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AN OMITTING TYPES THEOREM
WITH AN APPLICATION TO THE CONSTRUCTION
OF GENERIC STRUCTURES

H. SIMMONS

Abstract.

We give a forcing-free construction of f-generic structures. The con-
struction uses an omitting types theorem of independent interest.

Introduction.

Throughout we consider theories T' (i.e. deductively closed sets of
sentences) formalized in some countable first order language L. (The
countability of L is an essential restriction.) There is associated with
each such theory T' a certain class of structures & ,, the class of 7'—f-
generic structures, see [1]. This class is usually constructed using f-for-
cing; we will construct %, by omitting types.

It is no surpise that &, can be constructed in this way (by omitting
types). The members of & , are the completing models of 7 ( =Th (% ;))
and hence are those structures which omit certain types I', (see lemma 1);
equivalently (as mentioned in [8, theorem 1.2]) the members of %, are
those structures which omit certain other types p,. The catch is that to
define I', or p, we must refer to the forcing relation, whereas the method
used here makes no use at all of forcing.

I am grateful to G. Cherlin for several comments on {10] which proved
relevant to the problem discussed here; to R. Cusin for showing me a
preprint containing theorem 1; and to A. Macintyre for several specific
and general points.

Omitting types theorems.

Let vg,v;,0,,. .. be the variables of the underlying language L.
By a type we will here mean a set of formulas I" such that the set
fu(I") of free variables occurring in I' is a subset of {v,,...,v,} for some
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integer k= 0. We will sometimes indicate fv(I") by writing I'(v,,. . .,v;).
We use the standard notions of realizing and omitting a type.

Let T be some theory. A type I' is T-np (non-principal over 7') if
there is no formula y consistent with 7' such that T'ty — y, for each
y € I. (Clearly it is sufficient to consider only those y with fv(y)< fu(I").)

The following theorem is well-known.

THEOREM A. Let T be some fixed theory and I' some countable collection

of T-np types. For each sentence o consistent with T there ts a countable
structure WA such that

(Ai) AL T,
(Aii) Ak o,
(Aiii) U omits each type in I'.

For each integer n = 0 let ¥, (3,,) be the set of formulas logically equiv-
alent to formulas in prenex normal form whose prenex consists of n
blocks of quantifiers, the first block being universal (existential), the
second block being existential (universal), the third block being universal
(existential), etc. For each two structures U, B let A<,, B mean that
A< B and

Ak plz] = BE ¢lx]

holds for all formulas ¢ € V¥,, and all A-assignments x. We note that for
each theory 7', A: T, NV, if and only if A<, B for some BET'.

A type I'is T—(n)-np if I'cV, ,; and there is no formula ye3,
consistent with 7" such that T'Fy — y, for each y € I'.

We will need theorem A as well as the following refinement.

THEOREM B. Let T be some fized theory, n =0 some integer, and I" some
countable collection of T — (n)-np types. For each ¢ € 3,,,, consistent with T
there s a countable structure W such that

Bi) AT NV,
(Bii) Ak o,
(Biii) A omits each type sn I .

Clearly theorems A, B are of the same family. Theorem B is also
related to a theorem of Chang, [2].

Following [2] we say a type I'is T'— (n+ 2)-existential if I'c 3, ,, and
there is no type 4<13,,, consistent with 7' such that for each y € I' there
is some 6 € 4 with TFé — .
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THEOREM C. Let T be some fixed theory, n=0 some integer. For each
model M of T is some structure N, of the same cardinality as WM, such that

Ci) ALETNVuis,
(Cii) M <, A,
(Ciii) A omsts each T — (n + 2)-existential type .

This theorem occurs in [2, § 3], however, the following remarks should
be noted.

(a) Chang’s n is our n+ 1.

(b) Chang assumes that 7' is ¥, ,-axiomatizable (our n) and proves
Ak 7. This makes no essential difference. We see from lemma 0 (below)
that in the presence of (Ciii) we can strengthen (Ci) to Uk TNV, ,s.

(e) (Cii) is stronger than Chang’s (ii), but Chang does verify (Cii), see
[2, (3) on p. 67].

(Ciii) can be given in an equivalent, more understandable form. To
do this we use the type I'(p,n+1) that is

{pu{—w: ve ., fo(y)sfole), Try - @}

for formulas ge V,,,,. Such a type is easily seen to be 7' — (n + 2)-existen-
tial, (see [2, p. 65, E.g. B]), and so is also 7"— (n)-np.

Lemma 0. Suppose Uk T'NV,, 1. The following are equivalent.
(1) A omits each T — (n + 2)-existential type.

(ii) A omits I'(p,n+1), for each p €V, 4.
(iii) For each model B of T, if A<,, B then A<, ,,B.

We can now make a direct comparison between B and C. Clearly
(Bi) = (Ci)
and
(Bii) <= (Cii)
Also, provided we have I'(p,n+1) e I' for each p €V, 4,
(Biii) = (Ciii) .

The stronger version of B obtained by replacing (Bii) by (Cii) is false.
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Proof of B.

Anyone familiar with the proof of A will be able to provide a proof of
B himself. We will not give all the details of the proof, but just outline
the main points.

Let T, n, I', ¢ be given. We form a new language M from L by ad-
joining a sequence (a;: ¢ < w) of new constant symbols. We refer to these
as parameters. We construct an M-structure (U, (a;: ? <w)) such that A
is the required L-structure and each element of 9 is some a,. To do this
we construct a set of M-sentences X =3, ,, such that the following hold.

(1) TuX is consistent.

(2) s X.

(3) For each M-sentence tve3,,,, if TuXu{z} is consistent then
Te X.

(4) For each I'(v,....,v;) € I' and parameters a;
Y(¥g; - . .,v) € I' such that —y(a,,...,a;) € X.

(8) For each formulas ¢(v,,. . .,v), (V.. .,v) if

NN 7% there is some

Fvg,. - )pe X, —(Vg...,0)peX

then there are parameters a,...,a;, such that

0’ *
(p(a,;o,. . ’aik) € X, —‘w(aio” . ’aik) € X .

We say ¢(a;y,...,a;), —p@,...,a;) are instances of (Jv,,...,7)p,
—-:(V’Uo,. . ,'Uk)'(/).

We construct X as the union of a chain

XocsX;je...eX,c..., m<w

of finite M-sets X, =3,,,,. We put X,={o} and at each step X, > X,
we consider some triple

(z, vy, . - -, 0p), (@5 - -, a5,))

where 7 is an M-sentence in 3,,,,, I'e I', and a,,...,a,, are parameters.
We arrange the construction in such a way that every such triple is
considered at some stage.

Given X,, we construct X, ., so that the following hold.

(6) If TuX, u{<}is consistent then 7€ X,,,;.

(7) There is some y € I' such that —y(a,,...,a;) € Xy

(8) If we have put into X,, ., some sentence of the form (Fvy,...,v;)e
or —(Vv,,...,7)y then we have also put in instances. :

Math. Scand. 33 — 4
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We note that (7) is possible since I' is 7'— (n)-np, so we do not have
TuX,tFya,...a)

for all yeI'. Also (8) is possible since only finitely many parameters
occur in X, so there are unused parameters available as witnesses.

The construction.

For each theory T let &, be the class of submodels of 7', that is the
class of structures U such that Y < B for some model B of 7. Two theo-
ries T',T" are co-theories (mutually model consistent) if & =L, equiv-
alently if TnV,=T"'nV,. A structure A is a completing model of T if
e SFp and

A B=>A<DB

holds for all models B of 7'.
The following lemma is (well-known and) easily proved.

LemMA 1. For each theory T and structure A € &L, the following are
equivalent.

(i) A is a completing model of T.
(ii) For each formula ¢, A omits I',,.

Here I', is the type I'(p,0) that is
{ptu{—=0: 03, fo(d)sfuip), THO - ¢}.

The following lemma is due to Cusin [4, theorem 1']; it is proved using
lemma 1 and theorem A.

THEOREM 2. For each theory T the followsng are equivalent.

(i) T 4s the theory of its completing models.
(ii) For each formula ¢ consistent with T there is some formula 0 € 3,
conststent with T such that T+0 — ¢.

From now on let 7' be some fixed (but arbitrary) theory.
In [9] we showed that there is exactly one class of structures % such
that

(wi) T,T*=Th(&) are co-theories,
(wii) & is the class of completing models of 7T'*.
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Uniqueness followed by standard model theoretic arguments (compact-
ness, method of diagrams, etc.), but existence used f-forcing. Here we
construct % using theorems A, B. ‘

From [10] it also follows that for each integer n =0 there is at most
one class &, such that

(ni) T,T,=Th(#,) are co-theories,
(nil) &, is the class of submodels U of 7' such that

ANcsB=>A<,B

holds for all models 8 of T,.
These classes (when they exist) form a chain

(h) Fo2F,2..2F,2...2%

with F =N{F,: n<w}. We will construct (h) step by step.

First note that %, must be &, and so there is no existence problem
here. (In fact there is no existence problem for &, since #,=¢&p, a
class constructed by means of theorem C. See [9] for details.) We must
provide a construction of &, from &%, . This we do using [10, theorem
4].

Suppose we have &, (for some integer n = 0), and consider the class ¢
of submodels U of T' such that

%[g%=>%<n+1§8

holds for all models B of T,. Our problem is, of course, to show that
2 is non-empty.

THEOREM 3. For each sentence o € 3,,,, consistent with T, , there is some

W e A with Nk o.

Proor. For each formula ¢ let I', be the type
{pruf{=0: 63, fo(O)<folg), Totb > o}.

We first show that for ¢ €V¥,.,, I', is a T, — (n)-np type.

Suppose y €3,,,, is such that T, Fy -y, for each yeI',. (We will
show that 7', U{y} is inconsistent.)

If v is consistent with 7', then (ni) gives Uk p[x] for some A € F,, and
A-assignment x. But then (nii) gives Ak O[x] for some 6 €3, where
T,t6 —>y. Now we have T,ty - ¢, and we can suppose that fv(0)<
Sfo(p) s fo(p), so that —0 e I',. Thus we also have T',Fy - —0, so that
T,+F—0. This contradicts Ak O[x], and so I', is T, —(n)—np.
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Now let I'={I',: ¢ € V,,,,}, 06 € 3, be consistent with 7', . Theorem B
gives us some structure U such that

(1) 9’[}: Tnn v’n+1’
(i) Ak o,
(iii) A omits each I'), for p € V,,4;.

We show that A e A"

First (i) gives A<, B for some Bk T, . In particular (using (ni)) A is
a submodel of 7.

Second, suppose that A< B for some BET,, Ak p[x] for some ¢ €
Vn+1 and A-assignment x. From (iii) we get AEO[x] for some e,
where 7T,F0 — ¢. Thus Bk §[x] (since 6€3,) and so Bk ¢[x] (since
Bk T,). Hence we get A<, B.

CoroLLARY 4. O X < F,, T, <Th(X'), Th (A)V,..cT,, in par-
ticular T, Th(X") are co-theories.

To show that " =%, _, we must verify that
(K) £ is the class of submodels A of 7' such that
A B=>A<,1B
holds for all models B of Th(X").

First consider A € 4 (so that A is a submodel of 7T') and suppose
A< B for some Bk Th(A'). In particular B 7, so that (by definition
of ) A<,.1B.

Secondly, consider any U satisfying the property of (K), in particular
U is a submodel of 7'. Now suppose that A< B for some Bk T,. Then
(since Th(X)nV,,T,) we have B <,€ for some € Th(X"). Thus (K)
gives A<, €, and so A<,.,B. Hence A € ', as required.

We have now constructed the chain (k) except for #. We also have
a chain

TocTc...eTys..., n<ow

of co-theories of 7'. Let T*=U{T,: n <w} so that 7',T* are co-theories.
To show that & exists it is sufficient to show that 7'* is the theory of its
completing models. We do this using theorem 2.

Consider any formula ¢ consistent with 7*. We have @€V, for
some », and ¢ is consistent with T',. Conditions (ni,ii) now give T',F
0 - ¢ for some 0 €3, consistent with 7,,. But T,,T* are co-theories,
so 0 is consistent with 7'*. Also T*F 60 — ¢, so we may apply theorem 2.
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Other remarks.

(1) Theorems A, B depend heavily on the countability of L and T,
however, we can replace “I’ countable” by “I’ meager in the appro-
priate stone space”. Does this lead to interesting results about f-generic
structures ?

(2) The construction of % ; given here is analogous to the construction
of ¥, (the T — F-generic structures) using a certain chain

Y29 =2...29,2...29.

This chain is built up step by step using a quantifier count as a measure
of complexity (as we have done here). In particular the constructions
at each step are similar but different. Cherlin noted that there was a
certain construction " > "' such that when iterated gave a chain

! ”n
%, 29%'2%"2..29M=2...29

with =N {%,™: n<w}. Details can be found in [3].
Is there a corresponding construction which gives % ,? The following
may be relevant.

(3) Theorems A, B are clearly related. Indeed if we put “n=w’’ in B
we get A. Presumably there is a common generalization of A, B which is
concerned with an unspecified set of formulas F. This set F would have
to satisfy certain restrictions. The general theorem would be such that
F = {all formulas} gives A and F =V, gives B. (See [5] and [6].)

(4) Can B be deduced from A (or A from B)? Can A, B be proved
using f-forecing ?

(56) The whole of the method used here can be lifted to suitable count-
able fragments of L, , in the manner of [7].
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