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A CAUCHY PROBLEM FOR ANALYTIC FUNCTIONALS

BENT BIRKELAND

1. Introduction.

We denote variables in R x C* by (¢,2), t€ R, 2=(2,,. . .,2,) € C*, and
consider a system of N simultaneous linear partial differential equations
in the form

(1.1) Toufot+ 37 | A;0u[oz; = B(t,z)u+f.

We suppose that the coefficient matrices 4; are constant (complex)
and that the entries of B are C*-functions on R x C*, entire analytic as
functions of z for fixed ¢. I is the unit matrix.

It follows from work of F. Tréves [6, pp. 53-58] and J. Persson [4]
that for every continuous function f from R to the space (H'(C"))¥ of
N-tuples of analytic functionals on C”, with f()=0 for ¢ <0, there exists
a unique C'-function « from R to (H'(C"))Y, vanishing for ¢ <0, which
golves (1.1). In fact their results are more general, and include cases
where the 4; are variable, and where the whole situation is considered
locally in a neighbourhood of 0. The justification for studying this some-
what unusual form of Cauchy problems is found in its applications, to
Tréves’ “hyperdifferential operators’” and to new proofs of Holmgren’s
uniqueness theorem. For these applications it may be of some interest
to obtain as precise information as possible about the regularity prop-
erties and particularly about the size and shape of possible carriers of the
solutions. This seems difficult to obtain with the “Ovsjannikov technique”
used in the two above-mentioned proofs. The purpose of this note is to
show how the much more well-known theory of distribution solutions to
symmetric hyperbolic systems can be applied directly to this situation,
by means of a nice trick from the theory of partial differential equations
with complex variables (see P. R. Garabedian, [1, chapter 16.1]). At the
same time we get existence and uniqueness theorems also when f and »
are supposed to be vector-valued distributions (instead of functions) with
values in H'(C?)N.

For simplicity, we only treat the “global” case, where the 4; are con-
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stant, and B is defined in all of R x C». It should be clear from the proof
(in Section 4) that the same trick applies to “local” situations, and to
cases where the 4; may depend on ¢ (but not on z), and also how further
information about the solutions (regularity properties) can be trans-
ferred from the classical theory of symmetric hyperbolic systems to the
situation we consider here.

Our result, and the central part of its proof are found in Section 4,
while Sections 2 and 3 contain preliminaries.

2. Symmetric hyperbolic systems.
In this section, we work in R!*™ with variables denoted by (¢f,x),

teR, x=(2y,...,2,) € R™, and we consider a system of N equations in
the form
(2.1) 10U ot + 37, A;0U[ox; = Bt,x)U+F .

where the entries of the N x N matrix B are in C°(R!+™), those of the A;
constant.

ProposiTioN 2.1. Let F € @'(R*™)N be given, and suppose that the set
supp F n {(t,z) e R*+m; t< T}

18 compact for every real T, and empty if T < 0. Suppose also that the ma-
trices A,,. . .,A,, are Hermitian.

Then there exists a wunique U e Q' (RW“™WV with suppU <R 1+m=
{(t,z); t= 0} and solving equation (2.1).

There also exist a proper convex cone I'*, defined by (2.2) and (2.3)
below such that

suppU < I'* +suppF .
In particular, the set

supp U n {(¢,x) € R1+m; ¢ <T'}

s compact for every T € R, empty when T < 0.

(We use the notation
suppF = | J;-, suppFy
when F=(F,,...,Fy) e (2')V.)

REmaRrk. This result seems to be well-known. However, a proof will
be sketched below, because some extra information which can be ex-
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tracted from it will be needed in Section 4. The proof is a slightly modified
version of one presented by F. John, in [3], for the “classical”’ case, where
F and U are supposed to be continuous functions.

SEETCH OoF PROOF. To prove the existence of U, we first note that it
is enough to consider ¥ with compact support. Indeed, suppose that the
proposition has been proved under this additional hypothesis, and let
F € '(R*m)N be given. Using a partition of unity on R, we can write
F=F4+Fg+ ..., where

suppF < {(t,2); j—15t<j+1}

and it follows from our assumptions on F that suppF; is compact for
every j. For each j we get a solution Uy; of (2.1) with F replaced by F,
and we get

suppUg;) < suppF+I™* < {(t,z); t2j—1}.

Then U =Z;:1Um is well defined (since the sum is locally finite), and
solves (2.1), and supp U csupp F + I'*.
Next, we recall that the constant coefficient operator

P(0fot,00x) = Iofot+ 7., A;0[0x;
has a unique fundamental solution, E, with support in
{#,2); t=0} = R 1+m
The suppoit of Z is contained in the proper convex cone I'* defined by
(2.2) I = {(t,x) e R1+m; tv+>2,E,20 for (v,8) e I'(P)}
where
(2.83) I'(P) = {(r,¢)eRi+m; >0, and
yeC,det[I(v+y)+ 4;6]=0= y<0}.
Further, the partial Fourier transform of E with respect to z is given by
(2.4) B(t,£) = exp(—itA(&) Y (2)

where A(§)=37.,4;&; and Y is the Heaviside function on R. Formula
(2.4) is eadily verified by direct computation, but can be found in [3,
p- 84]. The information about suppZ can also be extracted from [3]
but are more easily taken out of Hormander’s book [2, Theorem 5.6.3.
combined with Section 3.8].

To solve (2.1) by iteration, we define

Wi = E+F, W+ =E«BW) v=12,....
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Assuming for a moment that 3,2, W”=U converges in 9'(R+m), we find
that

P(o[ot,0[0x)U = BU+F
and since we have, for v=1,2,...,
supp W* < I'*(P)+suppF ,

the same will be the case for U. So it remains to be proved that ¥, 6 W*
converges.
We define a duality between &'(R1*™)N and C,®(R1+m)¥ by

W,p) = sz=1 Wi ok

where W=(W,,...,Wy) and ¢=(¢y,...,py). For given ¢ € (C;®), we
then define

(2.5) ¢l = E+txp, ¢t = E+x(Bte¢’) v=12,...
where E+x and B+ are defined as adjoint operators:
(2.6) CExW,p) = (W,E+xp)
(B-W,p) = (W,B*¢)
With these notations, we get for v=1,2,...
W,¢) = (F.¢)

and we see that the existence part of proposition 2.1 follows from

Lemwma 2.2. Let ¢, E and B be as above, and define ¢ for v=1,2,. ..
by (2.5). Then ¢’ € (C°(RW™)N, and 3.7, ¢" converges in (CP°(R1+m))N,

The proof of Lemma 2.2 is straight-forward, and follows closely the
corresponding computations in [3]. Since it is rather tedious to write out,
it will be omitted.

To prove the uniqueness of U, we let ¥V be the difference between
two solutions. V thus solves (2.1) with F replaced by 0, and we have
suppV < R+1+”' For given ¢ e (Cy®)¥, we choose T eR such that
suppp<{(t,z); t<T} and write V=V,+ V, where supp V, is compact
and supp Vzc {(t,z; t>T}. We define N

Vit =ExBV,, Vgtt=Ex(BV), »=12,..
and similarly for V,. Since we have V=Ex(BV), we get
V = V1’+ Vzv
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where
suppVy < {(t,z); t>T}.

Thus we have for v=1,2,...
<V>(P> = <V1v797> = <V1,B+(p"'1>

and since 3¢’ converges by Lemma 2.2, we get ¢’ — 0, in (C®(R1+m))¥,
and (V,p)=0.

3. Distributions and bilinear functionals.
The usual identification of R** and C* by

(3.1) (x,y) >xz+1y, =zeR" yeR",

makes the space H =H(C") of entire analytic functions on C" a subspace
of C*(R"). It follows from Cauchy’s formulae for the derivatives of
analytic functions that the topology induced on H from C®(R2") coin-
cides with the usual topology of uniform convergence on compact sets
(Tréves [5, p. 90]).

An element of the dual H’ of H is called an analytic functional on C».
By definition of the topology on H, a linear functional f on H is in H'
if and only if there exist a constant C and a compact set K < C* such that

[<f"‘/)>l é CsupzeKlv)(z)l’ '/"GH .

An open set U = C» is said to carry fif the compact K can be chosen in U.
It will be convenient to work with the space B=B(Cy™(R), H) of sepa-
rately continuous bilinear forms on Cy*(R) x H(C") instead of the space of
distributions on R with values in H’ (that is, the space of continuous
linear maps from C,*(R) to H’). It follows from Tréves [5, Proposition
42,2 (2)] that these two spaces are canonically isomorphie.
We identify R2® with C» by (3.1) and use the notations

0 o .0 0 ) o .0
o) )
Derivatives in B are defined in the obvious way by duality:
ffot gy = ={99), [0z py) = — ([, 0p[02)
ete. We note that the Cauchy-Riemann equations are valid:
(3.2) of[0z; = Of [ox;+10f[0y; = 0, 1=<j<=, feB.

In this section we deduce some results about the relationship between
elements of B and distributions on R1+2%,
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DerinrTION 3.1. Let f € B be given. f is said to be carried by the open
set C =R x C" if, for every compact interval I in R, and every ¢ € Cy*(I),

the analytic functional f: » — (f,,v) is carried by the projection on C®
of the set (I x C*)nC.

Lemma 3.2. Let I be a compact subset of R, and let f be a separately
continuous bilinear functional on Cy>(I) x H(C™).

Then there exists a compact set K = C" such that for some seminorm N(-)
on Cy>(I) we have

(3.3) IKfs@:, 9| = N(p) supg |y

for every @ € Cy°(I), y € H', and there exists a distribution F € &'(R1+27)
with suppF <1 x K, such that

Sop,w) = (Fopp)
for ¢ € C,>(I) and y € H(Cr)< O(R2n).

Proor. Since Cy*(I) and H are both Fréchet spaces, a separately
continuous bilinear form on their product is simultaneously continuous
(by [5, corollary to theorem 34,1]). This gives (3.3).

Further B(C,>(I), H) is canonically isomorphic to the dual of the space
Cy*(I)®,H, which is a subspace of the Fréchet space C(Rl+2") (by
[5, proposition 43,4 and theorem 51,6]). The last part of the lemma then
follows from the Hahn-Banach theorem.

Lrmwma 3.3. Every f € B can be carried by some set C having the property
that if I =R 48 a compact interval, then (I x C*)nC is relatively compact.

Let C be such a carrier for f, and € a neighbourhood of C. Suppose that
(I xC")nC is also relatively compact for compact I <R. Then there exists
F e @'(R+2), with suppF <0, “extending” f in the sense that for
@ € C,°(R), y € H(C") = C®(R*), we have

<F,<P’P> = <f><PﬂP> .

(That F is defined for such functions, is clear since y — (F,py) for
y» € C°(R?"), has compact support.)

Proor. Let {I,} be a sequence of compact intervals in R, such that
their interiors form a locally finite cover of R. Let {K,} be the correspond-
ing sequence of compacts in C», according to Lemma 3.2. Then it is
clear that any sufficiently small neighbourhood C of U, I, x K, carries f
and has the stated property.
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If C is a given carrier of f, ¢ a neighbourhood of its closure, a simple
compacity argument shows that one can choose {,} and {K,} such that

CcU,I,xK, (.

For every », let f, be the restriction of f to C,*(I,) x H(C"), and let
F, e &'(R1+2") be the “‘extension’ constructed in Lemma 3.2. If {3,} is a
partition of unity on R, with suppd,<1,, we have

<f’(p"/)> = Z (fw&%‘l’) ’
and we can define F € 2'(R1+2") by
F=324F,

since the sum is locally finite.
It is then clear that suppF<U,I,x K,=C and that F extends f as
stated.

LeMMA 3.4. Let F € 9'(R1+2") be given, and suppose that for any com-
pact set I <R the set
K; = (I xR?)nsuppF

t8 compact. Then the “restriction” f of F to Cy®(R) x H(C") defined by

o) = <Fro9)
8 in B, and is carried by any open neighbourhood of suppF.

Proor. Let I <R be given, and ¢ € (). Then we have for suitable
constants C,k,l:

I, )] S C 35 sup; |99(8)] - (2045151 WPk, [ DD, Pyl + )]
< O 3%, sup; |¢9(t)| O supy, lv(@+iy)|

where L; is any neighbourhood of K;, and C’ is a constant (depending
on L; and 7). The lemma follows.

4. The existence and uniqueness theorem.

We use the notations from the Introduction, and from Section 3. For
brevity we say that f € B ‘“‘vanishes for ¢ <¢,” if

{f,@,¥) = 0 whenever suppy < {te€ R; i<y}

regardless of y € H(C"). Our main result is the following
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THEOREM. For every fe BN, vanishing for t<O0, there exists a unique
u € BY, also vanishing for t <0, solving (1.1).

Further, if f is carried by the set C <R x C*, then u can be carried by any
neighbourhood of C+I'* in {(t,2); t=0}. Here I'* is a proper convex cone
in R+ x Cn, (see (4.4) below).

Proor. By the Cauchy-Riemann equations (3.2) we have, for any
u e BN

(4.1) " Ay ufoz; = 0

where A’ is the complex conjugate and transpose of the matrix A;.
Adding this to (1.1), we obtain a symmetric hyperbolic system

(4.2) Iou[ot+37_, [3(4;+ A" )ou[ow; + (26)~1(A4, — A, )ou[oy;]
= B(t,2)u+f,

which thus has exactly the same solutions as (1.1) in BY,
To solve (4.2) we consider the corresponding equation in R1+27:

(4.3) IoU[ot+ 37, [3(4;+ A4;)0U [ox;+ (2)"A4; — A;")2U [oy;]

= B(t,x+y)U+F
where F € (2'(R1+2"))V “extends” f according to Lemma 3.3. We note
that if f can be carried by C, and € is any neighbourhood of C, we can
choose F' with suppF <. Now the conditions in Proposition 2.1 are
fulfilled ; except that F vanishes only for ¢ < ¢, where ¢, <0 can be chosen

arbitrarily. Hence there exists a unique U € (2'(R'+3"))V, solving (4.3),
vanishing for t<{,, and such that

suppU < I'*+suppF
where I'* is the dual cone to
(4.4) I' = {(z,&,7) e RH2; >0 and
det[I(v+y)+ X (A, + A, )&+ (26) 14, — A/ )m;] = 0=> y<O}.

By Lemma 3.4 there exists a u € B’ such that {u,p,9)=(U,py) for
@ € (Co°(R))N, w e H(C"N, and which is carried by any neighbourhood
of suppU. It is then clear that w solves (4.2), and therefore also (1.1).

To prove that w is uniquely determined, we have to prove that if F
vanishes on test functions of the form

(4.5) pt,z,y) = ) p(x+1y), &eCy™(R),pe H(C")
then so does U.
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An argument similar to the beginning of the proof of Proposition 2.1
shows that we may suppose that supp F <{(¢,x,y); t <T'} for some finite
T € R, and hence is compact. A simple Taylor expansion shows that if
(F,py)=0 whenever ¢ is of the form (4.5), then so is the case for all
@ € Cy™(R1+27) which depend analytically on x+ ¢y for (¢,z,y) in a neigh-
bourhood of supp F.

Let ¢, of the form (4.5), be given. We replace it by a ¢ € Cy*(R1+2")
in such a way that ¢ =@ in a neighbourhood of supp F + I'*, and such that

(U7=1 supp(05/0z;) + I'*) N supp F = O .

This is possible since suppF' is compact.
With E++ and B*- defined in (2.6) we have for 1<j=<n

O(E+xp)[0Z; = E+x0@[0Z;, 0O(B*$)[0Z; = B+0g[0z;
and hence, with ¢" defined by (2.5) it is seen by induction that
W,y =(F,¢y =0, v=12,....
On the other hand, we have

U,y =U,@) = 22, (W.3) =0
and thus U vanishes on test functions of the form (4.5). The uniqueness
is proved.
From the uniqueness it follows, since

<u,<Pﬂ/)> =0

for suppp <{(t,2); t <t,} for any ¢, <0, that » vanishes for ¢t <0, and the
proof is complete.
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