ARITHMETIC NORMALITY FOR PROJECTIVE EMBEDDINGS OF FLAG MANIFOLDS

TORGNY SVANES

1. Introduction.

Let X be a variety over a field k, and let \mathscr{L} be a very ample invertible sheaf on X. Then \mathscr{L} defines an embedding in $\mathbf{P}_k{}^m = \mathbf{P}(H^0(X,\mathscr{L}))$ where $m = \operatorname{rank}(H^0(X,\mathscr{L}))$ as follows: set

$$R_{_{\boldsymbol{\nu}}}=\,\mathrm{Im}\,[\big(H^{0}(X,\mathscr{L})\big)^{\bigotimes_{\boldsymbol{\nu}}}\to H^{0}(X,\mathscr{L}^{\bigotimes_{\boldsymbol{\nu}}})]$$

and $R = \bigoplus_{\nu=0}^{\infty} R_{\nu}$. Then the surjection $S(H^{0}(X, \mathcal{L})) \to R$, where $S(H^{0}(X, \mathcal{L}))$ is the symmetric algebra of $H^{0}(X, \mathcal{L})$, defines a closed immersion

$$X = \operatorname{Proj}(R) \to P_{k}^{m}$$
.

X is said to be arithmetically normal (respective arithmetically Cohen-Macauly) for the given embedding if the homogeneous coordinate ring R is normal (respective Cohen-Macauly).

This paper concerns the question of arithmetic normality for projective embeddings of flag schemes $D_n(\mathscr{E})$ of type $\pi=(p_1,\ldots,p_r)$ over a field k, and, more generally, of subschemes of $D_n(\mathscr{E})$ of the type $X_a=X_{a_1,\ldots,a_r}$ described in section 2 (\mathscr{E} is a vector space over k; see section 1 for notation). Previously, these questions have been studied by purely algebraic methods by J. I. Igusa who proved (in [3]) that Grassmannians, that is the case $\pi=(p,q)$, are arithmetically normal for the Plücker embedding. Igusa's method was extended by T. Nishimura [7], who proved that flag schemes of the type $D_{(p_1,p_2,p_3)}(\mathscr{E})$ are arithmetically normal for the standard embedding. More recently, it has been proved, also by purely algebraic methods, by M. Hochster [2] and D. Laksov [6], that Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macauly for the Plücker embedding.

Our method is to prove that certain maps of cohomology groups are surjective (a more detailed description follows below), and then apply a well-known theorem of Serre (see section 4). Our results in terms of normality of coordinate rings are the following:

Recieved December 4, 1972.

(1) For arbitrary $a = (a_1, \ldots, a_r)$ as in section 2 (and with $S = \operatorname{Spec}(k)$), the scheme X_a is arithmetically normal for any embedding into a projective m-space P_k^m (theorem (4.3)).

In particular, all flag schemes over k are arithmetically normal for any embedding into a projective m-space. This, together with a previous result [9, theorem (3.8.1)], yield the following:

(2) An arbitrary flag scheme $D_n(\mathscr{E})$ over k is arithmetically normal and Cohen-Macauly for any embedding of $D_n(\mathscr{E})$ into a projective m-space P_k^m (theorem (4.5)).

To show that X_a is arithmetically normal for any projective embedding, it is enough, by the theorem of Serre mentioned above, to show that the canonical map (notation as in section 4)

$$H^0(X_{\boldsymbol{a}}, \mathcal{M}_{\boldsymbol{a}}^{\delta}) \otimes H^0(X_{\boldsymbol{a}}, \mathcal{M}_{\boldsymbol{a}}^{\gamma}) \to H^0(X_{\boldsymbol{a}}, \mathcal{M}_{\boldsymbol{a}}^{\delta + \gamma})$$

is surjective for all $\delta = (\delta_1, \dots, \delta_r)$ and $\gamma = (\gamma_1, \dots, \gamma_r)$ satisfying $\delta_i \ge 0$ and $\gamma_i \ge 0$ for $1 \le i \le r - 1$.

In section 3 we consider the more general situation where X_a is defined over a locally noetherian scheme S. The main result of section 3 is:

(3) Assume δ and γ satisfy the conditions above. Then the canonical homomorphism

$$g_{\boldsymbol{a},*}(\mathscr{M}_{\boldsymbol{a}}^{\delta})\otimes g_{\boldsymbol{a},*}(\mathscr{M}_{\boldsymbol{a}}^{\gamma}) \to g_{\boldsymbol{a},*}(\mathscr{M}_{\boldsymbol{a}}^{\delta+\gamma})$$

is an epimorphism of \mathcal{O}_S -modules (theorem (3.7)). Here $g_a\colon X_a\to S$ is the structure morphism.

In particular, if $D = D_{(1,...,1)}(\mathscr{E})$ is the full flag scheme over S and $f: D \to S$ is the structure morphism, then for any two non increasing sequences $\alpha = (\alpha_1, ..., \alpha_e)$ and $\beta = (\beta_1, ..., \beta_e)$ (that is $\alpha_i \ge \alpha_{i+1}$ and $\beta_i \ge \beta_{i+1}$ for all i), the canonical homomorphism

$$f_*(\mathscr{L}^{\alpha}) \otimes f_*(\mathscr{L}^{\beta}) \to f_*(\mathscr{L}^{\alpha+\beta})$$

is an epimorphism of \mathcal{O}_S -modules.

In sections 1 and 2 we fix the notation and recall some basic facts which we need.

1. Notation.

Let S be a scheme. For any morphism of schemes $T \to S$ and any \mathcal{O}_S -module \mathscr{E} , denote by \mathscr{E}_T the pullback to T of \mathscr{E} .

An \mathcal{O}_T -module \mathcal{Q} is called a q-quotient of \mathscr{E}_T if \mathcal{Q} is locally free of constant rank q and is a quotient module of \mathscr{E}_T (that is, there is a surjection of \mathscr{O}_T -modules $\mathscr{E}_T \to \mathcal{Q}$).

In this paper let $\mathscr E$ be a locally free $\mathscr O_S$ -module of constant rank e. The schemes we consider will be S-schemes.

Let $r \ge 1$ and let $\pi = (p_1, \ldots, p_r)$ be a sequence of positive integers satisfying $\sum_{i=1}^r p_i = e$. Then set $q_j = \sum_{i=1}^j p_i$ for $1 \le j \le r$, and for convenience set $p_0 = q_0 = 0$. Denote by $\mathbf{D}_{\pi}(\mathscr{E})$ or $\mathbf{D}_{(p_1, \ldots, p_r)}(\mathscr{E})$ the flag scheme of type π . That is, $\mathbf{D}_{\pi}(\mathscr{E})$ represents the functor whose values in an S-scheme T is the set of sequences of \mathscr{O}_T -modules

$$\mathcal{E}_T \to \mathcal{R}_{r-1} \to \mathcal{R}_{r-2} \to \ldots \to \mathcal{R}_1$$

where \mathcal{R}_j is a q_j -quotient of \mathcal{E}_T for all j. For convenience we will set $\mathcal{R}_r = \mathcal{E}_T$ and $\mathcal{R}_0 = 0$. We will call such a sequence a π -sequence of quotients of \mathcal{E}_T .

Set $X = \mathbf{D}_{\pi}(\mathscr{E})$. Then X comes equipped with a universal π -sequence of quotients of E_X

$$\mathscr{E}_X \to \mathscr{Q}_{r-1} \to \mathscr{Q}_{r-2} \to \ldots \to \mathscr{Q}_1$$
.

That is, if T is an S-scheme, then for every π -sequence of quotients of \mathscr{E}_T

$$\mathcal{E}_T \to \mathcal{R}_{r-1} \to \mathcal{R}_{r-2} \to \ldots \to \mathcal{R}_1$$

there is a unique morphism $\varphi \colon T \to X$ such that this sequence is isomorphic to the pullback to T of the universal sequence on X in the sense that we have a commutative diagram

We call \mathcal{Q}_j the universal q_j -quotient of \mathscr{E}_X . Throughout this paper, X and \mathcal{Q}_j , $1 \leq j \leq r$, will be as above.

In the case r=2, setting $p=p_1$ and $q=p_2$, the scheme $\mathbf{D}_{(p,q)}(\mathscr{E})$ is called the *Grassmannian of p-quotients of* \mathscr{E} . We will use the notation $\mathbf{G}_p(\mathscr{E})$ as well as $\mathbf{D}_{(p,q)}(\mathscr{E})$. For p=1, this is the fibred projective space $\mathbf{P}(\mathscr{E})$.

For the case $\pi = (1, ..., 1)$, we fix the following special notation:

Set $D = D(\mathscr{E}) = D_{\pi}(\mathscr{E})$ and let

$$\mathscr{E}_D \to \mathscr{P}_{e-1} \to \mathscr{P}_{e-2} \to \ldots \to \mathscr{P}_1$$

be the universal sequence on D. Then set

$$\mathcal{L}_{i} = \ker(\mathcal{P}_{i} \to \mathcal{P}_{i-1})$$

for $1 \le j \le e$. If $\alpha = (\alpha_1, \dots, \alpha_e)$ is a sequence of integers, set

$$\mathscr{L}^{\scriptscriptstyle{\alpha}} = \mathscr{L}_1^{\scriptscriptstyle{\alpha_1}} \mathscr{L}_2^{\scriptscriptstyle{\alpha_2}} \dots \mathscr{L}_e^{\scriptscriptstyle{\alpha_e}} = \mathscr{L}_1^{\otimes_{\alpha_1}} \otimes \mathscr{L}_2^{\otimes_{\alpha_2}} \otimes \dots \otimes \mathscr{L}_e^{\otimes_{\alpha_e}}.$$

Denote by $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_e$ the natural basis for $Z^{\oplus e}$.

Remark (1.1). Notice that for an arbitrary $\pi = (p_1, \dots, p_r)$, the π -sequence

$$\mathscr{E}_D o \mathscr{P}_{q_{r-1}} o \mathscr{P}_{q_{r-2}} o \ldots o \mathscr{P}_{q_1}$$

on $D = \mathbf{D}(\mathscr{E})$ defines a canonical morhism $h: \mathbf{D}(\mathscr{E}) \to \mathbf{D}_{\pi}(\mathscr{E})$ such that $\mathscr{P}_{q_i} \cong h^*(\mathscr{Q}_j)$ for all j.

2. Special subschemes of $D_{\pi}(\mathscr{E})$.

In this section we recall the definitions and some basic properties of some particular subschemes of $X = D_{\pi}(\mathcal{E})$. For proofs and details, we refer to [9, (1.4)].

With the notation of section 1. let $a = (a_1, \ldots, a_r)$ be an r-sequence of integers satisfying

$$(2.1) e \geq a_1 \geq a_2 \geq \ldots \geq a_r \geq 0,$$

$$(2.2) a_i \leq e - q_i \text{for } 1 \leq i \leq r,$$

and assume there is a sequence of locally free submodules of $\mathscr E$

$$\mathscr{A}_r \subset \mathscr{A}_{r-1} \subset \ldots \subset \mathscr{A}_1 \subset \mathscr{E}$$

such that \mathcal{A}_i has constant rank a_i and is locally a direct summand in \mathcal{A}_{i-1} for all *i*. Notice that (2.2) implies $a_r = 0$.

We will call such a sequence an a-sequence of subbundles of \mathcal{E} (where we use the term subbundle to mean a locally free submodule of \mathcal{E} which locally is a direct summand in \mathcal{E}).

Denote by $X_{\mathscr{A}_1,\ldots,\mathscr{A}_r}$ the scheme of zeros of the maps $\mathscr{A}_{i,X} \to \mathscr{Q}_i$ for $1 \le i \le r-1$, where $\mathscr{A}_{i,X}$ denotes the pullback to X of \mathscr{A}_i . That is, $X_{\mathscr{A}_1,\ldots,\mathscr{A}_r}$ represents the functor whose values in an S-scheme T are the morphisms $t\colon T\to X$ such that the composite map $\mathscr{A}_{i,T}\to\mathscr{E}_T\to t^*\mathscr{Q}_i$ is the zero homomorphism for every i. Recall that the schemes $X_{\mathscr{A}_1,\ldots,\mathscr{A}_r}$ are closed subschemes of X which are smooth over S (see [9, (1.4)]).

Since it will always be clear which sequence $\mathcal{A}_1, \ldots, \mathcal{A}_r$ we refer to, we will for convenience use the notation $X_a = X_{a_1, \ldots, a_r}$ as well as $X_{\mathcal{A}_1, \ldots, \mathcal{A}_r}$.

REMARK (2.3). The notation X_a will be particularly convenient when $\mathscr E$ is free. When that is the case, we will fix a global basis for $\mathscr E$ and let a sequence (a_1, \ldots, a_r) as above correspond to the unique sequence $\mathscr A_1, \ldots, \mathscr A_r$ we get by, for every i taking $\mathscr A_i$ to be the submodule of $\mathscr E$ generated by the first a_i elements of the basis. This gives a unique scheme X_a for every sequence $a = (a_1, \ldots, a_r)$.

For convenience, we fix a special notation for the case $\pi = (1, ..., 1)$. In that case we have an $(a_1, ..., a_e)$ -sequence of subbundles of \mathscr{E}

$$\mathscr{A}_e \subset \mathscr{A}_{e-1} \subset \ldots \subset \mathscr{A}_1 \subset \mathscr{E}$$

where $\boldsymbol{a} = (a_1, \dots, a_e)$ satisfies

$$(2.1') e \ge a_1 \ge a_2 \ge \ldots \ge a_e \ge 0 ,$$

$$(2.2') a_i \leq e - i \text{for } 1 \leq i \leq e.$$

We will denote by $D_{\mathscr{A}_1,\ldots,\mathscr{A}_r}$ or D_a (instead of $X_{\mathscr{A}_1,\ldots,\mathscr{A}_e}$ and X_a) the subscheme of $D=D(\mathscr{E})$ corresponding to the above sequence. So $D_{\mathscr{A}_1,\ldots,\mathscr{A}_e}$ (or D_a) is the scheme of zeros of the maps $\mathscr{A}_{i,D} \to \mathscr{P}_i$ for $1 \leq i \leq e-1$.

We will use the following proposition, which is proved in [9, (1.4)]. The version we give here is valid for the case that $\mathscr E$ is free, which is the case we will need in our applications. So let $\mathscr E$ be free, fix a global basis for $\mathscr E$, and let the correspondence between sequences $a=(a_1,\ldots,a_e)$ satisfying (2.1') and (2.2') and subschemes D_a of D be as described in remark (2.3).

PROPOSITION (2.4). Let $\mathbf{a} = (a_1, \ldots, a_e)$ be as above. Fix j, $1 \le j \le e$, and assume $\mathbf{b} = \mathbf{a} + \varepsilon_j$ satisfies (2.1') and (2.2'). Then $D_{\mathbf{b}}$ is a divisor in $D_{\mathbf{a}}$ and we have an exact sequence

$$0 \to \mathcal{L}_{j,\mathbf{a}}^{-1} \to \mathcal{O}_{D_{\mathbf{a}}} \to \mathcal{O}_{D_{\mathbf{b}}} \to 0$$

where $\mathscr{L}_{i,a}^{-1}$ is the restriction to D_a of \mathscr{L}_{i}^{-1} .

3. The main theorem.

Let the notation be as in 1 and 2. Assume in addition that S is locally noetherian. α, β, \ldots will denote sequences of integers which will be exponents to the \mathcal{L}_{i} 's.

Let $a = (a_1, \ldots, a_e)$ satisfy (2.1') and (2.2') and assume, as in section 2, that a_1, \ldots, a_e are the ranks of the modules in a sequence

$$\mathscr{A}_e \subset \mathscr{A}_{e-1} \subset \ldots \subset \mathscr{A}_1 \subset \mathscr{E}$$

of subbundles of \mathscr{E} . Recall (se remark (2.3)) that when \mathscr{E} is free, every sequence (a_1, \ldots, a_e) which satisfies (2.1') and (2.2') corresponds to an (a_1, \ldots, a_e) -sequence of subbundles of \mathscr{E} .

Let $f: \mathbf{D}(\mathscr{E}) \to S$ be the structure morphism, and let $f_a: D_a \to S$ be the restriction of f to $D_a = D_{\mathscr{A}_1, \ldots, \mathscr{A}_{\mathcal{E}}}$. So we have the commutative diagram

$$\begin{array}{c|c}
D_{a} & \xrightarrow{c} & D(\mathscr{E}) \\
f_{a} & & & f
\end{array}$$

Let $\mathscr{L}_{j,a}$ be the restriction to D_a of \mathscr{L}_j , and for any sequence $\alpha = (\alpha_1, \ldots, \alpha_e)$ of integers, let \mathscr{L}_a^{α} be the restriction to D_a of \mathscr{L}^{α} . Finally denote by $R^l f_{a,*}(\mathscr{L}_a^{\alpha})$ the l'th higher direct image of \mathscr{L}_a under f_a .

We recall the following results (for proofs, see [9, (3.4.1) and (3.6.1)], or [4]).

PROPOSITION (3.1). With $\mathbf{a} = (a_1, \dots, a_e)$ and $\alpha = (\alpha_1, \dots, \alpha_e)$ as above, assume there is an integer j, $1 \le j \le e$, such that $a_j = a_{j+1}$ and $\alpha_j = \alpha_{j+1} - 1$. Then we have $R^l f_{\mathbf{a}, *}(\mathscr{L}_{\mathbf{a}}^{\alpha}) = 0$ for all l.

THEOREM (3.2). Let $\mathbf{a} = (a_1, \ldots, a_e)$ be arbitrary. Assume $\alpha = (\alpha_1, \ldots, \alpha_e)$ satisfies $\alpha_i \geq \alpha_{i+1} - 1$ for $1 \leq i \leq e-1$. Then we have $R^l f_{\mathbf{a}, *}(\mathscr{L}_{\mathbf{a}}^{\alpha}) = 0$ for all $l \neq 0$.

We are now in a position to prove the main theorem of this paper.

THEOREM (3.3). Let the notation be as above. Assume the sequences $\alpha = (\alpha_1, \ldots, \alpha_e)$ and $\beta = (\beta_1, \ldots, \beta_e)$ are non increasing (that is, $\alpha_i \ge \alpha_{i+1}$ and $\beta_i \ge \beta_{i+1}$ for $1 \le i \le e-1$). Then the canonical map

$$f_{a,*}(\mathscr{L}_{a}^{\alpha})\otimes f_{a,*}(\mathscr{L}_{a}^{\beta})\to f_{a,*}(\mathscr{L}_{a}^{\alpha+\beta})$$

is an epimorphism of \mathcal{O}_S -modules.

PROOF. The statement is local on S, so we may assume that \mathscr{E} is free. Then we have the situation described in (2.3), and (2.4) applies.

Let $\alpha=(\alpha_1,\ldots,\alpha_e)$ and $\beta=(\beta_1,\ldots,\beta_e)$ be non increasing. The theorem will be proved by induction on $\sum_{i=1}^e (e-a_i-i)$. For $\sum_{i=1}^e (e-a_i-i)=0$, condition (2.2') implies $a_i=e-i$ for all i, hence we have $D_a=S$ by the definition of D_a . So in this case the theorem is trivial because $\mathscr{L}_a^{\ \alpha}$ and $\mathscr{L}_a^{\ \beta}$ are both equal to the structure sheaf \mathscr{O}_S .

Now let $\sum_{i=1}^{e} (e-a_i-i)=m>0$, and assume by induction that the theorem is true for sequences $a'=(a_1',\ldots,a_e')$ which satisfy $\sum_{i=1}^{e} (e-a_i'-i) < m$. Choose k such that $e-a_k-k>0$ and $a_k=a_{k+1}$ (for example the largest k such that $e-a_k-k>0$; note that k<e since we have $e-a_e-e=0$), and let j be the smallest number such that $a_j=a_k$. Then we have $e-a_j-j \ge e-a_k-k>0$ and $a_{j-1}>a_j$. Hence the sequence $b=a+\varepsilon_j$ satisfies (2.1') and (2.2'). Therefore, by (2.4), D_b is a divisor in D_a and we have an exact sequence

$$0 \to \mathscr{L}_{j,\boldsymbol{a}}^{-1} \to \mathscr{O}_{D_{\boldsymbol{a}}} \to \mathscr{O}_{D_{\boldsymbol{b}}} \to 0$$

which yields the exact sequences

$$C_1: 0 \to \mathcal{L}_{\boldsymbol{a}}^{\alpha - \varepsilon_j} \to \mathcal{L}_{\boldsymbol{a}}^{\alpha} \to \mathcal{L}_{\boldsymbol{b}}^{\alpha} \to 0$$

and

$$C_2: 0 \to \mathcal{L}_{\boldsymbol{a}}^{\alpha+\beta-\epsilon_j} \to \mathcal{L}_{\boldsymbol{a}}^{\alpha+\beta} \to \mathcal{L}_{\boldsymbol{b}}^{\alpha+\beta} \to 0$$
.

Since $\alpha = (\alpha_1, \ldots, \alpha_e)$ is non increasing, the sequence $\alpha' = \alpha - \varepsilon_i$ will satisfy the condition $\alpha_i' \ge \alpha_{i+1}' - 1$ for $1 \le i \le e - 1$. Therefore, by (3.2), the long exact sequence of higher direct images under f_a which corresponds to the sequence C_1 above, will reduce to the exact sequence

$$C_3 \colon 0 \to f_{\boldsymbol{a},\, *}(\mathscr{L}_{\boldsymbol{a}}^{\alpha-\epsilon_j}) \to f_{\boldsymbol{a},\, *}(\mathscr{L}_{\boldsymbol{a}}^{\alpha}) \to f_{\boldsymbol{b},\, *}(\mathscr{L}_{\boldsymbol{b}}^{\alpha}) \to 0 \ .$$

Similarly, since $\alpha + \beta$ clearly is non increasing, the sequence $\alpha'' = \alpha + \beta - \varepsilon_j$ will satisfy the condition $\alpha_i'' \ge \alpha_{i+1}'' - 1$ for $1 \le i \le e - 1$, and we get as above, by (3.2), the exact sequence

$$0 \to f_{a,\, *}(\mathscr{L}_{a}^{\ \alpha+\beta-\epsilon_{j}}) \to f_{a,\, *}(\mathscr{L}_{a}^{\ \alpha+\beta}) \to f_{b,\, *}(\mathscr{L}_{b}^{\ \alpha+\beta}) \to 0 \ .$$

Tensoring the sequence C_3 with $f_{a,*}(\mathscr{L}_a^{\beta})$, we get the following diagram of canonical maps with exact columns

$$f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha-\epsilon_{j}}) \otimes f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\beta}) \xrightarrow{\sigma'} f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha+\beta-\epsilon_{j}})$$

$$\downarrow \qquad \qquad \downarrow^{\lambda}$$

$$f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha}) \otimes f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\beta}) \xrightarrow{\sigma} f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha+\beta})$$

$$\downarrow^{\lambda'}$$

$$f_{\boldsymbol{b},*}(\mathscr{L}_{\boldsymbol{b}}^{\alpha}) \otimes f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\beta}) \xrightarrow{\sigma''} f_{\boldsymbol{b},*}(\mathscr{L}_{\boldsymbol{b}}^{\alpha+\beta})$$

$$\downarrow \qquad \qquad \downarrow^{\lambda'}$$

$$0$$

Actually, it follows from (3.2) and the theory for cohomology and base-change that $f_{a,*}(\mathcal{L}_a^{\beta})$ is locally free (see EGA III (7.7) and (7.8)), hence the upper left map in the diagram is injective. But we will not need this.

We have $\sum_{i=1}^{e} (e - b_i - i) = m - 1$. So by our induction hypothesis, the theorem is true for D_b (that is, for the sequence $b = (b_1, \ldots, b_e)$). Therefore the map

$$f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\alpha}) \otimes f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\beta}) \to f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\alpha+\beta})$$

is an epimorphism. Also, since the sequence C_1 is exact for arbitrary non increasing α , in particular for $\alpha = \beta$, we see that the map $f_{a,*}(\mathscr{L}_a^{\ \beta}) \to f_{b,*}(\mathscr{L}_b^{\ \beta})$ is an epimorphism. Hence σ'' in the diagram (*) above is the composite of the two epimorphisms

$$f_{b,*}(\mathscr{L}_{b}^{\alpha}) \otimes f_{a,*}(\mathscr{L}_{a}^{\beta}) \to f_{b,*}(\mathscr{L}_{b}^{\alpha}) \otimes f_{b,*}(\mathscr{L}_{b}^{\beta}) \to f_{b,*}(\mathscr{L}_{a}^{\alpha+\beta})$$

and is therefore itself an epimorphism.

Now, using the diagram (*) together with the surjectivity of σ'' , we will prove the theorem for D_n in two steps. First we show that the map

$$f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha}) \otimes f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\beta}) \to f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha+\beta})$$

is surjective when β satisfies the condition $\beta_j = \beta_{j+1}$. Then we use that result to prove the surjectivity for arbitrary (non increasing) α and β .

(1) Assume $\beta_j = \beta_{j+1}$. The proof goes by induction on $\alpha_j - \alpha_{j+1}$.

For $\alpha_j - \alpha_{j+1} = 0$, the sequence $\alpha' = \alpha - \varepsilon_j$ satisfies $\alpha_j' = \alpha_{j+1}' - 1$. Therefore, since $a_j = a_{j+1}$ by our choice of j, proposition (3.1) implies $f_{a,*}(\mathcal{L}_a^{\alpha-\varepsilon_j}) = 0$. Furthermore, since we by assumption have $\beta_j = \beta_{j+1}$, the sequence $\alpha'' = \alpha + \beta - \varepsilon_j$ also satisfies the condition $\alpha_j'' = \alpha_{j+1}'' - 1$, and (3.1) yields $f_{a,*}(\mathcal{L}_a^{\alpha+\beta-\varepsilon_j}) = 0$. So the maps λ and λ' in diagram (*) are both isomorphisms, and σ is an epimorphism since σ'' is.

Now let $\alpha_i - \alpha_{i+1} = n > 0$ and assume by induction that the map

$$f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha'}) \otimes f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\beta}) \to f_{\boldsymbol{a},*}(\mathscr{L}_{\boldsymbol{a}}^{\alpha'+\beta})$$

is surjective for every non increasing $\alpha' = (\alpha_1', \ldots, \alpha_e')$ which satisfies $\alpha_j' - \alpha_{j+1}' < n$. Since α is non increasing and we have $\alpha_j > \alpha_{j+1}$, the sequence $\alpha' = \alpha - \varepsilon_j$ is clearly non increasing and satisfies $\alpha_j' - \alpha_{j+1}' = n - 1$. Hence the map σ' in the diagram (*) is an epimorphism by the induction hypothesis above. A diagram chasing shows that the surjectivity of σ' and σ'' implies that σ is surjective. This concludes the case $\beta_j = \beta_{j+1}$.

(2) Now let $\alpha = (\alpha_1, \dots, \alpha_e)$ and $\beta = (\beta_1, \dots, \beta_e)$ be arbitrary (non increasing). To show that the map σ in the diagram (*) is an epimorphism, we will again use induction on $\alpha_j - \alpha_{j+1}$.

For $\alpha_j - \alpha_{j+1} = 0$, we have the situation of case (1) above, but with the roles of α and β switched. Hence σ is surjective by the case (1) result.

The induction now proceeds exactly as in case (1). This concludes the proof of theorem (3.3).

(3.4) There is a natural extension of theorem (3.3) to a corresponding theorem on a subscheme $X_a = X_{a_1, \ldots, a_r}$ of a flag scheme $X = \mathbf{D}_{\pi}(\mathscr{E})$ where $\pi = (p_1, \ldots, p_r)$ is arbitrary and where a_1, \ldots, a_r are the ranks of an r-sequence of subbundles of \mathscr{E} as in section 2.

For the rest of this section, fix the following notation. Denote by $\mathcal{Q}_{i,a}$ the restriction to X_a of the universal q_i -quotient \mathcal{Q}_i on X. Set

$$\mathcal{M}_i = \Lambda^{q_i} \mathcal{Q}_i, \quad 1 \leq i \leq r,$$

and denote by $\mathcal{M}_{i,a}$ the restriction to X_a of \mathcal{M}_i for all *i*. For any *r*-sequence $\delta = (\delta_1, \ldots, \delta_r)$ of integers, set

$$\mathscr{M}^{\delta} = \mathscr{M}_{1}^{\delta_{1}} \dots \mathscr{M}_{r}^{\delta_{r}} = \mathscr{M}_{1}^{\otimes \delta_{1}} \otimes \dots \otimes \mathscr{M}_{r}^{\otimes \delta_{r}}$$

and let $\mathcal{M}_a^{\ \delta}$ be the restriction to X_a of \mathcal{M}^{δ} .

Corresponding to the r-sequence (a_1, \ldots, a_r) , define the e-sequence $\mathbf{b} = (b_1, \ldots, b_e)$ by setting $b_i = a_j$ for $q_{j-1} < i \le q_j$ and $1 \le j \le r$. Let $D_{\mathbf{b}}$ be the corresponding subscheme of $D = \mathbf{D}(\mathscr{E})$.

Corresponding to the r-sequence $(\delta_1, \ldots, \delta_r)$, define the e-sequence $\alpha = (\alpha_1, \ldots, \alpha_e)$ by setting $\alpha_i = \sum_{l=j}^r \delta_l$ for $q_{j-1} < i \le q_j$ and $1 \le j \le r$.

REMARK (3.5). Notice that the sequence $(\alpha_1, \ldots, \alpha_e)$ is non increasing if and only if the δ_i 's are non negative for $1 \le i \le r - 1$.

Let $h: D \to X$ be the canonical morphism (see remark (1.1)). From the definition of h, we have the isomorphisms $h^*\mathcal{Q}_i \cong \mathscr{P}_{q_i}$ for $1 \leq i \leq r$. Hence we also get $h^*(\mathscr{M}_i) \cong \bigwedge^{q_i} \mathscr{P}_{q_i}$ for all i. Now the exact sequences (see definition of \mathscr{L}_k in section 1)

$$0 \to \mathcal{L}_k \to \mathcal{P}_k \to \mathcal{P}_{k-1} \to 0$$

yield the isomorphisms

$$\wedge^k \mathscr{P}_k \, \cong \, \mathscr{L}_k \otimes \wedge^{k-1} \, \mathscr{P}_{k-1} \quad \text{ for } 1 \, \leqq \, k \, \leqq \, e \; .$$

By induction on k we get the isomorphisms

$$\wedge^k \, \mathscr{P}_k \, \cong \, \mathscr{L}_1 \mathscr{L}_2 \dots \mathscr{L}_k, \quad \, 1 \, \leqq \, k \, \leqq \, e \, \, .$$

This together with the isomorphism $h^*(\mathcal{M}_i) \cong \Lambda^{q_i} \mathcal{P}_{q_i}$ above, yield

$$h^*(\mathcal{M}_i) \cong \mathcal{L}_1 \mathcal{L}_2 \dots \mathcal{L}_{q_i}$$
 for all i .

From the definition of $\alpha = (\alpha_1, \dots, \alpha_e)$ above, it is then easy to see that we get an isomorphism

$$h^*(\mathscr{M}^{\delta}) \cong \mathscr{L}^{\alpha}$$
.

The way we defined $b = (b_1, \ldots, b_e)$, we will have a cartesian diagram (see [9, (1.4)])

$$\begin{array}{c|c} D_{b} & \longrightarrow & D \\ \downarrow^{h_{a}} & \Box & \downarrow^{h} \\ X_{a} & \longrightarrow & X \end{array}$$

We therefore get the isomorphism

$$h_{\boldsymbol{a}}^*(\mathscr{M}_{\boldsymbol{a}}^{\delta}) \cong \mathscr{L}_{\boldsymbol{b}}^{\alpha}$$

where h_a is as in the diagram above. Let $g\colon X\to S$ be the structure morphism of X, and denote by g_a the restriction of g to X_a . We have a commutative diagram

It is proved in [9, (3.3.1)], that we in the situation above have an isomorphism

$$(3.6) R^l g_{\mathbf{a}, *}(\mathscr{M}_{\mathbf{a}}^{\delta}) \cong R^l f_{\mathbf{b}, *}(\mathscr{L}_{\mathbf{b}}^{\alpha})$$

for every l.

THEOREM (3.7). Let $\mathbf{a} = (a_1, \ldots, a_r)$ be as above. Assume the sequences $\delta = (\delta_1, \ldots, \delta_r)$ and $\gamma = (\gamma_1, \ldots, \gamma_r)$ satisfy $\delta_i \geq 0$ and $\gamma_i \geq 0$ for $1 \leq i \leq r-1$. Then the canonical map

$$g_{\boldsymbol{a},*}(\mathcal{M}_{\boldsymbol{a}}^{\ \delta}) \otimes g_{\boldsymbol{a},*}(\mathcal{M}_{\boldsymbol{a}}^{\ \gamma}) \to g_{\boldsymbol{a},*}(\mathcal{M}_{\boldsymbol{a}}^{\ \delta+\gamma})$$

is an epimorphism of $\mathcal{O}_{\mathbf{S}}$ -modules.

PROOF. By the preceding discussion, we have a commutative diagram

$$g_{\mathbf{a},*}(\mathscr{M}_{\mathbf{a}}^{\delta}) \otimes g_{\mathbf{a},*}(\mathscr{M}_{\mathbf{a}}^{\gamma}) \xrightarrow{\sigma} g_{\mathbf{a},*}(\mathscr{M}_{\mathbf{a}}^{\delta+\gamma})$$

$$\downarrow^{\lambda} \cong \qquad \qquad \downarrow^{\lambda} \cong \qquad \qquad \downarrow^{\lambda} \cong \qquad \qquad \downarrow^{\delta} \oplus \downarrow^{\delta}$$

$$f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\alpha}) \otimes f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\beta}) \xrightarrow{\sigma'} f_{\mathbf{b},*}(\mathscr{L}_{\mathbf{b}}^{\alpha+\beta})$$

where λ and λ' are isomorphisms (see (3.6)). Here $\beta = (\beta_1, \ldots, \beta_e)$ is defined by setting $\beta_i = \sum_{l=j}^r \gamma_l$ for $q_{j-1} < i \le q_j$ and $1 \le j \le r$. The diagram shows that σ is an epimorphism if and only if σ' is. The conditions on δ and γ imply that α and β are non increasing (see (3.5)). Hence σ' is an epimorphism by theorem (3.3), and theorem (3.7) follows.

4. Applications.

In this section we let the base scheme S be equal to Spec(k) for some field k. Except for that, let the notation be as in (3.4).

PROPOSITION (4.1). Assume $\delta = (\delta_1, \ldots, \delta_r)$ satisfies $\delta_i \ge 1$ for $1 \le i \le r-1$. Then \mathcal{M}_a^{δ} is very ample.

PROOF. X_a is a closed subscheme of $X = D_n(\mathscr{E})$, and \mathscr{M}_a^{δ} is the restriction to X_a of $\mathscr{M}^{\delta} = \mathscr{M}_1^{\delta_1} \dots \mathscr{M}_r^{\delta_r}$ on X, where $\mathscr{M}_i = \bigwedge^{q_i} \mathscr{Q}_i$. The epimorphisms $\mathscr{E}_X \to \mathscr{Q}_i$ define morphisms $D_n(\mathscr{E}) \to G_{q_i}(\mathscr{E})$ for all i. Hence we get a morphism

$$D_{n}(\mathscr{E}) \to Y = G_{q_1}(\mathscr{E}) \times_k \dots \times_k G_{q_{r-1}}(\mathscr{E})$$

which is easily seen to be a closed immersion (see [9, (2.1)]). Now, if $\bar{\mathcal{Z}}_{i}$ is the universal q_{i} -quotient on $G_{q_{i}}(\mathscr{E})$, $1 \leq i \leq r-1$, then the invertible sheaf $\Lambda^{q_{i}}\bar{\mathcal{Z}}_{i}$ is very ample (and defines the Plücker embedding of $G_{q_{i}}(\mathscr{E})$). Hence $(\Lambda^{q_{i}}\bar{\mathcal{Z}}_{i})^{\otimes^{\delta_{i}}}$ is very ample for all $\delta_{i} \geq 1$. It defines an embedding

$$\varphi_i : G_{q_i}(\mathscr{E}) \subseteq P((\wedge^{q_i}\mathscr{E})^{\otimes \delta_i})$$
.

The product of the φ_i 's yields an embedding of Y into the product space

$$X_{i=1}^{r-1} P((\Lambda^{q_i} \mathscr{E})^{\otimes \delta_i})$$
.

Composing this with the Segre embedding yields an embedding

$$Y \subseteq \mathbf{P}(\bigotimes_{i=1}^{r-1}(\bigwedge^{q_i}\mathscr{E})^{\bigotimes \delta_i}) = \mathbf{P}_k^m$$

where we have put

$$m = \prod_{i=1}^{r-1} \binom{e}{q^i}^{\delta_i} - 1.$$

The composite map

$$X_a \subseteq X \subseteq Y \subseteq P_k^m$$

yields the desired embedding of X_a into P_k^m . It is clear from the construction of this map that the pullback to X_a of the canonical invertible sheaf on P_k^m is $\mathcal{M}_a^{\ \delta}$. This concludes the proof of the proposition.

REMARK (4.2). It can be shown that the invertible sheaves of the type \mathcal{M}_a^{δ} , where $\delta_i \geq 1$ for $1 \leq i \leq r-1$, are the only very ample sheaves on X_a , so that every embedding of X_a into a projective m-space P_k^m is as described above.

Now with $\delta = (\delta_1, \dots, \delta_r)$ satisfying $\delta_i \ge 1$, $1 \le i \le r - 1$, as above, set

$$R_{\nu}^{\delta} = \operatorname{Im} [(H^{0}(X_{a}, \mathcal{M}_{a}^{\delta}))^{\otimes \nu} \to H^{0}(X_{a}, (\mathcal{M}_{a}^{\delta})^{\otimes \nu})] \quad \text{for } \nu \geq 0 \ ,$$

and set

$$R^{\delta} = \bigoplus_{\nu=0}^{\infty} R_{\nu}^{\delta}.$$

The graded ring R^{δ} is the homogeneous coordinate ring for X_a relative to the projective embedding given above, and we have $X_a \cong \operatorname{Proj}(R^{\delta})$ and $\mathscr{M}_a^{\ \delta} = R^{\delta}(1)^{\ }$. Let $\mathfrak{m}^{\delta} = \bigoplus_{r=1}^{\infty} R_r^{\ \delta}$ be the irrelevant ideal in R^{δ} .

THEOREM (4.3). For any δ as above, the corresponding homogeneous coordinate ring R^{δ} of X_a is normal. Equivalently (by remark (4.2)), X_a is arithmetically normal for any embedding into a projective space P_k^m .

PROOF. For convenience, set $R = R^{\delta}$ and $\mathfrak{m} = \mathfrak{m}^{\delta}$. By Serre's criterion (EGA IV (5.8.6)), R is normal if it is regular in codimension 1, and if we have $\operatorname{depth}_{\mathfrak{p}}(R) \geq 2$ for every prime ideal \mathfrak{p} in R of codimension ≥ 2 . Now $X_{\mathfrak{a}}$ is smooth over k (see [9, (1.4)]), hence $\operatorname{Spec}(R)$ is smooth, and therefore regular, outside the vertex. So to check that R is normal, it is enough to check that $\operatorname{depth}_{\mathfrak{m}}(R) \geq 2$. To do this, consider the canonical map

$$\Phi: R \to \bigoplus_{\nu=-\infty}^{\infty} H^0(X_a, \mathcal{O}_{X_a}(\nu))$$
.

By a theorem of Serre ([8, 77, proposition 2]; for the version we use here, see [9, (6.4.1)]) we have depth_m(R) \geq 2 if Φ is bijective.

Now, since $H^0(X_a, \mathcal{O}_{X_a}(\nu))$ is equal to zero for $\nu < 0$, Φ is bijective if and only if the map

$$H^0\big(X_{\boldsymbol{a}},(\boldsymbol{\mathcal{M}}_{\boldsymbol{a}}^{\delta})\big)^{\bigotimes_{\boldsymbol{v}}}\to H^0\big(X_{\boldsymbol{a}},(\boldsymbol{\mathcal{M}}_{\boldsymbol{a}}^{\delta})^{\bigotimes_{\boldsymbol{v}}}\big)$$

is surjective for every $\nu \ge 0$. Clearly, it is enough to show that the map

$$H^0(X_{\mathfrak{a}}, (\mathscr{M}_{\mathfrak{a}}^{\delta})^{\otimes r}) \otimes H^0(X_{\mathfrak{a}}, \mathscr{M}_{\mathfrak{a}}^{\delta}) \to H^0(X_{\mathfrak{a}}, (\mathscr{M}_{\mathfrak{a}}^{\delta})^{\otimes (r+1)})$$

is surjective for every $v \ge 0$. But this follows immediately from theorem (3.7) since $\delta = (\delta_1, \ldots, \delta_r)$ and $v\delta = (v\delta_1, v\delta_2, \ldots, v\delta_r)$ satisfy the condition $\delta_i \ge 0$ and $v\delta_i \ge 0$ for $1 \le i \le r - 1$. This concludes the proof of theorem (4.3).

In the special case $a_1 = a_2 = \ldots = a_r = 0$, we have the following stronger theorem.

THEOREM (4.5). Let $\pi = (p_1, \ldots, p_r)$ be arbitrary. Then the flag scheme $\mathbf{D}_{\pi}(\mathscr{E})$ is arithmetically normal and Cohen-Macauly for any embedding of $\mathbf{D}_{\pi}(\mathscr{E})$ into a projective space \mathbf{P}_k^m .

PROOF. With the same notation as in the proof of theorem (4.4) (now with $X_a = \mathbf{D}_n(\mathscr{E})$), Serre's theorem (see the proof of (4.4) above) says that R is Cohen-Macauly if Φ is bijective and $H^i(\mathbf{D}_n(\mathscr{E}), (\mathscr{M}^{\delta})^{\otimes r})$ vanishes for all $r \in \mathsf{Z}$ and $1 \leq i \leq \dim_k(\mathbf{D}_n(\mathscr{E})) - 1$.

As in the proof of (4.4), Φ is bijective. It remains to see that $H^{i}(\mathbf{D}_{\pi}(\mathscr{E}), \mathscr{M}^{r\delta}) = 0$ for all ν and $1 \leq i \leq \dim_{k}(\mathbf{D}_{\pi}(\mathscr{E})) - 1$, where $\nu \delta = (\nu \delta_{1}, \ldots, \nu \delta_{r})$. Now, with $\alpha = (\alpha_{1}, \ldots, \alpha_{e})$ as in (3.4), we have the isomorphisms

$$H^i(\mathbf{D}_{\pi}(\mathscr{E}), \mathscr{M}^{\nu\delta}) \cong H^i(\mathbf{D}(\mathscr{E}), \mathscr{L}^{\nu\alpha})$$

for all *i* (see (3.6) and [9, (3.3.1)]). If $\nu \ge 0$, we have $H^i(\mathbf{D}(\mathscr{E}), \mathscr{L}^{\nu\alpha}) = 0$ for $i \ne 0$ by theorem (3.2). If $\nu < 0$, we see that we have

$$\nu\alpha_1 = \ldots = \nu\alpha_{q_1} < \nu\alpha_{q_1+1} = \ldots = \nu\alpha_{q_2} < \ldots$$

that is, $v\alpha_i$ is constant on the intervals $(q_{j-1},q_j]$, $1 \le j \le r$, and we have $v\alpha_{q_j} < v\alpha_{q_j+1}$ for all j. Hence we have $H^i(\mathbf{D}(\mathscr{E}),\mathscr{L}^{rx}) = 0$ for $i \ne \dim_k(\mathbf{D}_n(\mathscr{E}))$ by [9, theorem (3.8.1)]. This concludes the proof of theorem (4.5).

We include the following consequence of theorem (4.3). Let $a^i = (a_1{}^i, \ldots, a_{r_i}{}^i)$, $1 \le i \le n$, be sequences of integers satisfying (2.1) and (2.2), and let $X_i = X_{a^i}$ be the corresponding varieties. Set $Y = X_1 \times \ldots \times X_n$, the product taken over k. Let \mathcal{N}^i be a very ample sheaf for X_i , that is \mathcal{N}^i is of the type described in proposition (4.1) (see remark (4.2)). Then $\mathcal{N} = \bigotimes_{i=1}^n \mathcal{N}^i$ is a very ample sheaf, and the corresponding homogeneous coordinate ring for Y is

THEOREM (4.6). The homogeneous coordinate ring R for the product $Y = X_1 \times \ldots \times X_n$ is normal. That is, Y is arithmetically normal for any embedding into a projective m-space P_k^m .

PROOF. Y is smooth over k since it is the product of smooth varieties. Hence, by the same argument as in the proof of theorem (4.3), Y is arithmetically normal if the maps

$$H^0(Y, \mathcal{N}^{\otimes r}) \otimes H^0(Y, \mathcal{N}) \xrightarrow{\sigma} H^0(Y, \mathcal{N}^{\otimes (r+1)})$$

are surjective for all $\nu \ge 0$. We have

$$\mathcal{N}^{\bigotimes^{\mathsf{y}}} = (\bigotimes_{i=1}^n \mathcal{N}_i)^{\bigotimes^{\mathsf{y}}} = \bigotimes_{i=1}^n (\mathcal{N}_i^{\bigotimes^{\mathsf{y}}}) \;.$$

Hence, by the Künneth formula, we have $H^0(Y, \mathcal{N}^{\otimes r}) \cong \bigotimes_{i=1}^n H^0(Y, \mathcal{N}_i^{\otimes r})$ for all ν . So we get a commutative diagram

$$H^{0}(Y, \mathcal{N}^{\otimes^{p}}) \otimes H^{0}(Y, \mathcal{N}) \xrightarrow{\sigma} H^{0}(Y, \mathcal{N}^{\otimes(r+1)})$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\otimes_{i=1}^{n} \left(H^{0}(Y, \mathcal{N}_{i}^{\otimes^{p}}) \otimes H^{0}(Y, \mathcal{N}_{i}) \right) \xrightarrow{\sigma'} \otimes_{i=1}^{n} \left(H^{0}(Y, \mathcal{N}_{i}^{\otimes(r+1)}) \right)$$

where the vertical maps are isomorphisms.

By theorem (3.7), σ' is the tensor product of surjective maps, and is therefore surjective. We conclude that σ is surjective.

REFERENCES

- M. Demazure, Une démonstration algébrique d'un théorème de Bott, Invent. Math. 5 (1968), 349–356.
- M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macauly, J. Algebra 25 (1973), 40-57.
- J. I. Igusa, On the arithmetic normality of the Grassmann variety, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 309-313.
- G. Kempf, Schubert methods with an application to algebraic curves, Stichting matematisch centrum, Amsterdam, July 1971.
- S. L. Kleiman, Geometry of Grassmannians and applications, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281-297.
- D. Laksov, The arithmetic Cohen-Macauly character of Schubert schemes, Acta Math. 129 (1972), 1-10.
- T. Nishimura, on the arithmetic normality of the extended Grassmann variety, Bull. Kyoto Univ. Ed. Ser. B, 22 (1963), 1-4.
- 8. J. P. Serre, Faisceaux algébriques coherents, Ann. of Math. 61 (1955), 197-278.
- T. Svanes, Coherent cohomology on flag manifolds and rigidity, Ph.D. Thesis, M.I.T., Cambridge, Mass. 1972.

STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK, U.S.A.