of Proposition 3.5.

3.6. PROPOSITION. Let $\mu \in M(X)$ and let f in C(T) be a trigonometric polynomial. If $\mu \in H(\sigma)$, then

$$Z^*(f\tau \times \mu) = (\hat{f}(0)c + \sum_{k \ge 1} \hat{f}(-k)g_k)\sigma$$

where $c \in C$ and $g_k \in H_k$.

PROOF. Let $g \in C[\chi : \chi \in V^*]$. If $(z,h) \in T \times C_0(X)$, then (as before)

$$\int h \circ Z_z g \, d\sigma = \int h(\bar{z}x)g(x) \, d\sigma(x) = \int h(x)g(zx) \, d\sigma(x) ,$$

hence

$$\int h d(Z^*(f\tau \times g\sigma)) = \int [\int h(x)g(zx)d\sigma(x)]f(z)d\tau(z) ,$$

hence if $g = c + \sum_{k \ge 1} g_k$ where $c \in C$ and $g_k \in H_k$, then

$$\begin{split} \int h \, d \big(Z^*(f\tau \times g\sigma) \big) &= \int h(x) [\int (c + \sum_{k \ge 1} g_k(x) z^k) f(z) \, d\tau(z)] \, d\sigma(x) \\ &= \int h \big(\hat{f}(0) c + \sum_{k \ge 1} \hat{f}(-k) g_k \big) \, d\sigma \;, \end{split}$$

hence

$$Z^*(f\tau \times g\sigma) \,=\, \left(\hat{f}(0)c + \sum_{k\geq 1}\hat{f}(-k)g_k\right)\sigma\;.$$

For the purpose of the proof of Proposition 3.6 we will denote by N the class of all measures in M(X) of the form $Z^*(f_{\tau} \times g_{\sigma})$ where $g \in \mathbb{C}[\chi \colon \chi \in V^*]$. Since the vector space H_k is of finite dimension $\left(=\binom{n+k-1}{n-1}\right)$, it follows from the identity (3.4) that the vector space N is of finite dimension.

If $h \in C_0(X)$, then for the purpose of the proof of Proposition 3.6 we define h^{\sharp} in $C_0(X)$ by

$$h^{\sharp} = \int h \circ Z_z f(z) d\tau(z) .$$

If $\varepsilon > 0$ and if $F \subset C_0(X)$ is finite, then there is a g in $C[\chi : \chi \in V^*]$ such that

$$|\int h^{\sharp} d\mu - \int h^{\sharp} g \, d\sigma| < \varepsilon$$

for every h in F. If $h \in C_0(X)$, then

$$\begin{split} \int h \, d \big(Z^*(f\tau \times \mu) \big) - \int h \, d \big(Z^*(f\tau \times g\sigma) \big) \\ &= \int [\int h \circ Z_z f(z) \, d\tau(z)] \, d\mu - \int [\int h \circ Z_z f(z) \, d\tau(z)] g \, d\sigma \\ &= \int h^\# d\mu - \int h^\# g \, d\sigma \;, \end{split}$$

hence if $h \in F$, then by (3.5)

$$|\int h d(Z^*(f\tau \times \mu)) - \int h d(Z^*(f\tau \times g\sigma))| < \varepsilon.$$

Thus $Z^*(f\tau \times \mu)$ is in the $w(M(X), C_0(X))$ closure of N, hence by Proposition 3.5 $Z^*(f\tau \times \mu) \in N$. Thus there is a polynomial g in $C[\chi: \chi \in V^*]$ such that

$$Z^*(f\tau \times \mu) = Z^*(f\tau \times g\sigma)$$

which by means of (3.4) completes the proof of Proposition 3.6.

3.7. We will now prove Theorem 1.2. If $(\lambda, g) \in M(T) \times C_0(X)$ and if $\lambda(T) = 1$, then

$$\int g d(Z^*(\lambda \times \mu) - \mu) = \int \left[\int g d((Z_z)^*(\mu) - \mu) \right] d\lambda(z) ,$$

hence

$$||Z^*(\lambda \times \mu) - \mu|| \le \int ||(Z_z)^*(\mu) - \mu|| d|\lambda|(z)$$
.

Thus by Proposition 3.3 there is a trigonometric polynomial f such that

$$||Z^*(f\tau \times \mu) - \mu|| < \varepsilon$$

which by means of Proposition 3.6 completes the proof of Theorem 1.2.

4. The proof of Theorem 1.3.

4.1. PROPOSITION. Let $\mu \in M(X)$ and let $E \subseteq X$ be of $|\mu|$ measure 0. If $\mu \in H(\sigma)$, then $\mu(zE) = 0$ for every z in T.

PROOF. If (as before) we define $T: \mathbb{R} \times X \to X$ by $T(t,x) = e^{-it}x$, then Proposition 4.1 follows from Proposition 3.2 and Theorem 2.8.

4.2. We will now prove Theorem 1.3. If $(\lambda, f) \in M(T) \times C_0(X)$ and if g in C(T) is defined by

$$g = \int f \circ Z^x d\mu(x) ,$$

then

$$\int f d(Z^*(\lambda \times \mu)) = \int g d\lambda.$$

If $\int f d\mu \neq 0$, then $g \neq 0$ and hence $\hat{g} \neq 0$. Thus since $\mu \neq 0$ there is a j in \mathbb{Z} such that if e is the trigonometric polynomial defined by $e(z) = \bar{z}^j$, then $Z^*(e\tau \times \mu) \neq 0$. By Proposition 3.6 we have

$$(4.1) Z^*(e\tau \times \mu) = g\sigma$$

where $g \in C \cup \bigcup_{k=1}^{\infty} H_k$. Let $E \subset X$ be a Borel set of $|\mu|$ measure 0. If $F \subset E$, then by Proposition 4.1 $\mu(zF) = 0$ for every z in T, hence if F is a Borel set and if f is the characteristic function of F, then by (4.1)

$$\int_{F} g d\sigma = \int f d(Z^{*}(e\tau \times \mu))$$

$$= \int \left[\int f(\bar{z}x) d\mu(x) \right] e(z) d\tau(z) = 0 ,$$

hence

$$\int_E |g| \, d|\sigma| \, = \, 0 \, \, ,$$

hence by property 1.1.1 $|\sigma|(E) = 0$ which completes the proof of Theorem 1.3.

REFERENCES

- S. Bochner, Classes of holomorphic functions of several variables in circular domains, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 721-723.
- H. Federer, Geometric Measure Theory (Grundlehren Math. Wissensch. 153), Springer-Verlag, Berlin, Heidelberg, New York, 1969.
- 3. F. Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-59.

- L. Gårding and L. Hörmander, Strongly subharmonic functions, Math. Scand. 15 (1964), 93-96.
- J. Kelley and I. Namioka, Linear Topological Spaces, D. Van Nostrand Company Inc., Princeton, 1963.
- 6. W. Rudin, Function Theory in Polydiscs, W. A. Benjamin Inc., New York, 1969.

THE UNIVERSITY OF WISCONSIN, MADISON, U.S.A.