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A MAXIMAL TOROIDAL GRAPH WHICH IS NOT
A TRIANGULATION

F. HARARY*, P. C. KAINEN, A.J. SCHWENK* and A.T. WHITE

Abstract.

If @ is a planar graph, we may add edges to construct a maximal
planar graph H containing G, so that H triangulates the sphere. If @
is toroidal, then by adding edges we can extend @ to a maximal toroidal
graph Gy, or to a triangulation G4 of the torus; however G4, and G5 may
be different. In particular G,, need not be a triangulation, and G need
not be a graph, that is, we may have added multiple edges to @ so that
Gy is a multigraph. The latter phenomenon is easy to construct: for
example, K imbeds in the torus but does not triangulate it. It is the main
object of this note to construet the unique minimum example of the
former phenomenon.

1. Introduction.

For notation and terminology not given here, see Harary [2]. A graph
G has genus y(G)=n if n is the smallest non-negative integer for which
G can be imbedded in the orientable 2-manifold 8,,. A graph G is maximal
of genus n if (@) =n, but for each edge x of @, y(@+x)=n+ 1. Hence
every complete graph is vacuously maximal of its genus. A graph is a
triangulation of S, if it can be imbedded in S, so that every face is a
triangle. Every maximal planar graph is a triangulation of the sphere,
and conversely.

It is readily seen from the Euler formula that every triangulation of S,
is & maximal graph of genus », and we have noted that the converse
holds for »=0. It does not follow, however, that a maximal graph of
genus 7 is a triangulation of §,,. This can fail for the trivial reason that G
has too few vertices. For example, K is a maximal toroidal graph which
does not triangulate the torus (if it takes at least 7 vertices to do so). We
now present the unique smallest noncomplete counterexample, Kg— C;.
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Since K, triangulates §;, no proper subgraph is maximal toroidal;
hence any counterexample must have order at least 8. Duke and Haggard

[1] found the genus of every graph of order 8. For H a subgraph of G,
let G — H denote G minus the lines of H; let

B, = Kg—K;, B, = Ky;—(2K,u K,,), B;= Ky— K, 5.

A Kuratowsks graph is homeomorphic to Ky or K; 5. The results of [1]
can be stated briefly:

THEOREM 1. For any subgraph G of K,

(1) (@) =0 if Q does not contain a Kuratowski graph;

(2) v(Q)=14f G contains a Kuratowski graph but does not contain any By,
1=1,2,3;

(3) y(G)=2 if G contains any B,;, +=1,2,3.

2. The counterexample.

Let @=Kz—Cjy. Figure 1 provides a toroidal imbedding of @, where
the 5-cycle in the complement @ is given by v,v,v,v,v5v,.

THEOREM 2. The graph G=Ky—C; 18 maximal toroidal but does not
triangulate the torus.

Vs

j [

Fig. 1. A toroidal imbedding of Kg— Cj.
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Proor. Since Cj is not a subgraph of K3, 2K,UK, ,, or K, 3, y(G) <2
by Theorem 1. Since K is a subgraph of @, y(@)>0; hence y(G)=1.
Let G’ be the graph formed by adding any new edge to G. Then @' =
K;— Py, and since the path Pj is a subgraph of K, ;, B, is a subgraph
of &', so that y(@')=2, by Theorem 1. Hence G is maximal toroidal.
In any triangulation of S, by a graph H, twice the number of edges of H
must equal three times the number of faces. But G has exactly 23 edges;
hence G cannot triangulate the torus. Note that, in Figure 1, the only
non-triangular face is a quadrilateral and both potential diagonals al-
ready lie in G.

Using Theorem 1, it is straightforward to show that the graph G of
Theorem 2 is unique among all graphs of order 8.

3. A short proof of Heawood’s Inequality.

We have already pointed out that, while any graph G with y(@)=n
can be extended by the addition of new edges to a triangulation G,
of S,, the resulting G, may be a multigraph but not a graph. Several
proofs of Heawood’s Inequality which occur in the literature make use
of the false assumption that G, must be a graph. We provide a short
proof of Heawood’s Inequality which avoids this pitfall.

Lemma 1. Let G be a connected graph with y(G)=n. Then G can be
extended to a triangulation Gy of S, , where Gy is a multigraph.

Proor. Since G is connected and y(@)=n, all of the faces produced
by an imbedding of @ in S, are simply connected (see Konig [3, p. 198]).
Now add diagonal lines to each of these faces, until a triangulation G,
results.

Note that when n > 0, the above process may introduce multiple edges,
as in Figure 1, when either diagonal is added within the quadrilateral
face.

For n=0, we define

H(n) = [%(7 +(1+48n)t)],
and
%(8,) = max{(@): y(G)<n, G a graph},

where y(G) denotes the chromatic number of G.



A MAXIMAL TOROIDAL GRAPH WHICH IS NOT A TRIANGULATION 111

THEOREM 3. For n>0, y(S,) < H(n).

Proor. We show that for n>0 and y(@)=n, 4(Q)<H(n). For if
2@ =k=n, then y(G)<H(k)<H(n) for k>0, whereas y(G)<5<H(n)
for k=0. We proceed by induction on p, the order of G. First, define
«(n) to be the positive root of the equation

22—Tx—12(n—1) = 0;
thus
a(n) = 7+ (1+48n)).

If p=x(n), then (@) £ p=[x(n)]=H(n). Suppose now that p>ax(n) and
that the assertion is true for graphs of order p—1. Consider G with
y(@)=n. We may assume G to be connected, for otherwise @ has a com-
ponent G, such that y(G)=yx(G,)<H(n), by the inductive hypothesis.
Thus we may use Lemma 1 to extend G to a multigraph G, with p
vertices with triangulates §,. Let d; and d denote the average degree
of the points of G, and @ respectively. Clearly, dp>d.

Since n=p(G)Ly(Gp)sn, y(Gy)=n. By a standard argument based
on Euler’s formula as applied to multigraphs, we compute that

dp = 6+12(n—1)p.
Ifn=1,d;=6=[x(1)]— 1. On the other hand, if n > 1, then since p > x(n),
dp < 6+12(n—1)/a(n) = x(n)—1,
8o again dp <[x(n)]—1. Hence, for n>0,
d =dp £ [a(n)]—-1 = Hn)-1.

Choose a point » of G with degree < H(n)—1 and consider the graph
G —v. Since G —v has order p—1, we see by induction that

2(G—v) = H(y(G-v)) = H(n).

Hence G —v can be H(n)-colored, with at least one color available for
use at v, so that y(G) < H(n).

ConJecTURE. If M is the set of integers n for which there exist maxi-
mal noncomplete graphs of genus n» which are not triangulations, then
M is the set of all positive integers. We now know only that 0¢ M
and 1e M.
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