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ON THE HOMOLOGY OF INTERSECTIONS OF
COMPLEX PROJECTIVE MANIFOLDS

MOGENS ESROM LARSEN

1. Statement of results.

1.1. This note is concerned with the homology and cohomology of a
complex submanifold in a complex projective space, which occurs as an
intersection of two high-dimensional complex submanifolds.

Let P, denote the complex projective space of dimension n, and let
AcP, and B<P, be submanifolds of dimensions a and b respectively.
Suppose, that 2a=n+1 and 2b=n, then a+b>n and from [2, propo-
sition 4], 4AnB is connected. Suppose further that 4 nB is a submanifold
of P,. Throughout this note let s=min{2b—n,2a—n—1}. The results
are stated in 1.2. and 1.3.

1.2. TEEOREM 1. Let 4, B and A n B be submanifolds of P, and dim 4 =a,
dimB=b, and s=min{2b—n,2a—n—1}. Then the snclusion AnB< B
induces isomorphisms

) 0 for s odd
iR 7) . 7)) ~ )
HYB;Z) SH(ANB; Z) = {Z for ¢ even ,
oy~ oy [0 foriodd,
H(AnB;Z) S H(B; Z) = {Z for & even ,
for i S 8. Further the relative groups satisfy
HYB,AnB;Z)=0 foris <s+1,

H(B,AnB;Z) =0 fort<s+1.

1.3. THEOREM 2. Under the conditions of theorem 1 and further
n,(ANB)=0, the relative groups

7w B, AnNB) =0 for s =s+1,
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and the inclusion AnBg B induces tsomorphisms

0 fors +2 ¢=<s,

(4 N B) = my(B) {Z Jori=2.

1.4. These results generalize the classical theorem of Lefschetz, when
A is a hypersurface in P,, cf. [5, § 7].

2. The Hopf fibration.
2.1 P, is the set of one-dimensional subspaces of C*+! and

S+l = {ze CrHl| |2|=1}.

The Hopf fibration A: §22+! — P is the restriction of the obvious map
Cr+1\ {0} - P,.

If XcP,, we put X =h-1(X)< 82"+1. The space X is the total space in
a fiber bundle over X with fiber S.

2.2. The following fact is well-known. For X < P,, there is a commuta-
tive diagram

o > (824 > (82741 R) > (K) > 7,y (82 > L

l ntm(h) 1 ~ l l"m—l(h)

. = 7,(P,) - 75,,(P,, X) = 7 1(X) > 7 _4(P,) - ..

The map 7,,(k) is an isomorphism for m % 2.

2.3. From 2.2. follows, that if z,(X)=0, then =,(P,,X)=0 for 1<
m=s+1.

2.4. From 2.2. follows further, that if 7,(X)=0, then x,(X) is abelian
and hence isomorphic to H,(X; Z). If further H,(X; Z)=0for 1<m<s,
then by the Hurewicz isomorphism theorem 7,,(X)=0 for 1<m<s, and
hence it follows from 2.3. that =, (P,,X)=0 for 1=m=<s+1.

2.5. Throughout this paper let Z denote one of the groups Z or Z/p
for p prime. Let D EcP,. From the general Gysin cohomology se-
quence

... > H™E D; Z) ~ HYE,D; Z) -
—~ H™E.D; Z) > H"\E,D; Z) > ...,
we deduce that if
H™\E,D;Z) = HYE,D; Z) = 0
then H™E,D; Z)=0. Also if H™E,D; Z)=0 for 1<m<s then
H™¥E,D; Z) ~ H™E,D; Z)
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for 3<m=<s. In the absolute case (D=¢), we have that H'”(E; Z)=0
for 1 =m <s implies that

H™%E;Z) > HYE; Z)

is an isomorphism for 2<m <s.
2.6. Let

be a cartesian diagram. In particular g: N — N is a $'-bundle. Let D E
be a pair in N, and put ¢(D)=D, p(E)=E. Then the general Gysin
cohomology sequences applied to %: (B,D) -~ (E,D) and g: g"l((E D)) -
(E,D) gives a commutative diagram showing that if ¢: (E,D) - (E,D)
induces isomorphisms

H™E,D) = H™E, D)
in all dimensions, then ¢: (g—l(E), g‘l(D)) - (E,ﬁ) induces isomorphisms
H™E,D) 2 H™(g-\(E),g-4(D))

in all dimensions.

3. Construction of a ball K in SU(n +1).

3.1. Let X be a complete Riemannian manifold and C(y,p) denote the

closed ball of radius ¢ around y € X with respect to the Riemannian
metric, dist.

LemMa 1. Let M =X be a compact C°-submansfold. Then there exists
a positive number r=r(M), such that for o <r and y € X the intersection
C(y,0)n M is either empty or homotopy equivalent to a point.

Proor. Let T'< X be a tubular neighbourhood of M with tubular
radius r,. Then for all y €7, there is only one xe€ M, such that
dist (y, ) = dist (y, M), and only in this case the geodesic from z to y is
orthogonal to T, M. Put r=r, and let p<7.

From [5, Lemma 10.3, p. 59] the function f: X — R defined by

fl@) = dist(y, )
is differentiable, and

Cly,o0)n M = {xe M| f(x)<e}.
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If x € M is a critical point of f| M NC(y,e), then the geodesic from z
to y is orthogonal to 7', M, so only one critical point can exist.

If Cly,0)nM +0, then it follows from [5, Theorem 3.1, p. 12] that
C(y,0)n M is homotopy equivalent to a point.

REMARK. Obviously r(M)=r(u(M)), if u: X - X is a transformation,
preserving the Riemannian structure.

3.2, Let @ denote the special unitary group SU(n+ 1). Then
@ < GL(n+1,C)  Cn+D? = Rm

for m=2(n+1)2. Further the unitary group U(n+1) is embedded in
Cn+1’, Now any o € U(n+1) gives by matrix multiplication a map

u e Cn? s gy g Conid? |

which preserves the euclidean distance in R™.

3.3. Define K(p) as Gn(C(1),0), where 1 is the unit matrix in
GL(n+1,C). Fix r>0 so small, that the following two conditions are
fulfilled.

1) For any y € P, let G, be the subgroup of G fixing y. By lemma 1
using G' compact we can suppose for o <r that K(p)notG,r! is either
empty or homotopy equivalent to a point for ¢,7 e U(n+1).

2) Since oK(g)o1=K(p) for all 0 € U(n+1), and since U(n+ 1) oper-
ates doubly transitively on P,, there exists a function d(g), such that for

all zeP,,
K(e)z = {w eP, | dist(z,2)=d(g)} .

Compare [1, Lemmata 1, 2, 3]. Choose r so small, that for all ¢ <7 the
set K(p)A is a tubular neighbourhood of 4 in P,. Then obviously
K(p)oA are tubular neighbourhoods of 04 for all o€ G.

Put K=K(}r).

4. Statement of lemmate 2 and 3.
4.1. @ operates transitively on 827+! and P,. The Hopf map % is G-
equivariant. Let 4 <P,. We study the maps

P:Qx A~ gL,
p:G@x4 P,
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defined by §(s,2)=0% for 6 € G and 2 € 4, and ¢(o,x)=0x for s @
and z € 4. We have the commutative diagram

Gx 4 % S+t

idx(hlz‘i)l lh

Gx4 %P,

G operates on @ x 4, respectively @ x A, by left translation on the first
factor. With respect to this operation, ¢ and ¢ are equivariant.
4.2. Let K <@ be chosen as in 3.3. For any o € G@ we have a commu-
tative diagram
{o}x4Ane(B)> oANnB
*) | |
KoxAneY(B) > KoAdnB

with inclusions as vertical arrows and restrictions of ¢ as horisontal
arrows. The upper map is a homeomorphism.
4.3. H9(p) is the map

HYKoAnB,cAnB;Z) > HY(Kox An e Y(B), {c} x4 ne~YB); Z)
LemMma 2. HYp) 1s an isomorphism for all q.

ReEmMARK. Lemma 2 remains valid when B is exchanged with AnB.
Lemma 3. HYKocANnB,cANB; Z)=0 for 0<¢q=<s.

ReMarRk. Lemma 3 remains valid when B is exchanged with AnB.
4.4. Lemma 2. HY(p) is an isomorphism for all q.

Proor. Follows from 2.6.

Lemma 31. HYKoAnB, 6AnB; Z)=0 for 05q<s.

Proor. Follows from 2.5.

5. Proof of lemma 2.

5.1. The map
¢: KexAneg(B)> KeAnB

is proper and surjective. In order to show, that ¢ induces isomorphisms

H4(¢): H(KcAnB;Z)—~> H(Kox A neYB); Z)
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for all g, it is by the Leray spectral sequences enough to show, that all

fibers have the homotopy type of a point. If y € KoAnB, the fiber
satisfies

(P“l(y) — {(r,x) EKO'XB' 1x=y}
{TEKU | r—lyeB}
{re K| wy'e B},

I

I

where y'=o0"1y.
5.2. Define a map

p: {re K| wy'eB}->Ky'nB

by w(t)=ty'. Then y is surjective and proper. Using lemma 1 on
C(y,0)=Ky* and y=y*, we find that Ky'nB has the homotopy type of
a point.

5.3. Again by the Leray spectral sequences, it is enough to show, that
the fibers of y have the homotopy type of a point. If z € Ky'nB, then

=Kn{oe@G| oy'=z2}
= K no'G,
y b
where o'y'=z.

This fiber is homotopy equivalent to a point according to the choice
of K in 3.3 having property 1).

5.4. ProoF or LEMMA 2. The mapping ¢ of the pair
(6xA neY(B), Kox A4 ne(B))

onto the pair (¢AnB, KoAnB) gives a series of homomorphisms between
the cohomology sequences. Now two of each three consecutive homo-
morphisms are isomorphisms according to 4.2 and 5.1. Hence the five-
lemma can be applied to the remaining homomorphisms.

6. Real and complex index of functions.

6.1. Let M be a complex n-dimensional manifold and f: M - R a
C%function. Then for any pe M and coordinate system z;=x;+4 1z,
j=1,...,n, around p, the quadratic Levi form is

*f(p)

w,; W weCr,
— i %K
0Z,,02;

Lf(p’w) = zf.k
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This form is known to be independent of coordinates chosen and to be
real valued. So we can define the complex index Index.(f,p) as the
maximum dimension of a complex subspace of C* on which L/(p) is
negative definite.

6.2. If we consider M as a real 2n-dimensional manifold with coordi-
nates x;, j=1,...,2n, we have the quadratic Hessian

82f
Hyp,v) = Z’ka ax v;, veR™M,

This form is known to be independent of the coordinates chosen, when
df(p)=0. So we can define the real index Index, (f,p) as the maximum
dimension of a real subspace of R?® on which H(p) is negative definite.

6.3. LEMMA 4. Indexg(f,p) = Indexc (f,p).

0—-1
E = ( 1 0).
Let w;=v;+4v,,; and z;=x;+4x,,;. Then the formula
Ly(p,w) = H(Hp,v)+ (E-H,E)(p,v))

holds for all p € M. If we compute dimensions of the subspaces where the
forms are positively semi-definite, we see, that

2n—2 Indexc (f,p) 2 2(2n—Indexg(f,p))—

Proor. Define

and this proves the lemma.

7. Proof of lemma 3.

Define M(g)=K(p)oANnA for g<r.
There exists a function f: M(r) - R such that the Levi form of f has
at least s negative eigenvalues, and for all p,0Zp =<7,

= {ee M(r) | f@)=x(e)},
[1, Satz 1]. Further for any g,, 0 <g,<r, there exists a k>0, such that

1) The Levi form of —e~* has at least s+ 1 negative eigenvalues in
M(r)\ M(g,),
2) For all p,05p=r,

M) = {xe M(r)| —e @< —gt@},
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Let ¢>0 be small enough. From [5, lemma 22.4, p. 119] we find g,
approximating f on the set

{xe M(r) | gote=f(x)Sallr)+e}
so well, that for all  we have |f(z)—g,(x)| <¢ and
Indexg(g,,2) = Indexz(f,z) .
Lemma 4 says, that this index is at least s+ 1. Define
Ky(e) = {we M(r) | g.<o(oo) +¢}
K(e) = {we M(r) | g(x)sa(dr)+e}.

Then from [5, Theorem 3.2, p. 14] H™(K(e),Ky(e); Z)=0 for 0Sm=s.
Now
Neso K(e) = M(3r) and [0 Ko(e) = M(gy) ,
g0 when ¢ >0, we get H™M(}r),M(g,); Z)=0 for 0=m=s. Finally
letting g, > 0 we get [),,-0M(eo) =M (0), and hence
H™(M(4r), M(0); Z) = 0
for 0<m<s, that is
HMBeAnA,6AnAd;Z) =0
for 0=m<s.

8. Proof of the theorems.

8.1. From lemmate 2! and 3! the homomorphisms 52 and %2 are iso-
morphisms for 0<g=<s

§4: H Ko x A n p-YB); Z) > HY({o} x 4 n $~YB); 2Z) ,
ke: H(Kox A n3-Y(AnB); Z) -~ H({s}x A n -4 (AnB); Z) ,

and they are injective for g=s+1.

Let p: G x A — G be the projection on @, and p* and p'! the restric-
tions of p to XB) and ¢~1(4 nB) respectively, both mapping onto G.
Because j2 and k? are isomorphisms, the sheafs R%p',Z and R%,Z are
locally constant for g<s, and because x,(G) =0, they are constant for
g=s.

Further the maps

HYG,Re+1p', Z) ~ H*+Y(AnB; 2) ,
H@G,Rs+1p1\, Z) > H*Y(AnB; Z)
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are injective, because j*+! and k#+! are injective. So in the following com-
mutative diagram defined by the inclusion g4 nB)<g-Y(B),
HO(G’ R8+1p1*Z) > HO(G, R8+1p11*Z)
H*YAnB; Z) 2 H+Y(AnB,; 2)
both vertical maps are injective, hence also the upper map must be
injective.
8.2. LEmMMA 5. If the inclusion p~1(4 nB) < 3~Y(B) induces isomorphisms
H($B); 2) £ H($3~(AnB); Z) for j<i
and H j(ﬁ nB; Z)y=0for 1< J =3, then the inclusion induces an isomorphism
for j=1<8, and a monomorphism for j=i=s+1.
Proor. Consider the Leray spectral sequences for p! and p! with
mappings induced by inclusion
HY(9™\(B),Z) < By = H"(G,Rip',Z)

Hi(‘;’_l(ﬁﬂg),Z) <= E’zﬂl = Hr(G’quu*Z) .
From 8.1. follows, that we have the following commutative diagram
B, Hr(G,Hq(jan; z))

~

B, Hr(G,HYAnB; 7))
with isomorphisms for ¢<s, and injective maps for g=s8+1 and r=0.
We have exact rows in the commutative diagram

0~ B0 »  Hi(g-Y B); Z) - B0 > Eyi+10

T

0 > B,i0 » Hip-Y(AnB); 2) > B,0% > B0

and three maps are isomorphisms for ¢+ <s, hence so is the fourth. For
t=8+1, one of the three maps is injective only, but then the fourth map
18 injective too.

REMARE. If lemma 5 is stated without ~ the proof is still valid.

8.3. LEMMA 6. If the inclusion p~Y(A nB) g ¢~Y(B) induces isomorphisms
HY¢~YB),Z) £ Hi(p~N(AnB),Z) for j<i
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and HI(AnB; Z)=0 for 1<j<i, and HNAnB; Z)=2, for some i<s+1,
then H(AnB; Z)=0. If only
HY$=Y(B); Z) » H{p~(AnB); Z)
t8 injective, we get only an injective map
HiB; Z) -~ H(AnB; 7)
snduced by the inclusion AnBg B.

Proor. We have @:GxA -8+, Let ¢':¢-YB)—~B and
9": g YAnB) - AnB be the restrictions of ¢. The spectral sequences
for ¢’ and ¢ are

H{3YB); Z) < E,@ = H"(B,R%',Z)
H{($YAnB); Z) <= By = H(AnB,RG"  Z)
Because ¢’ and ¢’ are fiber bundles with the same fiber, F, we have the
following commutative diagram
E, % H'(B,HY(F, 7))

~ Y
E,a 2 Hr(AnB,HYF,Z)) .
For i=1 we get a commutative diagram of exact sequences

0> HYB,HYF,Z) - HY$~YB),Z) - HYF,Z)

~ ~

0 - H(AnB,HYF,Z)) -~ H (¢p~Y(4nB),Z) - H\(F,Z),
so the 5-lemma and HY(B,Z)=0 from [4, Proposition] give H YAnB,Z)
=0.
For ¢ >1 we get another commutative diagram of exact sequences

-~ HYB,H\F,Z)) - Hi(3~YB),Z) - H{(F,Z)~

~ ~

-~ H{(AnB,HYF,Z)) -~ H($~WAnB),Z) -~ HI(F,Z) >

so the 5-lemma and Hi(B, Z) = 0 from [4, Proposition] give H{(AnB,Z)=0
for ¢<s. If +=s+1 and the middle vertical map is injective, we get in-
duced an injective map

HsY(B,Z) - H*+\AnB,Z) .
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ReMaRK. If lemma 6 is stated without ~ the proof is still valid.
8.4. ProrositioNn. HY(B,AnB; Z)=0 for i<s+1.

Proo¥. Induction using lemmate 5 and 6 gives H{(ANnB,Z)=0 for
1<¢<s and

H*\(B,Z) - H*"\(AnB, 7)

injective. Because H¥(B,Z)=0for 1<i<s by [4] and because HYAn B, Z)
=7 by [2, Proposition 4], the proposition now follows.

8.5. Proor oF THEOREM 1. Induction using the remarks following
lemmate 5 and 6 gives H(AnB; Z)=0 and an isomorphism if s> 2
H*B,Z) £ HYAnB,Z) .
By [2, Proposition 4], H(AnB,Z)=Z and by [4, Theorem] H*B,Z)=Z.
The exact sequence for the pair ANB< B is

HYB,Z) 2 HYANB,Z) ~ H(B,AnB,Z) ~ H(B,Z) =

= HY(AnB,Z) - HYB,AnB,Z) -~ HYB,Z) - H¥AnB,Z)
with isomorphisms £ and the last map injective. Hence HY(B,4AnB,Z)=0
and H¥*B,AnB,Z)=0.
From the proposition and 2.5 follows, that H(B,AnB,Z)=0 for
1<4<s+1, and the universal coefficient theorem then gives

H,B,AnB,Z)=0 for 1 =1 <s+1.

8.6. Proor oF THEOREM 2. Follows from 2.4, proposition and 2.3.
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