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ARITHMETIC NORMALITY FOR PROJECTIVE
EMBEDDINGS OF FLAG MANIFOLDS

TORGNY SVANES

1. Introduction.

Let X be a variety over a field £, and let .Z be a very ample invertible
sheaf on X. Then .# defines an embedding in P,™=P(H%X,.#)) where
m=rank (H°X,.Z)) as follows: set

R, = Im[(HYX,.Z))® -~ HY(X,Z®")]

and R=@®2,R,. Then the surjection S(H°X,%))—> R, where
S(H°(X,%)) is the symmetric algebra of HX,.%), defines a closed
immersion

X = Proj(R) - P,™.

X is said to be arithmetically normal (respective arithmetically Cohen-
Macauly) for the given embedding if the homogeneous coordinate ring R
is normal (respective Cohen-Macauly).

This paper concerns the question of arithmetic normality for projec-
tive embeddings of flag schemes D (&) of type m=(py,...,p,) over a
field %, and, more generally, of subschemes of D (&) of the type X, =
Xa,....,q, described in section 2 (& is a vector space over k; see section 1
for notation). Previously, these questions have been studied by purely
algebraic methods by J. I. Igusa who proved (in [3]) that Grassmannians,
that is the case m=(p,q), are arithmetically normal for the Pliicker em-
bedding. Igusa’s method was extended by T. Nishimura [7], who proved
that flag schemes of the type Dy, ,, »,(&) are arithmetically normal for
the standard embedding. More recently, it has been proved, also by
purely algebraic methods, by M. Hochster [2] and D. Laksov [6],
that Grassmannians and their Schubert subvarieties are arithmetically
Cohen-Macauly for the Pliicker embedding.

Our method is to prove that certain maps of cohomology groups are
surjective (a more detailed description follows below), and then apply a
well-known theorem of Serre (see section 4). Our results in terms of nor-
mality of coordinate rings are the following:
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(1) For arbitrary a=(ay,. . .,a,) as in section 2 (and with S = Spec(k)),
the scheme X, is arithmetically normal for any embedding into a pro-
jective m-space P,™ (theorem (4.3)).

In particular, all flag schemes over k are arithmetically normal for
any embedding into a projective m-space. This, together with a previous
result [9, theorem (3.8.1)], yield the following:

(2) An arbitrary flag scheme D, (&) over k is arithmetically normal
and Cohen-Macauly for any embedding of D (&) into a projective m-
space P,™ (theorem (4.5)).

To show that X, is arithmetically normal for any projective embed-
ding, it is enough, by the theorem of Serre mentioned above, to show
that the canonical map (notation as in section 4)

HY X o, M) @ HNX o M yY) — HOX 5 M 1)

is surjective for all 6=(d,,...,d,) and y=(y4,...,y,) satisfying §,= 0 and
y;20for 12¢5r—1.

In section 3 we consider the more general situation where X, is defined
over a locally noetherian scheme S. The main result of section 3 is:

(3) Assume ¢ and y satisfy the conditions above. Then the canonical
homomorphism

ga, * (jaa) ® ga., * (”fay) - ga, * (“Ka"w)

is an epimorphism of Og-modules (theorem (3.7)). Here g,: X, — § is
the structure morphism.

In particular, if D=D,  ,(€) is the full flag scheme over § and
f: D — 8 is the structure morphism, then for any two non increasing
sequences & =/(oy,...,%,) and f=(B,,...,B,) (that i3 o;=>«;,; and B;=
B4y for all ©), the canonical homomorphism

[(L%) @ (L7) - fu( L)

is an epimorphism of Og-modules.
In sections 1 and 2 we fix the notation and recall some basic facts
which we need.

1. Notation.

Let S be a scheme. For any morphism of schemes 7' —~ 8 and any
Og-module &, denote by &, the pullback to 7' of &.
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An Op-module 2 is called a g-quotient of &, if 2 is locally free of con-
stant rank ¢ and is a quotient module of &, (that is, there is a surjection
of Op-modules &5 — 2).

In this paper let & be a locally free Og-module of constant rank e.
The schemes we consider will be S-schemes.

Let r=1 and let m=(p,,...,p,) be a sequence of positive integers
satisfying 37_,p;=e. Then set ¢,=3I_,p, for 1<j<r, and for con-
venience set p,=g,=0. Denote by D (&) or D, . ,\(&) the flag scheme
of type m. That is, D (&) represents the functor whose values in an S-
scheme 7' is the set of sequences of 0,-modules

Eqp—>Ryy—> Ry ... >Ry

where Z; is a g;-quotient of &, for all j. For convenience we will set
R,=&Ep and #,=0. We will call such a sequence a n-sequence of quotients
of &p.
Set X =D _(&). Then X comes equipped with a universal n-sequence of
quotients of E x
Ex>2, 12, 5~ ...>2,.

That is, if 7" is an S-scheme, then for every n-sequence of quotients of &'
Er >Ry >R s~ ... > %

there is a unique morphism ¢: 7' — X such that this sequence is isomor-
phic to the pullback to 7' of the universal sequence on X in the sense
that we have a commutative diagram

Er—> RBoy > Rppg > ... > %y

B E

Ep—>9*2, 41> 9*2, 5~ ... > ¢*2;

We call 9; the universal g;-quotient of & x. Throughout this paper, X and
2;, 1=j=r, will be as above.

In the case r=2, setting p=p; and ¢=p,, the scheme D, ,(&) is called
the Grassmannian of p-quotients of &. We will use the notation G,(&)
as well as Dy, ,(&). For p=1, this is the fibred projective space P(&).

For the case #=(1,...,1), we fix the following special notation:

Set D=D(&)=D_(&) and let

Ep>Po1>Pe s~ ... > P
be the universal sequence on D. Then set

g’ = kel‘(.@j-—*'@,_l)
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for 15j=<e. If a=(xy,...,%,) is a sequence of integers, set
L= LIP, L= L ONQ PO, .. Q L, O%.

Denote by &,,¢,,. . .,¢, the natural basis for Z®e,

ReEmARK (1.1). Notice that for an arbitrary z=(p,,...,p,), the a-
sequence

€p—~ 9@11‘—-1 - yﬂr——z e g‘ll

on D=D(&) defines a canonical morhism #4: D(&) - D (&) such that
Py = h*(2;) for all j.

2. Special subschemes of D _(&).

In this section we recall the definitions and some basic properties of
some particular subschemes of X=D_(&). For proofs and details, we
refer to [9, (1.4)].

With the notation of section 1. let a=(a,,...,a,) be an r-sequence of
integers satisfying
(2.1) ez a2 ay = za,z20,
(2.2) a;,2e—q forl 2i=2r,

and assume there is a sequence of locally free submodules of &
A, A, < ...cHd, =&

such that o/, has constant rank a, and is locally a direct summand in
&/ ,_, for all 5. Notice that (2.2) implies a,=0.

We will call such a sequence an a-sequence of subbundles of & (where
we use the term subbundle to mean a locally free submodule of & which
locally is a direct summand in &).

Denote by X, ., the scheme of zeros of the maps &/; x —~ 2,
for 1=¢<r—1, where &/, x denotes the pullback to X of o/;. That is,
X /..., o, Tepresents the functor whose values in an S-scheme T are
the morphisms ¢: T — X such that the composite map /; p - &p —
t*92, is the zero homomorphism for every i. Recall that the schemes
X /... a2, are closed subschemes of X which are smooth over S (see
[9, (1.4)]).

Since it will always be clear which sequence <7;,...,o, we refer to,
we will for convenience use the notation X,=X, as well as

X.R(ly-.-,dr'

.,ar
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REmark (2.3). The notation X, will be particularly convenient when
& is free. When that is the case, we will fix a global basis for & and let a
sequence (a,,...,a,) as above correspond to the unique sequence
Ay, .., we get by, for every ¢ taking o7, to be the submodule of &
generated by the first a; elements of the basis. This gives a unique scheme

X, for every sequence a=(a,,...,a,).
For convenience, we fix a special notation for the case n=(1,...,1).
In that case we have an (a,,. . .,a,)-sequence of subbundles of &
AycA, 1< ...cHd <&
where a=(a,,. . .,a,) satisfies
(2.1 ezZa, 20,2 ... 2a,20,
(2.2") a, <e—1 forl1 =i =e

We will denote by D, ., or D, (instead of X,  , and X,)
the subscheme of D=D(&) corresponding to the above sequence. So
D, .. ., (or D,) is the scheme of zeros of the maps &/, , - &, for
1Z5¢Ze—1.

We will use the following proposition, which is proved in [9, (1.4)].
The version we give here is valid for the case that & is free, which is the
case we will need in our applications. So let & be free, fix a global basis
for &, and let the correspondence between sequences a=(a,...,a,)
satisfying (2.1’) and (2.2") and subschemes D, of D be as described in
remark (2.3).

ProposiTioN (2.4). Let a=(a,,...,a,) be as above. Fix j, 15j<e, and
assume b=a+¢; satisfies (2.1') and (2.2"). Then Dy, is a divisor in D,
and we have an exact sequence

0——>$]T,1,—>0Du—>01)b—>0

where L5 4 18 the restriction to Dy of £;1.

X3

3. The main theorem.

Let the notation be as in 1 and 2. Assume in addition that § is lo-
cally noetherian. «,f,... will denote sequences of integers which will be
exponents to the #;’s.

Let a=(a,,. . .,a,) satisfy (2.1') and (2.2") and assume, as in section 2,
that a,,...,a, are the ranks of the modules in a sequence

A, <A, ;< ...cHd,cf
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of subbundles of &. Recall (se remark (2.3)) that when & is free, every
sequence (d,,...,d,) which satisfies (2.1") and (2.2") corresponds to an
(@q,. . -,a,)-sequence of subbundles of &.

Let f: D(€) - S be the structure morphism, and let f,: D, —~ S be
the restriction of f to D,=D_,  ,. So we have the commutative
diagram

D, —S— D(&)
fu E

s § ol

;» and for any sequence &=
(0¢g5- - -,x,) Of integers, let Z,* be the restriction to D, of #*. TFinally
denote by RY, «(£,*) the I'th higher direct image of .#, under f,.

We recall the following results (for proofs, see [9, (3.4.1) and (3.6.1)],
or [4]).

Let #; , be the restriction to D, of &;

ProrosiTiON (3.1). With a=(a,,....,a,) and «x=(x,,...,x,) as above,
assume there is an integer j, 1<j<e, such that a;=a;,, and o;=0;,,—1.
Then we have Rify (Z,*)=0 for all L.

THEOREM (3.2). Let a=(ay,...,a,) be arbitrary. Assume &« =(xy,...,0,)
satisfies x;Z oy —1 for 1=i<e—1. Then we have BY, (£ ,*)=0 for all
1#0.

We are now in a position to prove the main theorem of this paper.

THEOREM (3.3). Let the notation be as above. Assume the sequences
o= (0g,. . .,%) and B=(By,...,B,) are mon tncreasing (that is, o;= ;.4
and ;2 B;1 for 1245 e—1). Then the canonical map

fa,*(gaa) ®fa,*($ap) éfa,*(gaaﬂs)

s an epimorphism of Og-modules.

Proor. The statement is local on 8, so we may assume that & is free.
Then we have the situation described in (2.3), and (2.4) applies.

Let o =(xy,...,x,) and B=(B,,...,B,) be non increasing. The theorem
will be proved by induction on 3?_,(e—a;—1%). For X;. ,(e—a;—1)=0,
condition (2.2") implies a,=¢—1¢ for all ¢, hence we have D,=S8 by the
definition of D,. So in this case the theorem is trivial because #,* and
Z,F are both equal to the structure sheaf 0g.
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Now let 37 ;(e—a;—4)=m>0, and assume by induction that
the theorem is true for sequences a’'=(a,’,...,a, ) which satisfy
>i_i(e—a; —t)<m. Choose k such that e—a;—k>0 and a,=a;,, (for
example the largest k& such tnat e—a;—k>0; note that k<e since we
have e—a,—e=0), and let j be the smallest number such that a;=a,.
Then we have e—a;—j=e—a;—k>0 and a;_,>a;. Hence the sequence
b =a+¢; satisfies (2.1") and (2.2"). Therefore, by (2.4), D,, is a divisor in
D, and we have an exact sequence

anf]f;»@Da—»GDb»O
which yields the exact sequences
C:0> 2> L > L0

and
Cp: 0 > L oHP~% o P ot 5 Patb 0,

Since & = («xy,. . .,,) is non increasing, the sequence x' =« —¢; will satisfy
the condition ;"= x;,;"—1 for 1 =4 =<e—1. Therefore, by (3.2), the long
exact sequence of higher direct images under f, which corresponds to
the sequence C; above, will reduce to the exact sequence

03: 0 ’_)'fa,*(“?aa—ei) ~>fa.*("tfam) “’fb,*("gba) -0.

Similarly, since « + f clearly is non increasing, the sequence o’ =« +f —¢;
will satisfy the condition «;" 2a,,;""—1 for 1<¢<e—1, and we get as
above, by (3.2), the exact sequence

0 > fo, k(L™ 7)) > fo, k(L™ ) > fo.x(Lp™ ) > 0.

Tensoring the sequence C3 with f, .(Z,°), we get the following diagram
of canonical maps with exact columns

0

fo (Lo @fa (L) = fau(La™7)

3

*) fa (20" fa (L) — fou( L)

A A

fb,*(gba) ®fa,*($aﬂ) - _*fb.*(gbﬁﬁ)

.
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Actually, it follows from (3.2) and the theory for cohomology and base-
change that fa’*(ipa”) is locally free (see EGA III (7.7) and (7.8)), hence
the upper left map in the diagram is injective. But we will not need this.

We have X7 _,(e—b;,—i)=m—1. So by our induction hypothesis, the
theorem is true for D, (that is, for the sequence b= (b,,. . .,b,)). Therefore
the map

fo,%(Zp%) ®fb,*($bﬂ) = fo,x(Lp***)

is an epimorphism. Also, since the sequence C, is exact for arbitrary non
increasing «, in particular for x=p, we see that the map f, «(Z,°) —
fo,+(Z5’) is an epimorphism. Hence ¢ in the diagram (*) above is the
composite of the two epimorphisms

fb.*(gbo‘) ®fu,*($aﬂ) "*fb,*(gba) ®fb,*($bﬂ) —*fb,*(gaaw)

and is therefore itself an epimorphism.
Now, using the diagram (*) together with the surjectivity of ¢/, we
will prove the theorem for D, in two steps. First we show that the map

fa,*("gaa) ®fa.*(°?aﬂ) '*fa.*("?aa-‘.ﬂ)

is surjective when f satisfies the condition g;=p;,,. Then we use that
result to prove the surjectivity for arbitrary (non increasing) « and g.

(1) Assume f;=4;,,. The proof goes by induction on «;—«;,;.

For x;—wx;,,=0, the sequence o’ = —¢; satisfies o;' = «;,," — 1. There-
fore, since a;=a;,; by our choice of j, proposition (3.1) implies
fa%(ZL4 ") =0. Furthermore, since we by assumption have f§;=§;,,,
the sequence «’'=x+pf—¢; also satisfies the condition «;"”=«;,,"" -1,
and (3.1) yields f, «(£,**?~%)=0. So the maps 4 and A’ in diagram (*)
are both isomorphisms, and ¢ is an epimorphism since ¢'’ is.

Now let «;—a;,;=n>0 and assume by induction that the map

fa,*(gaa') ®fa.*(°‘?¢ﬂ) .>fa,*($a“'+ﬂ)

is surjective for every non increasing «'=(x,’,...,%,) which satisfies
a;' —&j4," <m. Since « is non increasing and we have «;>«;,,, the se-
quence &’ =« —¢; is clearly non increasing and satisfies o;" — ;" =n—1.
Hence the map ¢’ in the diagram (*) is an epimorphism by the induction
hypothesis above. A diagram chasing shows that the surjectivity of ¢’
and ¢’ implies that ¢ is surjective. This concludes the case §;=p;.,,.

(2) Now let a=(xy,...,%,) and B=(By,...,p,) be arbitrary (non in-
creasing). To show that the map ¢ in the diagram (*) is an epimorphism,
we will again use induction on a;—«;,,.
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For «;—«;,; =0, we have the situation of case (1) above, but with the
roles of « and B switched. Hence ¢ is surjective by the case (1) result.

The induction now proceeds exactly as in case (1). This concludes the
proof of theorem (3.3).

(3.4) There is a natural extension of theorem (3.3) to a corresponding
theorem on a subscheme X,=X,  , of a flag scheme X=D (&)

where 7= (p,,...,p,) is arbitrary and where a,,...,a, are the ranks of
an r-sequence of subbundles of & as in section 2.

For the rest of this section, fix the following notation. Denote by 2, ,
the restriction to X, of the universal ¢;-quotient 2; on X. Set

g/l,'::Aqi-@i, 1§‘i§r,

and denote by .#; , the restriction to X, of .#,; for all s. For any r-
sequence d=(d,,. . .,d,) of integers, set

M= M M= MR .RQMO
and let #,° be the restriction to X, of .#°.
Corresponding to the r-sequence (a,,...,a,), define the e-sequence
b=(by,...,b,) by setting b;=a; for ¢; ;<i<q; and 1<j<r. Let D, be
the corresponding subscheme of D =D(&).

Corresponding to the r-sequence (d,,...,d,), define the e-sequence
o=(xy,...,%,) by setting «;=37_;6 for ¢;_;<i=g;and 15j<r.

REmMARK (3.5). Notice that the sequence (x4,...,®,) is non increasing
if and only if the d,’s are non negative for 1<i<r—1.

Let h: D - X be the canonical morphism (see remark (1.1)). From the
definition of A, we have the isomorphisms h*.@igg’qi for 1<¢<r. Hence
we also get h¥(M;)=2ATP, for all i. Now the exact sequences (see
definition of %}, in section 1)

0>Zp>P>P1—0
yield the isomorphisms
NP~ L QNP forl1 <k=Ze.
By induction on k we get the isomorphisms
NP b Ey...Ey 1SkZe.
This together with the isomorphism A*(A#;) = A%Z, above, yield
M) = L Py ¥, foralli.
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From the definition of & =(«,,...,x,) above, it is then easy to see that
we get an isomorphism

WA ~ 2

The way we defined b=(b,,...,b,), we will have a cartesian diagram
(see [9, (1.4)])
‘Db — .D

b 1 B lh
X,— X
We therefore get the isomorphism
ho*( M) = £3”

where h, is as in the diagram above. Let ¢g: X — 8 be the structure
morphism of X, and denote by g, the restriction of g to X,. We have a
commutative diagram

Dy —— X,

L

It is proved in [9, (3.3.1)], that we in the situation above have an iso-
morphism

(3.6) By, 4(Ms") = Bfy (L)
for every 1.
TrEOREM (3.7). Let a=(ay,...,a,) be as above. Assume the sequences

0=(dy,...,0,) and y=(yy,-..,7,) satisfy 6,20 and y;20 for 1=¢=r—1.
Then the canonical map

ga,*(jad) ®ga,*('/¢ay) g ga,*("%a‘“-y)

18 an epimorphism of Og-modules.

Proor. By the preceding discussion, we have a commutative diagram

ga, * (Jab) ® ga, %* (‘lay) —6'—’ ga, * (‘Iad+y)

A| ~ |~

Fox (L") @fp (L) —Z— fox (L)
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where A4 and 1’ are isomorphisms (see (3.6)). Here f=(8,. . .,8,) is defined
by setting 8,=37_;y for ¢;_1<1=5¢; and 15j<r. The diagram shows
that o is an epimorphism if and only if ¢’ is. The conditions on 6 and y
imply that x and f are non increasing (see (3.5)). Hence ¢’ is an epi-
morphism by theorem (3.3), and theorem (3.7) follows.

4. Applications.

In this section we let the base scheme 8 be equal to Spec(k) for some
field k. Except for that, let the notation be as in (3.4).

ProrostTiON (4.1). Assume &=(d,...,08,) satisfies 6;21 for 1545
r—1. Then A ,° is very ample.

Proor. X, is a closed subscheme of X =D, (&), and A, is the restric-
tion to X, of M= M2 .... M on X, where M;=A%2,. The epimor-
phisms &3 - 2; define morphisms D, (&) - G, (&) for all i. Hence we
get a morphism

D (&) = Y = Gy (&)X .. X Gy, (6)

which is easily seen to be a closed immersion (see [9, (2.1)]). Now, if 2,
is the universal g,-quotient on G, (&), 1<é<sr—1, then the invertible
sheaf A% 2, is very ample (and defines the Pliicker embedding of G, (&)).
Hence (A%2,)®% is very ample for all §;=1. It defines an embedding

@;: G (8) S P((A%£)®%) .
The product of the ¢;’s yields an embedding of ¥ into the product space
XiZ1 P((A%&)®%) .
Composing this with the Segre embedding yields an embedding
Y 5 P(QITHA%E)®Y) = P

L
=11 ()

X, s XsYspPnm

where we have put

The composite map

yields the desired embedding of X, into P,™. It is clear from the con-
struction of this map that the pullback to X, of the canonical invertible
sheaf on P;™ is .#,°. This concludes the proof of the proposition.

Math. Scand. 33 — 5
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Remark (4.2). It can be shown that the invertible sheaves of the type
4’ where §,2 1 for 1 S¢<r—1, are the only very ample sheaves on X,
so that every embedding of X, into a projective m-space P,™ is as de-
scribed above.

Now with é=(4,,...,6,) satisfying 8,21, 1<i<r—1, as above, set
R} = Im[(HYX,, #,)®" > H(X,, (#,)®")] for »20,

and set
R =02,R’.

The graded ring R’ is the homogeneous coordinate ring for X, relative
to the projective embedding given above, and we have X_,~Proj(R’)
and #. ) =R%(1)" . Let m*=@2, R’ be the irrelevant ideal in R°.

THEOREM (4.3). For any 8 as above, the corresponding homogeneous
coordinate ring R° of X, is normal. Equivalently (by remark (4.2)), X, is
arsthmetically normal for any embedding into a projective space P™.

Proor. For convenience, set B=R’ and m=m’. By Serre’s criterion
(EGA IV (5.8.6)), R is normal if it is regular in codimension 1, and if we
have depth,(R)22 for every prime ideal p in R of codimension 2 2.
Now X is smooth over k (see [9, (1.4)]), hence Spec(R) is smooth, and
therefore regular, outside the vertex. So to check that R is normal, it
is enough to check that depth, (R)= 2. To do this, consider the canonical
map

P: R > @)L oo H(X,,0x,()) -

v = —00

By a theorem of Serre ([8, 77, proposition 2]; for the version we use here,
see [9, (6.4.1)]) we have depth,, (R) 22 if @ is bijective.
Now, since HY(X,, @xa(v)) is equal to zero for »<O0, @ is bijective if

and only if the map
HO(X,,(M))® ~ HYX,,(H4,")®")
is surjective for every »>0. Clearly, it is enough to show that the map
HYX,, (#.)®) @ H X,,#,)) > H(X,, (M, )O+)

is surjective for every »= 0. But this follows immediately from theorem
(3.7) since d=(dy,...,4,) and vé=(¥8,,vd,,...,vd,) satisfy the condition
420 and v6;,20 for 1s+5r—1. This coneludes the proof of theorem
(43).
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In the special case a;=a,= ... =a,=0, we have the following stronger
theorem.

THEOREM (4.5). Let w=(py,...,p,) be arbitrary. Then the flag scheme
D (&) s arithmetically normal and Cohen-Macauly for any embedding of
D (&) into a projective space P,™.

Proor. With the same notation as in the proof of theorem (4.4) (now
with X ,=D_(&)), Serre’s theorem (see the proof of (4.4) above) says that
R is Cohen-Macauly if @ is bijective and HYD_(&),(.#°)®”) vanishes for
all ve Z and 154 <dim, (D, (&))—1.

As in the proof of (4.4), @ is bijective. It remains to see that
HYD, &), #°)=0 for all » and 1=¢<dimy(D,(&))—1, where v5=
(¥8y,. . .,v8,). Now, with «=(x,,...,4,) a8 in (3.4), we have the iso-
morphisms

Hi{D, &), #") ~ H(D(&), L)

for all ¢ (see (3.6) and [9, (3.3.1)]). If »=0, we have H{D(&), L*)=0
for 3 # 0 by theorem (3.2). If » <0, we see that we have

VX = . = Vg < Vgpg = e = Vg, < Ll

that is, »x; is constant on the intervals (¢;_;,9;], 1Sj<r, and we have
Vg, <wtg 4y for all j. Hence we have H(D(&), £"*) =0 for 1 #dim, (D (&)
by [9, theorem (3.8.1)]. This concludes the proof of theorem (4.5).

We include the following consequence of theorem (4.3). Let ai=
(ar%,. ..,a,}), 1S4 <n, be sequences of integers satisfying (2.1) and (2.2),
and let X,=X_ be the corresponding varieties. Set Y=X,x ... xX,,
the product taken over k. Let 4" be a very ample sheaf tor X, that is
A7t is of the type described in proposition (4.1) (see remark (4.2)). Then
N =Q} A" is a very ample sheaf, and the corresponding homogeneous.
coordinate ring for Y is

R = &2, Im[(HYY,4))® —~ H(Y, ¥/ ®)].

THEOREM (4.6). The homogeneous coordinate ring R for the product
Y=X,x...xX, ts normal. That 13, Y s arithmetically normal for any
embedding into a projective m-space P,™.

ProoF. Y is smooth over k since it is the product of smooth varieties.
Hence, by the same argument as in the proof of theorem (4.3), Y is
arithmetieally normal if the maps
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HYY, ¥ ©)QHYY, N) —"— HYY, A ®+D)

are surjective for all »>0. We have
N = (RN )® = @ (V@)

Hence, by the Kiinneth formula, we have HY(Y, 4 ®") >~ Q" HY(Y , 4" ;®")
for all ». So we get a commutative diagram

HY(Y N/ ®)QHNY ,N) — s HYY, N ®+D)

7 (HY Y, ,®) @ HY Y, A)) v ®%_, (HY Y,./Vi®('+1)))

where the vertical maps are isomorphisms.
By theorem (3.7), ¢’ is the tensor product of surjective maps, and is
therefore surjective. We conclude that o is surjective.
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