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AN EXACT SEQUENCE OF BRAID GROUPS

CHARLES H. GOLDBERG

1. Definitions and statement of the main theorem.

Throughout this paper, M will be a surface (2-manifold). Let
P,={py,ps,- - - Pn} be a fixed n-point set for each n, and let F, M be the
set of all embeddings of P, in M. Thus F, M < M™, the n-fold cartesian
product of M with itself, which may be considered to be the set of all
maps from P, to M. Let ¢: F, M — M™ be the inclusion map. Choose a
fixed embedding 2° of P, in M, and denote x%p,) by 2, for 1 <i=<n.
Then =,(¥, M, 2% is called the group of unpermuted (pure) n-strand
braids on the surface M, and the induced map

byt Ty (B M, 20) — (M, a0)
can be described simply as follows: Since M™ is a cartesian product,
7y (M, a0) = TIioy 7 (M, 2%) .

A path {x(t):t€[0,1]} which represents an element of =,(F,M,a?),
may be restricted to {p;}< P, , to yield a loop

{z(t)(py) : t€[0,1]}

which represents an element «; of 7,(M,x9;) for each ¢. Then for any path
class [z] of n,(F, M, x°), the element 3,([x]) is given by the n-tuple of
path classes

(0gs &gy - oy 00y) € TTiey 7eo(M,2%) = 75,(M™,20) .
Let D? be an open disk in M which contains the n points 29;,2%,. . .,2%,.
Then F, D2 which is the set of all embeddings of P, in D?, may be identi-
fied with a subset of F, M by composing any map of F,D? with the

inclusion D*c M. Let j: F,D* > F, M be the resulting identification.
Then the induced map

j* : nl(FnDz’xo) g nl(Fn-Maxo)
takes any n-strand unpermuted braid on D? and considers it as a braid

on M. Since D? is homeomorphic to R?, the group =,(F,D? 2% is iso-
morphic to the classical (Artin) unpermuted braid group (see [5]).
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We can readily discern two distinct types of phenomena which are
exhibited by the representatives (geometric braids) of elements of the
group 7y(F,M,x°) of n-strand unpermuted braids on M:

(1) There is “classical braiding” of the strands which may be thought
of as taking place in an open disk D?c M.

(2) There is wandering of the individual strands about on the sur-
face M.

The principal result of this paper, Theorem 1, may be thought of as
saying intuitively that for a closed surface M of genus g = 1, nothing else
happens in 7, (¥, M,x°).

THEOREM 1. If M is a closed surface other than S2 or P2, then in the fol-
lowing sequence of (not necessarily Abelian) groups

1 > my(F, D% 20) —2*— my(F, M,2%) —— TI", 7 M,20,) - 1

the kernel of each homomorphism is equal to the normal closure (consequence)
of the image of the previous homomorphism in the sequence.

This theorem was conjectured for closed, orientable surfaces by Joan
Birman in [2], where she proves Lemmas 1 and 3, and asserts without
proof that Lemma 2 is true and Lemma 5 false when the genus g>1.
Her proofs are based on the fibrations of Fadell and Neuwirth [4]. It is,
however, possible to give proofs of all but the simplest parts of Theorem 1
based on the single geometric device of associating to each unpermuted
braid in M, something which resembles a braid in a suitable covering
space M of M. Accordingly, geometric proofs (some new) have been
given for all lemmas to provide greater unity of approach. The proof of
Theorem 1 occupies the remainder of this paper. A more complete exposi-
tion of the device of ‘“periodic braids in a covering space’’ than is neces-
sary in the present context will appear separately [6].

2. Start of the proof of Theorem 1.

The assertion of Theorem 1, which may be called “exactness’ in the
category of non-Abelian groups (noting the necessary modification from
the more familiar definition of a short exact sequence of Abelian groups),
reduces to several simpler assertions. At n,(¥F,D? 2%, all we must check
is that ker (5, ) = {1}. At =,(F,M,x%), it is sufficient to check that im (j,) <
ker(s,) and that ker (s, ) = (im (j4)), where {(im(j,)) is the normal closure
(consequence) of im (j,) in 7 (¥, M,20), that is

{y = TIx cuBrocr™ : o4 € my(F o M, 20, ) € im (jy)} .
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Some simplification has been possible since (im(j,)) is the smallest
normal subgroup containing im(j,), and ker(¢,) is a normal subgroup of
ay(FoM,2%. At T17.,7,(M,2°%), it is sufficient to check that im(i,)=
I} 7 (M, 2%), i.e. that 4, is onto.

Lemma 1. For any surface M we have
im(4,) = T[7 7o (M,2%) .

Proor. Given any loop class oy € 7y(M,20%), there is an z°-based
loop a; in M — {a0;,20,. ..,2%_ ;,2%,,,. . .,2°,} which represents «;, since
any loop representing x; which passes through a point 2% for j++¢ can be
modified by a small homotopy to avoid z°%. The homotopy {b(t):
t€[0,1]} of maps of P, -~ M defined by

bi(t)(pj) at) if j=3,

= if j+i,

is a representative of a braid [b;] € =,(¥,M,2°), where brackets denote
path class. Then

tx([61][02]" - . . [b4])
= ([a1]113 1" . ',1)'(11[0’2])1)1" . '51)' s '(151’- . ')ly[au])
= ([all’[az]r . 's[an]) = (0‘1’0‘2,- . -"x'n) .

Thus ¢, is onto.

Lemma 2. For any surface M we have

im (jx) € ker(iy) .

Proor. If the path {z(t): ¢t € [0,1]} represents an element [x] € im (j),
then for every ¢ € [0,1] and every 3, 1 <4 <n, we have z(t)(p,;) € D% Thus
the loop

{x(t)(p,) : te[0,11}

is homotopic to the trivial loop «°; in D? since D? is simply connected,
and thus

{=(t)(p) : t€[0,1]}
is homotopic to the trivial loop 22 in M for every i. We see immediately

from the description of i, in section 1, that 4,([z])=(1,1,...,1), the
identity of TTJ.,7;(M,2%), and the lemma follows.

Lemma 3. If M is any compact surface except S? or P2, then ker (j4)={1}.
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Proor. First we need that M has a covering space M which is homeo-
morphic to a subset of R2. It is sufficient to consider orientable surfaces
M, since every non-orientable surface has an orientable double covering,
and any covering space of a covering space is itself a covering space.
If M is closed and not 82, then its universal covering space M is homeo-
morphic to R2 If M has boundary, then M is a subset of a closed orient-
able surface M,. Let e,: M, - M, be the universal covering space of M,
let M =e,~(M), and let e=e,| M. Then , is homeomorphic to R? if
genus (M,)> 0. If genus (M,)=0, then

M, —disk = $*—disk  R2.

Suppose that {z(t): ¢t € [0,1]} represents a braid [z] € #,(F,D? 2% and
that {x(¢): t € [0,1]} is homotopic in F, M to the identity braid represen-
tative {2°: ¢ €[0,1]}. We must show that {x(¢): ¢ € [0,1]} is homotopic in
F,D? to the identity braid representative. Since D2< M 1is contractible,
e~1(D?) is the union of disjoint subsets of M, each mapped by e homeo-
morphically onto D2. Choose one such set D2, and let é=e¢| D2 Denote
éY(x%) by Z° for each 5. Now for each ¢ e [0,1] and each ¢, the point
z(t)(p,) € D?. Thus the map

Z:[0,11x P, ~ M
defined by

Z(t,p;) = &'x(t)(py)
covers the map z:[0,1]x P, — M. The homotopy in F,M of {x():
t € [0,1]} to the identity braid representative is given by some map

w: [0,1]1x[0,11x P, - M
such that
w(O’t’pi) = x(t)(pi)’ w(lft’pi) = xot ’
w(s,O,p,-) = xoi = w(s’l’pi)

for every s, ¢ and ¢; and in addition for each s and ¢,
w(s,t,p;) + w(s,t,p;) if 5.

Treating w as a homotopy on s of x: [0,1] x P, - M, there is a covering
homotopy % of %: [0,1]x P, - M. Then

'w(O,t’Pt) = E(t»p{): ‘17)—(8, 0)2’{) = ﬁoi = @_0(3,1;1’{) ’
and ew(1,t,p;) =2° for every s, t and ¢, and in addition for each s and ¢,

W(s,t,py) + W(s,t,p;) if t5.
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Since e~1(x%) is discrete and (1,0, p;) =%, then w(1,t,p,) =&° for each
t and 5.

We recall that M may be considered to be a subset of R2. Now the image
of Z is compact, and im (%) < D? < M < R2. The image of % is also compact,
and im (@) < M < R2. Thus there is a homeomorphism %: R% - R? which
leaves im (%) pointwise fixed and which maps im (%) into D2. The proof
of Lemma 3 is complete when we have shown that éhw is a homotopy
in F,D? of {x(t): t € [0,1]} to the identity braid representative. First

Ehw(o’t’pi) = Ehi(t:pi) = éi(t:pi) = x(t)(pi)
since k is pointwise fixed on im (Z). Second
EhiD(s,0,p;) = Eh(E) = (%) = a®;,
and
since &°; € im (%) for each ¢. Third

for the same reason. Last, we check that for each s and ¢, the map
u(s,t): P, - D? given by

u(si t)(pi) = Ekw(sy t, Pi)

is in F,D2. Since h(im (w)) < D?, and é&: D? - D2, we have u(s,t)(p,) € D?
for each ¢. If 7 4, then since A and & are homeomorphisms, and @(s,t, p;) +
w(s,t,p;), we have

w(s,t)(p;) = ehw(s,t,p;) + Ehw(s,t,py) = u(s,t)(p;) -

Lemma 3 is now proved.

3. The factorization theorem:.

We interrupt the proof of Theorem 1, to prove the existence of a
factorization of any unpermuted n-strand braid on a surface into a
product of braids, each of which has all but one strand fixed (Theorem 2).
In the classical case of the surface R, Artin [1] derives a stronger result,
a unique factorization. Although our factorization could be obtained
from the fibrations of Fadell and Neuwirth [4], the direct geometric
proof given here, based on the braid coordinates of Artin is more con-
sistent with the approach of this paper. These methods were also used
by Dahm [3] to obtain a similar factorization theorem in a more general
setting.
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Lrmma 4. Let M be a surface, and let P be a fixed subset of P, =
{P1,Dgs- - s Pn}- Let {x(t): t €[0,1]} be a path in F, M such that x(t)(p;) s
in the inierior of M for all t€[0,1] and 1<t =< n, and such that whenever
P, €P and p; & P, then x(t)(p;)+2(0)(p;) for every te[0,1]. Let {y(¢):
t € [0,1]} be the path defined by

y(@) (@) = z(0)(p,) i peP,
x(t)(p;) if p,¢P.

Then {y(t):t€[0,1]} s a path sn F, M, and there exists a path {2(t):
te[1,2]} in F,M such that {x(t): t € [0,1]} 48 homotopic to the product of
{y(t): t€[0,11} and {2(t):t € [1,2]}, and for all t € [1,2], whenever p, & P,
then 2(t)(p;) =z(1)(py)-

It

Proor. The hypothesis, (t)(p;) #x(0)(p;) whenever p; € P and p; ¢ P
guarantees that {y(f): t € [0,1]} is a path in F, M. Since y(t)(p;) is always
in the interior of M, we may use an extension of isotopy theorem or
Artin’s braid coordinates, to extend the isotopy y(¢)(y(0))~ defined on
y(0)(P,) to get a continuous family {h,:¢€[0,1]} of homeomorphisms
hy: M — M such that

hyy(0)(ps) = y(t)(ps)

for 1£4<n and all t € [0,1], and A, is the identity map on M. Let h;=h,
and x(f)=x(0) for <0, and let A,;=h, and x(t)==(1) for ¢=1. Then

{hy: te(—o0,00)} and {x(f): t € (—o0,00)}
are continuous families. Define {2(t): t € [1,2]} by

2(t) (p) = kb2t —=1)(p) i peP,
= x(1)(p;) if p;¢P.
We define a family {u(t,s): ¢ € [0,2], s € [0,1]} of mappings P, -~ M by
w(t,8)(Py) = hehi,z(t—8)(ps) -

Noting that {z(t):te[0,1]} is homotopic to (and represents the same
braid as) {«(): ¢ € [0,2]}, we complete the proof of Lemma 4 by checking
((1)—(5) below) that

{u(t,s) : te[0,2],s€[0,1]}

is a homotopy in F, M of {«(¢): t € [0,2]} to the product of {y(¢): ¢ € [0,1]}
and {z(2):te[1,2]}.

(1) w(t,0)(ps) = kb 2(t)(p;) = x(£)(py) 0=<t<2, p;eP,.
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(2) u(t, 1)(py)
by 12(0)(p;) 0st<1,
= hl — 127( )(pz) = {hho,_llx(t— t)( ) 15t<2,
hyhyy(0)(p;) 0<t=1,
[hkrl (t—1 )( ) 1=ts2, peP,

hy(0)(p;) 0<t=<1,
hyhi 1x(t“‘1)(Pi) 1=5t=2, p;eP,
hyy(0)(p;) 1st22, p¢ P,
hihi izt -1)(p)  15t52, peP,
y(1)(p;) = z(1)(p;) 15t=2, p; ¢ P,
_ fy@@) 0st=1,
B {Z(t)(p,;) 1st<2,
(3) w(0,8)(p;) = hohZ; x(—5)(p;)
= hohy12(0)(py)
= 2(0)(p;) for se[0,1], p;e P, .
(4) u(2,8)(p;) = hghy (2 —$)(py)
= hyhy 7t 2(1)(py)
= z(1)(p;)
= x(2)(p,) for se[0,1], p;e P, .

(5) For each s €[0,1], the map u(t,s): P, -~ M is 1-1 for each ¢ € [0,2],
since x(t —s), kY, and A, are always 1-1 maps.

THEOREM 2. Any n-strand unpermuted braid [x] e n(F,M,x° on a
surface M may be expressed as a product

(2] = [y [wal" - - - - [¥a]

such that each factor [y;] € 7y(F,M,a°) has a representative {y;(t): ¢ € [0,1]}
with y,(t)(p;) =% whenever 1 +j, (that is only the j-th strand of y; moves).
Furthermore if for some subset J<{1,2,...,n}, a representative {x(t)

t€[0,11} of [x] has x(t)(p;) =2 for all t€[0,1] whenever j € J, then for
each j € J, the representative {y;(t):te[0,1]} of [y;] can be selected to be
the identity brasd, y,(t)=x° for all t € [0,1].

Proor. Let @={p,: ¢ € J}. For convenience, we parametrize all paths
in F, M with ¢te[0,1], and drop the homotopy notation used above for
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such paths. The product of a path y and a path z will be denoted by y-z.
Let zy=2. Then A; and B; below are true for j=0.

(A;) The path z; is a closed x0-based loop in F, M.
(B;) Whenever ¢<j or i € J, then z,;(t)(p;) =2° for all t € [0,1].

We shall show recursively, for 1 <j<n—1, that if we have a path z;_,
such that A;_, and B;_, are satisfied, we can find paths y; and z; such that
A;, B, and C; through F; below are all satisfied.

(C;) The path y; is a closed 2%-based loop in F, M.
(D;) Whenever i=j, then y;(t)(p;) =22 for all ¢t € [0,1].
(E;) Whenever j € J, then y;(t)=2° for all ¢ € [0,1].
(Fj) [21—1] = [?/j] [

This is done as follows: Let

P = {pj+1’pj+2" . "pn}_Q .

Altering z;_; by a small homotopy which does not move the endpoints
or the ¢th strand for ¢ <j or ¢ € J if necessary, we may obtain a closed
x%-based loop 2';_; such that 2’;_,(t)(p;) is in the interior of M for all ¢
and ¢, and such that whenever p, € P and p, ¢ P, then

2'510)(Px) *+ 2'3_1(0)(py)  for every i€ [0,1].
Thus we apply Lemma 4 to factor 2;_; =y;-z;, with

Yi(t)(py) = 2'54(0)(py) if p,e P,
=2, () i péP,

and z;(t)(p;) =2';_,(1)(p;) whenever p; ¢ P. Since 2';_, is a closed 2%-based
loop,
25 4(0)(;) = 2% = 2';4(1)(py)
for every ¢. Thus y;(1)(p;) =2° for every 3. Since 2’;_; =y;-2;, we see that
?/j(O) = 2’5—1(0) = 29, 2;(0) = Z‘/j(l) = z°,
Zj(l) = z,j__l(l) = xo .
Thus y; and z; are closed 2°-based loops and A;, C; and F; are satisfied.
To show D;, suppose that i4j. If ¢<j—1 or if 4 €J, then p; ¢ P, and
B,_, implies that
Yi(8) (@) = 2j1()(pg) = 2j1()(py) = 2%
forallte[0,1]. If 425+ 1 and ¢ ¢ J, then p, € P, and

Y;(8)(pg) = 2'34(0)(p;) = 2% forall t€[0,1].
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To show E;, suppose j € J. By Dy, it suffices to show
y;(t)(p;) = 2% forall te[0,1].
But j € J implies that p; & P, and thus
Yi(8)(Dy) = 25 40)(p;) = 24(0)(p;) = 2%
for all ¢€[0,1] by B,_;. Thus A; through F; have been established for
1sjsn—1. Let y,=2,_,. The assertions F; show that
[*] = [2] = (5] (9] - - - [yl -

The assertions C;, D; and E; in the conclusion of Theorem 2 have been
shown for 1£j<n—1, and C,, D,, and E, follow immediately from
A, ,and B, ;.

4. Completion of the proof of Theorem 1.
The proof of Theorem 1 will be complete when we have shown:

LemMwMa 5. If M is any closed surface except S? and P2, then ker (i) s
m(jy)), where (im(j,)) is the normal closure (consequence) of im (j,) in
7y (F, M,x0).

Proor. We must show that if [z] € 7, (F, M,2°) is such that
Z*([.'l?]) = (l’ l)' LS} 1) € H?=1 nl(M’xoi) ’

then for some oy, x,,. . .,0, € 7y(F,M,2%) and some f,f,,- - -,B, € im(ji)

we may factor
(2] = TThe1 oaBror™ -

As a consequence of Theorem 2, it is sufficient to prove this assertion
whenever [z]=[y,] has a representative y; such that for all ¢4j, then
Y;(t)(ps) =% for all £, that is when only one strand moves. In this case

tx(ly;D) = (L,1,...,1)
implies that

{y;()(ps) : te[0,1]} = 1 emy(M,2%) .

Let e: M -~ M be the universal covering space of M. Then M is
homeomorphic to Rz We fix one such homeomorphism and identify M
with R? by means of it. Thus all of the geometric properties of R? in its
usual coordinate system may be applied to M below. As in the proof of
Lemma 3, we choose a component D2 of e-1(D2?), and let é=e| D% Again,
¢ is a homeomorphism and we let &% =¢-1(x%) for each 7. Let

- 0 0 0 0 0
By = {20,2%,. . .,a% 1,2%,1,2% 5, . ., 2%} .
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Let X0 =e-1({x%}) and let
B = Uiy X% = e7Y(BY) .

Since
{yit)(p;) : te[0,1]} = 1 € my(M,2%) ,

the covering homotopy {#(¢): ¢t € [0,1]} in M which starts at 2%, is a closed
loop. Since y; € F, M, we have y,(t) is a 1-1 map for each ¢t € [0,1], and
thus g;(t) ¢ E’°, for any t € [0,1]. So {§(t): t € [0,1]} is a closed £%-based
loop in M — E;.

Let §; be the set of all paths

7 = {u(t): te[0,1]}

in H—E"-‘)j such that #(0) and %(l)e X"j:e‘l({x"j}). Then the path
{eu(t) : t€[0,1]} is a closed 2%-based loop in M — E%. If % € 8;, we may
define a braid representative {u(?): ¢ € [0,1]} by
u(t)(p,) = eu(t) if i=j,
= :L‘oi if i#j .
We define ¢;(%) to be the geometric braid «. If % and ¥ are composable
paths in §;, then
ps(@-0) = @;(%) ;D) .
If weS;, then ' e S§;, and ¢;(@*)=(p;@)) . If @€ S, is homotopic in
M —B?; to a path %, € 8; by a homotopy {&,: s € [0,1]} which fixes end
points, then {@;(&,): s €[0,1]} is a homotopy of a°-based loops in F, M
between @;(%) and @;(%,). In particular, for the %; and y; with which we

are working, ¢,(7,) =y;, and if Z is any £%-based loop in M — E", which is
homotopic in M — E° to 7;, then @,(2) represents the same element

[9i@)] = [95(7,)] = [y;] € my(F o M ,2°)

as does ¢j(gj)=yj’
Let A4; be the set of all paths

a = {a@): te[0,1]}

in H——Iff such that @(0)=2% and &(1) € X% =e({z%}). Thus 4,<5;,
and for each a e A;, the geometric braid (pj(a) represents an element
o € 7, (F,M,x%. Let B; be the set of all paths

b={bt): te[0,1]}

in M —E“’, satisfying the following two conditions
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(1) For some &7; € X%, the end points 5(0)=%";=5(1).
(2) b(t) € D" for all t € [0,1], where D® is the component of e¢-1(D?) which
contains Z7;.

Thus B;<8;, and for each b € B;, not only does the geometric braid
@;(b) represent an element g € (¥, M,x°), but the element § €im(j,).
Thus if we can show that §; is homotopic in M — E° to a product

I1i-: @bia, ™
with @,,@,,...8, € 4;, and b,,b,,...,b, € B;, then

5] = [9;F)] = [9s(TTi=1 @bx@ )] = [(TTi-1 @;(@)p;(0)g;(@) 1]
= ITkar B

where oy =[p;(@;)] € ny(F,M,2%) and B, =[gb,)] €im(j,) for k=1,2,
...,r, and the lemma would be proved.

Let C be an open Euclidean disk in M centered at %% with radius
large enough so that im(%;)<C (see Figure 1). Let E;=E°nC. Choose
a coordinate system in M =R? such that no two points of E,u{#%} lie
on the same vertical line. This is always possible since ;U {£%} is a finite
set. Let L(Ej) be the union of all vertical lines through points of E;.
For any #°-based loop %, let N(u) be the number of values of ¢ for which
u(t) € L(B;). Consider the set W of pairs of paths (%,%) such that

U = JTia1 @i,

for some @,,d,,...,a,€ A; and some by,b,,...,b, € B;, and such that
%+ is homotopic to §; in € — E,. By the definition of 4;, we see that o
must be a closed #%-based loop. Since the trivial path % =2 satisfies
the condition for %, and since L(¥;) consists of a finite number of lines
allowing us to alter #; by a small homotopy in 0- E; to a path % for which
N (%) is finite, we see that the minimum of N (%) for (w,v) € W is finite.
We choose a pair (#,7) € W for which N(?) has the smallest possible
value.

If N(@)=0, then im(@)nL(E;)=0, and since each component of
C - L(E,) is simply connected, 7 is homotopic in &~ L(#,) to the trivial
path £°. Thus ¥, is homotopic in &'~ E;< M — E% to %, and the lemma
is proved.

We now show that N(7) cannot be greater than zero, and thereby
complete the proof of Lemms 3. Suppose N(7)>0 were true. Then at
every point of im()nL(E;), the path  crosses a line Lg L(H)), since
otherwise a small homotopy of ¥ would reduce N (7). Since ¥ is a closed
%%,-based loop, there exist ¢;,f, € (0,1) and & line Lg L(E,) such that
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&

[ ) =)

—

V N
L(E;)

Fig. 1.

8 <ty, ¥(ty) € L, B(ty) € L, and for no ¢ € (¢;,t,) does o(t) € L(E;). For ex-
ample, if L is the line of L(E;) which is furthest from 2°;, and if ¢, and £,
are the smallest values of ¢ for which %(t) € L, then these conditions are
satisfied. Choose an ¢ small enough that (t) ¢ L(Z£;) for all
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tety—ety+e],
except for t=¢,.

Let &, be the point of E; which belongs to L, let D be the component
of e-1(D?) which contains #*;, and let (" be a Euclidean open disk with
center &, and radius so small that (*<CnD* and O*nL(E,;)=C"nL. If
#(t,) & CF, then o is homotopic to a path &’ with ¥'(1,) € (*n L, the homo-
topy taking place in { — E; in a small neighborhood of L, and modifying
?(t) only for ¢ € (t,—¢,t, +¢) in such a way that N(?')=N(v). Geometric-
ally, the part of ¥ which crosses L slides along L until it is very close to
Z*,. We note that (#,9') e W and N(?') is the smallest possible. Choose
¢’ small enough such that v'(t) € 0¥ for all t € [t,—¢’,t,+¢']. Let f be the
path

@) : te[0,,—e1),
let § be the path

{o'(t) : telt,—¢ ty—e'1},
and let % be the path

{o'(t) : telty,+e,11}.

Then % =f-§-h and N(§)=1. Let § be any path in D*— E, from ¥'(t,—¢')
to &, the point of e-1(2?;) in D*. Now § is homotopic in C* (but not § — E)
to a path P such that p(t,) € L, N(p)=1, and that p(t,) and g(t,) lie on
opposite sides of &*; in L. Then §-p~! may be thought of as a small loop
encircling #°;,. With homotopies taking place in € —E; we have

v =gk

> (f9-@*g 50 @) Fph.
But @,,,=f-g€ 4;and b,,, =g+ -p1-g € B;. We let

@ = (f9 @t grta- @i
and

v =[P
Then
w" = JTil1 @buy ™t

is of the proper form, and

—rr g T

v =u (fq)-@rgpro @t eh
~ U N UD X Y.

Thus (%",v"')e W and N(v"')=N(7) is the smallest possible. Also v"'(t) ¢
L(E)) for all t € (t,,1,).

Math. Scand. 33 — 6
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Replacing (%,v) by (@",7") if necessary, we may assume that o(¢,)
and %(t,) lie on the same side of &, in L. Choosing ¢’ small enough, the
path

{B(t): telt,+e" t,—€"]}

is homotopic in a strip of € — L(E,) to the line segment § from (¢, +¢'’)
to 9(t,—¢"’) and the path

{o(t): telty—¢'t,+"1}-5-{B(t) : tety,—e" ty+€"]}
is homotopic in § — E; to the line segment & from (¢, —¢"’) to B(ty+¢’’).
Let

7" = {o(t): te[0,t,—¢€"1}-5-{B(t): tety+e,1]}.
Then %"’ is homotopic in €' — E; to ¥, and thus (#,7""") € W. But N(¥"') =

N(v)—2, a contradiction to the minimality of N(¥). Thus N(¥)=0 and
the lemma has been proved.
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