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A THEOREM OF BEURLING-HELSON TYPE

YNGVE DOMAR
Our main result is the following.

THEOREM. Let (w,), n € Z, be a positive sequence such that for some
x>0, >0,
) l+a/n £ w071 £ 1+8n,
ltafn S w0y, S 1+f[n,

Jorevery neZ, . Let f be a continuous and real-valued function on [—mn,x],
not a linear function. For every neZ,, (cy, ,), m € Z, is the sequence of
Fourier coefficients of e. Then

wn—l Eo—ooo Icm,nlwm —> 0, as n —>oo,

If (w,), n € Z, is changed to the constant sequence with values 1, the
theorem is transformed into the theorem of Beurling and Helson [1].
Hence our theorem can be considered as an analogue of theirs. The
assumption (1) is in particular fulfilled when w, =(1+ |n|)*, n € Z, where
«>0. In that case the theorem is due to N. Leblanc [3], who used it to
determine the endomorphisms of the corresponding weighted I'-algebras.
In the cases when (w,) is submultiplicative, similar applications can be
made of our theorem.

Our proof differs from Leblanc’s primarily in the respect that we make
use of P. J. Cohen’s theory of idempotents in group algebras [2], and in
that way we avoid a complicated analysis of certain Lebesgue measur-
able sets on T. The proof uses the lemma below, which might be of
independent interest. The lemma can be considered as a substitute for
Propositions 2.2-2.5 in Leblanc’s paper. The deduction of the theorem
from the lemma is fairly close to Leblanc’s proof of his Proposition 2.1,
but some modifications have been necessary in order to allow a more
general weight sequence (w,,).

Lemma. Let f and (¢p ), meZ, neZ,, be defined as in the theorem.
Furthermore we assume that f has a finite derivative, except in a set of
Lebesgue measure 0. Then

Received December 10, 1972.



140 YNGVE DOMAR

za<m/n<b |cm,n| —>00, a8 m—> oo,

for every a,b € R such that the set {x € [—n,n] | a<f'(x)<b} has positive
Lebesgue measure.

We shall first show how the theorem can be deduced from the lemma.
Initiating an indirect approach, we assume that f satisfies the assump-
tions of the theorem, while for some C' >0, and some subsequence (n;);
of Z,,
@) O 3 o mylom < O,
for every ke Z,.
(1) implies the existence of positive constants ¢ and d such that
(3) im[nl* £ wuw,7t £ |m/n|d, for |m| = |n|, n + 0.
(2) and (3) imply that

(4) Dimizngl [ O, mg] < O

for every ke Z,.

For every ke Z, we form the discrete measure y, on R, defined by
pointmasses c,, ,, at the points m/n,, m € Z. By (4) u; is a bounded
measure. We extend f by the period 2z and obtain

fr(@) = exp(imf(@ng)) = (P dpi(t), xeR.
Let us choose an arbitrary e such that 0<¢<1. By (4)
(5) Sit>e1ldpi(®)] < & §ps e ltldp(t)] < Cee

Hence, decomposing f; by the relation

(@) = s|t|§e—1 + S|t|>e—1 e dpt)
?k(x)'i'ék(x), xeR y

we obtain from (5)
(6) ekl = Ce .

Since ||éllo=1, this implies that
(7) ”;k”oo =< l+0€c .

Now, varying k, we see that the functions 7, are entire functions of
uniformly bounded exponential type and hence (7) and Bernstein’s
theorem show that the functions {7,}, k € Z_,, are uniformly equicontinu-
ous. Since f; = T+ 0y, and since ¢ can be made arbitrarily small, (6)
shows that the functions {#i;}, k¥ € Z,, are uniformly equicontinuous as
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well. Hence the functions on R with values n,f(x/n,) are uniformly
equicontinuous and this implies that f is Lipschitz continuous. Hence f
is absolutely continuous with almost everywhere existing bounded deri-
vative.

By the assumptions of the theorem, f is not identically constant.
Hence there exists an interval [a,b], not containing 0, such that
{ge[—nn]| a<f'(x)<b}
has positive Lebesgue measure. By (2), (3) and (4)

za<m/nk<b |cm, nkl

is uniformly bounded in k. Since this contradicts the assertion of the
lemma, our theorem is proved.

We shall now prove the lemma. Here, too, we give an indirect proof,
assuming that there exist a ¢ >0 and a subsequence (n;)° of Z, such
that

(8) za<m/nk<b Icm,nki é C ’
for every k€ Z,. We shall show that this implies a contradiction, by
proving that it leads to the existence of an idempotent measure on a
certain compact group, this idempotent having properties not consistent
with Cohen’s description of the family of idempotents.

In the proof we use the standard auxiliary function ¢: R — R, defined

by

_ 1=, =t
O =10 . j>1.

The values of its Fourier transform ¢ are given by

p@) = (re“op(t)dt, xeR.

Obviously ¢ € LY(R), and the Fourier inversion formula holds for ¢.

For every de R, ¢>0, ke Z,, we introduce the function ff’d_ cron T,
defined by

(9) o, 1(®@) = Zmez om, npleHmm = d))eim= .
Extending f periodically, we obtain from Parseval’s relation
Fd,e’ (@) = (27)~1 (rexp(iny, J(x—1)) engp(en,t) exp (idn;t) di
= (2n)~! (rexpi(n,f(x —seIn, 1) +sde) p(s) ds

for x e R.
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If f'(x) exists finitely, we have by dominated convergence,

(10) limk»oopd, e x(%) exp( —1n, f(x))
= (2n-1 SRexp(i( —f'(x) +d)ss*1)<}3(s) ds
= (p((d—f’(x))e—l) .

In particular (10) implies, if f'(x)=d,

(11) hmk—»ooﬁd,e,k(x) exp(—inkf(x)) =1.

Let dy,...,d, be different values in Ja,b[, all attained by f’(x), when
z €]—n,n[. We choose ¢>0 so small that all intervals ]d,—¢,d,+¢[ are
contained in Ja,b[ and are disjoint, v=1,2,...,m. Then, by (8) and (9),
for every z,,%,,...,%,, € |—m,a],

S P o k@) S Sacmmp<d 1Omml = €,

and by (11) we can conclude that m < C. Hence only finitely many values
in Ja,b[ are attained by f’(x), and for that reason there exists a value d,
taken in a subset of ]—=,7[ of positive Lebesgue measure. We choose
£,>0 so small that ]Jd—e¢y,d + g <Ja,b[, and consider the family & of
functions Fd' eron T with 0<e<ey, keZ,. By (8) the functions in the
family have uniformly bounded norm in 4(T), and so have the functions
in the family ¢ of all |F;, .2, too. By (11),

limy, , o, | Py, 1(@)2 = 1

for every z in a set B, <T of positive Lebesgue measure. By (10) and
the assumption that f’(z) exists almost everywhere and that f is not
linear, we have

lim

oo limy_ o1 Py, 1(@)]2 = 0

in a subset E,<T of positive Lebesgue measure, and such that E;=
T\ (E,UE,) has zero Lebesgue measure.

The family ¢ can be considered as a norm-bounded family of func-
tions in B(T;), the space of Fourier-Stieltjes transforms on the discrete
circle group. By the compactness of the dual group of T; we can conclude
that B(T,;) contains a function ¢ taking the values 1 on E,, 0 on E,.

Let @ denote the subgroup of T, of all x € T; with = 2ap-2-9, where
p€Z, qge N. Since @ is denumerable, we have that K3+ G has Lebesgue
measure zero. If F; denotes the set of all points = in E, such that
(x+ Q)N E, is finite, 1= 1,2, it is easy to see that F', and F, are Lebesgue
nullsets as well. From this we can conclude the existence of a z,€T
such that z,+ G only contains points where ¢(z)=0 or 1, infinitely many
of each kind. Putting y(x) = ¢(x,+ ), for each z € G, we obtain a Fourier—
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Stieltjes transform on G, only taking the values 0 and 1, each of these
values taken on an infinite set of points.

Each proper subgroup of @ is finite. Hence the coset-ring of G con-
sists of all finite subsets of @ and their complements. By Theorem 3 in
Cohen [2], y is the characteristic function of a member of the coset-ring.

But both %~1(0) and y~!(1) are infinite which gives a contradiction.
Hence the lemma is proved.

If (w,), » € Z, is positive, even and satisfies

l+a/n £ w0t £ 1+e,n1logn,
for sufficiently large positive n, where « > 2, ¢, — 0, as n — oo, then the
conclusion of the theorem still holds. For the left hand inequality shows
that every f, giving a counter-example to the theorem for (w,), has to

be twice continuously differentiable. Since it is not linear, it is a well-
known consequence of van der Corput’s lemma that for some a,b,

linlinfn—xmln‘—”t za<m/n<b Icm,nl >0.

From this the desired contradiction follows, using the right-hand in-
equality. More general results of this type have been announced in
Leibenzon [4], see also Levina [5].
On the other hand, if (w,), » € Z, is positive, even and of growth at
infinity slower than exponential, and satisfying
l1+an-llogn £ w,w;};, a >0,
for large n, then f(z)=¢ cosz, x € [ —n, 7], € > 0, gives for small ¢ a function

f which does not fulfil the conclusion of the theorem. For using the in-
equalities

Il

> [Cm,nl?lr|?m = 271" exp(ne(r+r-t) cos0) df

exp(ne(r+r1), 0<r = oo,

IIA

it is easy to conclude that w, ! 3% |c,, lw, is bounded, as 7 — oo, if ¢
is small in comparison with a. A larger class of counter-examples is given
in Leibenzon [4].

It is an open problem to investigate what happens, when w,w;!,=
1+0(1/n) at infinity. The reason why our method does not work in that
case is that we can not then prove the Lipschitz’ continuity for the

function f in the indirect proof.
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