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A CECH-HUREWICZ ISOMORPHISM THEOREM
FOR MOVABLE METRIC COMPACTA

TIM PORTER

In [7] we proved that the condition of stability introduced there gave
good exactness results for Cech homology and homotopy theories. Con-
sequently we proved that, at least for metric compacta, stability im-
plied movability [7] and [8]. Hence it seemed natural to investigate the
corresponding results for movable metric compacta. R. Overton [5] has
managed to obtain the first result in this direction by proving that, for
a movable pair of metric compacta, the Cech homology sequence is
exact. So of the trio of results singled out in [6] and [7] as applications
of stability, there remains the ‘“‘Cech-Hurewicz Isomorphism Theorem”
and the “Cech-Van Kampen Theorem” for movable metric compacta.
The methods introduced here give a proof of both relative and absolute
forms of the “Cech-Hurewicz Theorem” but, because the methods rely
heavily on the groups concerned being abelian, they give no indication
of how to prove the Van Kampen Theorem in this case. Incidentally,
although not explicitly proved here, the preliminary results obtained
here give a proof of the exactness of a large part of the Cech homotopy
sequence of a movable pair; again they don’t allow the lower, possibly
non-abelian, groups to be studied.

1. Movability and Mittag-Leffler.

First we review some definitions. Overton [5] makes the following
definition (see also [4]).

A pair of metric compacta (X,A) is movable if it is the inverse limit
of an ANR(M)-pair sequence
{(Xo40), 50 (X5 4y) > (X3, 4))}
with the property that for any 4 there exists j =4 such that if £>j then
there is a map s;;: (X;,4;) - (X, 4;) with p;.s;; homotopic to py;.

Received July 18, 1972, in revised form January 10, 1973.



A CECH-HUREWICZ ISOMORPHISM THEOREM ... 91

We will add the restriction that if (X, 4,x,) is a pointed pair, then all
maps will be assumed to preserve the relevant base points.

Next we need a definition from the algebraic theory of projective sys-
tems. (See [1] or [2].)

Let (4,),.n be a projective system (indexed by the non-negative
integers) of abelian groups, then (4,),.n is said to satisfy the Mittag-
Leffler condition (ML) if for each «, there is a =« such that

Im(4; - 4,) = Im(4, - 4,)
for all y = 6.
If (X,4) is a movable pair of metric compacta then for each n=0 the
projective system (H,(X;,4;));.n satisfies the following condition:

Given any ¢ € N, there is a j = ¢ such that for all £=j there is a homo-
morphism
Ok,j * Hn(Xj’Aj) - H,(X,,4;)
such that

Pijx = PikxOk,j -
Hence
Im (p;j4) < Im(pys) -
But by the definition of the maps (p;;);-;, we have

Pir = Pi;Pjk »
hence

Im (pis) = Im(Dyju Pjrs) < Im(Pyy4) »

and so we have the result:

Lemma 1. If (X, A) 8 a movable pair of metric compacta, then the corre-
sponding relative homology systems, which we will denote by

H,X,4) for n=0,1,2...
satisfy (ML).

Similarly we can prove the absolute version.

Lemma 2. If X 8 a movable metric compactum then H,(X) satisfies
(ML).

In fact since the proofs use only the functoriality of H, on the homo-
topy category, we also get
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Lemma 1. If (X, A,x,) 18 a movable pointed pair of metric compacta then

nn(X’A’wO) (fOf n> 2)
satisfies (ML).

Lemma 2. If X is a movable pointed metric compactum then =, (X,x,)
(for n>1) satisfies (ML).

LemmMma 3. If A=(A,);.n #8 a projective system of abelian groups satisfy-
tng (ML) and limA =0, then A is tsomorphic to 0 in pro (Ab) (see [3])

<
the category of projective systems of abelian groups.

Proor. lim4 =0, so for each ¢ the natural map
<~

<~
is a monomorphism. By a result of Verdier [10, Proposition 7] 4 is
essentially constant, i.e. is isomorphic in pro (Ab) to a projective system

indexed by a one-element ordered set. This projective system must there-
fore be the zero system, 0.

Although it seems probable that Lemma 3 holds for arbitrary inverse
systems of groups, I have been unable to find a proof of this or to prove
it directly myself.

2. The Cech form of the Hurewicz Isomorphism Theorem.

As lemma 3 requires that the 4, are abelian groups, we cannet (without
a much deeper analysis of the background to this result) use it for hand-
ling the low dimensions in this theorem (n=1 in the absolute case and
n =2 for the relative case). To avoid this difficulty we shall assume that
in the absolute case 7,(X,,,;)=0 for each ¢ and in the relative case
nio(X 4, 44,70 ;) =0 and n,(A4,,2, ;) =0 for each 4. [In fact if X is 1-stable
or (X,A) is 2-stable and A, 1-stable (see [7]) then this will follow from
7,(X,29) =0 and 7,(X,4,2,)=0 and 7,(4,2,)=0.] (For a definition of
the Cech homotopy groups of a space see [7, part I].)

TueoreM 1. If (X,A4,x,) is a connected movable, pointed pair of metric
compacta (satssfying the condition above) then, if there is an n > 2 such that
(X, A,x5)=0 for 254 <n, the Hurewicz homomorphism

b %X, A,20) > Hy(X,4; Z)
18 an tsomorphism and I;Q(X,A; Z)=0 for 25i<m.
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THEOREM 2. If (X,x,) 48 a connected movable pointed metric compactum
(satisfying the condition mentioned above) then, if there is a n>1 such that
7 X,x) =0 for 1 <4 <n, the Hurewicz homomorphism

b sty (X,3) ~ H (X ; Z)
18 an isomorphism and IL(X; Z)=0 for 1<i<mn.
Proor oF THEOREM 1. We suppose that (X, 4,x,) is a pointed ANR(M)-
pair sequence, satisfying

(i) 7y(Xy, Ay, ) =0 for all ¢ and 7,(4;,20 ;) =0;
(ii) (X,A4,x,) is movable.

Since 7,(X,4,z,)=0 for r=2,...,n—1, lemma 3 and (ii) tells us that
given any 4 € N, there is a j =4 such that for each k>3, we have

Pix = PikSksPix
and that we can choose k so that for all I > % the map
pﬂ# : nr(Xl’Abe,l) - nr(Xj’Ajyxo,j)

is the zero map for r=2,...,n—1. (Here we are tacitly using the con-
tinuity of the Cech homotopy group function and the fact that on
ANR(M)’s x, and %, agree for all r.)

Following Spanier [9, p. 391] we let 4(X,) denote the singular chain
complex of X; and A(X,,4;,7, ;)" the subcomplex of 4(X,) generated
by those singular simplexes o: 47 - X, with

(sko(49)) = {xo, s}

(sk(49) = 4,

where sk, denotes the nth skeleton functor.
We denote by H,"™(X,,4;,%, ;) the homology of the pair

(A(X A0 )P, A(X, Ay 20, 4) 0 0 A(4y))

and

By Spanier’s results [9, B, = @, p. 397] we have
oKy A ,0) ~ Hy" (X 435 7).

This result “homotopy additivity lemma = ¢’ is an isomorphism” does
not depend on the connectivity assumptions. (The conditions we have
placed on (X,4,z,) imply that we can avoid Spanier’s z,’ notation.)
Thus using continuity of 7, , we have

;z'n(X)AA’xo) R~ limieNHn(n—l)(XiA't; Z) .
<
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It therefore remains only to prove the analogue of Theorem 7.4.8 in [9],
namely that for (X,4,x,) as above

lim H,®(X,, 4,; Z) ~ H (X, 4;Z) .
<

The proof given for the result in [9] is easily generalised to this situation
as follows:

We define, for each ¢ and each ¢: 42 - X, a map 7(0): 4?2 > X; with
7(0) € A(X;, 4,7, ;)P and with a fixed homotopy P(o) from p,o to
(o).

If ¢=0 then o: 4° - X; is a point and since X is path connected there
is a map P(0): 4°x I - X; with

P(0)(4°x 0) = p;0(4°) and P(o)(4°x 1) = z, ;.

[If o(4) ==, ;, we take P(c) to be the constant map to z, ;.]
Assume 0 < g<n and that P(c) has been defined for all ¢ of degree <g¢
and that for each of these o, P(c) has the following properties:

a) P(0)|492%x 0=py0.
b) 7(0)=P(0)|49x 1 is in A(X;, 4;,%y ;)P and if o € A(X;, 4;,2,,)"™?,
P(0) is the map
VNI SRS &5 ¢
c) If ei: A2 > A2 omits the ith vertex, then
P(o)(e,ix 1) = P(oD) .

Now assume o has degree q. If o € A(X;, 4;,2,,)»?, define P(c) to be
the map

VIV EVIES 425
If o is not in A(X;, 4;,2,;)™Y, conditions a) and ¢) above define P(s) on
A49%x0U49x I and we let

f:41x0uvdex] ~ X,
be this map. Let
h:BixI - A1x1

be a homeomorphism, as in [9, p. 392-393]. Then we can define a map
[ (82,8977 > (X3, 4))
by
fz) = Stj(f(h(z)))-
But Impy;, =0 so there is a homotopy
H:(B1xI,81x1)—>(X;,4;
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from p;f’ to some map of E?into 4; we take the composite
Ax15 pax1 B X,

as P(c). Note that by the properties of s;,p;8;~1x;, so we have only
changed the “old” P(c)’s by a homotopy.

In this way we define P(o) for all degrees ¢ <n and, on noting that a
singular simplex, o, of degree >n is mapped to 4(X;,4;,2,;)®~? if and
only if all proper faces are in A(X;, 4;,2, ;)" we see that any map
P(o): 42 x I -~ X satisfying conditions a) and c¢) above will automatically
satisfy condition b). Such maps will exist by the homotopy extension
property.

Using these methods we arrive at a chain map

7: A(X)) - A(X, 4,2 )
such that p;, ~ v and hence s, Py = 8154 7.
Sat: A(X,) - A(X, Ay, )Y
is not necessarily a chain homotopy inverse for the inclusion map

Ji A X, 43,70, ) Y g A(X)
but

Py V08155070 X PugosygoPugoli = Pugoli
where
PV = pugl AX,, 4y, 20, )
hence p goj; is homotopic to a map into A(X,, 4;,%, ;)™P, that is,
Paxofix + HM (X, A3 Z) » Hy(X, Ay Z)
has image contained in H ®1(X;,A4;; Z) and the diagram
H®NX,,4;; Z) o Im (pyeojx)
pita(*—1) Pile°J1
Hq(n_l)(Xl,Al; Z) -- -——--J

commutes.
Similarly pgyojio8;30t > py,. Hence we have an isomorphism

limy H (X, 4;; Z) ~ H(X,4; Z)
<

using the continuity of f}q and its ag;gement with H, on ANR(M)’s.

The proof of Theorem 2 is similar but easier.
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Addendum.

K. Kuperberg [Fund. Math. 77 (1972), 21-32] has obtained a result
similar to Theorem 2 of this paper. At the time of writing, I have not
seen a copy of that paper, so cannot say if a result similar to Theorem 1
is to be found there. Also J. B. Quigley: Equivalence of fundamental and
approaching groups of movable pointed compacta (preprint) has obtained
the exactness of the homotopy sequence mentioned in the introduction
by a completely different approach.
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