AN OMITTING TYPES THEOREM WITH AN APPLICATION TO THE CONSTRUCTION OF GENERIC STRUCTURES

H. SIMMONS

Abstract.

We give a forcing-free construction of f-generic structures. The construction uses an omitting types theorem of independent interest.

Introduction.

Throughout we consider theories T (i.e. deductively closed sets of sentences) formalized in some countable first order language L. (The countability of L is an essential restriction.) There is associated with each such theory T a certain class of structures \mathscr{F}_T , the class of T-f-generic structures, see [1]. This class is usually constructed using f-forcing; we will construct \mathscr{F}_T by omitting types.

It is no surpise that \mathscr{F}_T can be constructed in this way (by omitting types). The members of \mathscr{F}_T are the completing models of T^f (=Th(\mathscr{F}_T)) and hence are those structures which omit certain types Γ_φ (see lemma 1); equivalently (as mentioned in [8, theorem 1.2]) the members of \mathscr{F}_T are those structures which omit certain other types p_φ . The catch is that to define Γ_φ or p_φ we must refer to the forcing relation, whereas the method used here makes no use at all of forcing.

I am grateful to G. Cherlin for several comments on [10] which proved relevant to the problem discussed here; to R. Cusin for showing me a preprint containing theorem 1; and to A. Macintyre for several specific and general points.

Omitting types theorems.

Let v_0, v_1, v_2, \ldots be the variables of the underlying language L. By a type we will here mean a set of formulas Γ such that the set $fv(\Gamma)$ of free variables occurring in Γ is a subset of $\{v_0, \ldots, v_k\}$ for some

Received November 17, 1972.

integer $k \ge 0$. We will sometimes indicate $fv(\Gamma)$ by writing $\Gamma(v_0, \ldots, v_k)$. We use the standard notions of realizing and omitting a type.

Let T be some theory. A type Γ is T-np (non-principal over T) if there is no formula ψ consistent with T such that $T
vert \psi \to \gamma$, for each $\gamma \in \Gamma$. (Clearly it is sufficient to consider only those ψ with $fv(\psi) \subseteq fv(\Gamma)$.) The following theorem is well-known.

Theorem A. Let T be some fixed theory and Γ some countable collection of T-np types. For each sentence σ consistent with T there is a countable structure $\mathfrak A$ such that

(Ai)
$$\mathfrak{A} \models T$$
,

(Aii) $\mathfrak{A} \models \sigma$,

(Aiii) $\mathfrak A$ omits each type in Γ .

For each integer $n \ge 0$ let $\forall_n(\exists_n)$ be the set of formulas logically equivalent to formulas in prenex normal form whose prenex consists of n blocks of quantifiers, the first block being universal (existential), the second block being existential (universal), the third block being universal (existential), etc. For each two structures $\mathfrak{A}, \mathfrak{B}$ let $\mathfrak{A} \prec_n \mathfrak{B}$ mean that $\mathfrak{A} \subseteq \mathfrak{B}$ and

$$\mathfrak{A} \models \varphi[x] \Rightarrow \mathfrak{B} \models \varphi[x]$$

holds for all formulas $\varphi \in \forall_n$ and all \mathfrak{A} -assignments x. We note that for each theory T, $\mathfrak{A} \models T_n \cap \forall_{n+1}$ if and only if $\mathfrak{A} \prec_n \mathfrak{B}$ for some $\mathfrak{B} \models T$.

A type Γ is T-(n)-np if $\Gamma \subseteq \forall_{n+1}$ and there is no formula $\psi \in \exists_{n+1}$ consistent with T such that $T \vdash \psi \to \gamma$, for each $\gamma \in \Gamma$.

We will need theorem A as well as the following refinement.

THEOREM B. Let T be some fixed theory, $n \ge 0$ some integer, and Γ some countable collection of T-(n)-np types. For each $\sigma \in \exists_{n+1}$ consistent with T there is a countable structure $\mathfrak A$ such that

(Bi)
$$\mathfrak{A} \models T \cap \forall_{n+1}$$
,

(Bii) $\mathfrak{A} \models \sigma$,

(Biii) $\mathfrak A$ omits each type in Γ .

Clearly theorems A, B are of the same family. Theorem B is also related to a theorem of Chang, [2].

Following [2] we say a type Γ is T-(n+2)-existential if $\Gamma \subseteq \exists_{n+2}$ and there is no type $\Delta \subseteq \exists_{n+1}$ consistent with T such that for each $\gamma \in \Gamma$ there is some $\delta \in \Delta$ with $T \vdash \delta \to \gamma$.

Theorem C. Let T be some fixed theory, $n \ge 0$ some integer. For each model \mathfrak{M} of T is some structure \mathfrak{A} , of the same cardinality as \mathfrak{M} , such that

$$\begin{array}{ll} \text{(Ci)} & \mathfrak{A} \models T \cap \forall_{n+1} \; , \\ \text{(Cii)} & \mathfrak{M} \prec_n \mathfrak{A} \; , \end{array}$$

(Ciii) \mathfrak{A} omits each T-(n+2)-existential type.

This theorem occurs in [2, § 3], however, the following remarks should be noted.

- (a) Chang's n is our n+1.
- (b) Chang assumes that T is \forall_{n+2} -axiomatizable (our n) and proves $\mathfrak{A} \models T$. This makes no essential difference. We see from lemma 0 (below) that in the presence of (Ciii) we can strengthen (Ci) to $\mathfrak{A} \models T \cap \forall_{n+2}$.
- (c) (Cii) is stronger than Chang's (ii), but Chang does verify (Cii), see [2, (3) on p. 67].

(Ciii) can be given in an equivalent, more understandable form. To do this we use the type $\Gamma(\varphi, n+1)$ that is

$$\{\varphi\} \cup \{\neg \psi : \psi \in \exists_{n+1}, fv(\psi) \subseteq fv(\varphi), T \vdash \psi \rightarrow \varphi\}$$

for formulas $\varphi \in \forall_{n+1}$. Such a type is easily seen to be T - (n+2)-existential, (see [2, p. 65, E.g. B]), and so is also T-(n)-np.

LEMMA 0. Suppose $\mathfrak{A} \models T \cap \forall_{n+1}$. The following are equivalent.

- (i) \mathfrak{A} omits each T-(n+2)-existential type.
- (ii) \mathfrak{A} omits $\Gamma(\varphi, n+1)$, for each $\varphi \in \forall_{n+1}$.
- (iii) For each model \mathfrak{B} of T, if $\mathfrak{A} \prec_n \mathfrak{B}$ then $\mathfrak{A} \prec_{n+1} \mathfrak{B}$.

We can now make a direct comparison between B and C. Clearly

$$(Bi) = (Ci)$$

and

$$(Bii) \Leftarrow (Cii)$$

Also, provided we have $\Gamma(\varphi, n+1) \in \Gamma$ for each $\varphi \in \forall_{n+1}$,

$$(Biii) \Rightarrow (Ciii)$$
.

The stronger version of B obtained by replacing (Bii) by (Cii) is false.

Proof of B.

Anyone familiar with the proof of A will be able to provide a proof of B himself. We will not give all the details of the proof, but just outline the main points.

Let T, n, Γ , σ be given. We form a new language M from L by adjoining a sequence $(a_i \colon i < \omega)$ of new constant symbols. We refer to these as parameters. We construct an M-structure $\langle \mathfrak{A}, (a_i \colon i < \omega) \rangle$ such that \mathfrak{A} is the required L-structure and each element of \mathfrak{A} is some a_i . To do this we construct a set of M-sentences $X \subseteq \exists_{n+1}$ such that the following hold.

- (1) $T \cup X$ is consistent.
- (2) $\sigma \in X$.
- (3) For each M-sentence $\tau \in \exists_{n+1}$, if $T \cup X \cup \{\tau\}$ is consistent then $\tau \in X$.
- (4) For each $\Gamma(v_0,\ldots,v_k)\in\Gamma$ and parameters a_{i_0},\ldots,a_{i_k} there is some $\gamma(v_0,\ldots,v_k)\in\Gamma$ such that $\neg\gamma(a_{i_0},\ldots,a_{i_k})\in X$.
 - (5) For each formulas $\varphi(v_0,\ldots,v_k)$, $\psi(v_0,\ldots,v_k)$ if

$$(\exists v_0,\ldots,v_k)\varphi\in X, \quad \neg(\forall v_0,\ldots,v_k)\psi\in X$$

then there are parameters a_{i_0}, \ldots, a_{i_k} such that

$$\varphi(a_{i_0},\ldots,a_{i_k})\in X, \quad \neg \psi(a_{i_0},\ldots,a_{i_k})\in X.$$

We say $\varphi(a_{i_0},\ldots,a_{i_k})$, $\neg \psi(a_{i_0},\ldots,a_{i_k})$ are instances of $(\exists v_0,\ldots,v_k)\varphi$, $\neg (\forall v_0,\ldots,v_k)\psi$.

We construct X as the union of a chain

$$X_0 \subseteq X_1 \subseteq \ldots \subseteq X_m \subseteq \ldots, \quad m < \omega$$

of finite M-sets $X_m \subseteq \exists_{m+1}$. We put $X_0 = \{\sigma\}$ and at each step $X_m \mapsto X_{m+1}$ we consider some triple

$$(\tau, \Gamma(v_0,\ldots,v_k), (a_{i_0},\ldots,a_{i_k}))$$

where τ is an M-sentence in \exists_{n+1} , $\Gamma \in \Gamma$, and a_{i_0}, \ldots, a_{i_k} are parameters. We arrange the construction in such a way that every such triple is considered at some stage.

Given X_m we construct X_{m+1} so that the following hold.

- (6) If $T \cup X_m \cup \{\tau\}$ is consistent then $\tau \in X_{m+1}$.
- (7) There is some $\gamma \in \Gamma$ such that $-\gamma(a_{i_0}, \ldots, a_{i_k}) \in X_{m+1}$.
- (8) If we have put into X_{m+1} some sentence of the form $(\exists v_0, \ldots, v_k) \varphi$ or $\neg (\forall v_0, \ldots, v_k) \psi$ then we have also put in instances.

We note that (7) is possible since Γ is T-(n)-np, so we do not have

$$T \cup X_m \vdash \gamma(a_{i_0} \dots a_{i_k})$$

for all $\gamma \in \Gamma$. Also (8) is possible since only finitely many parameters occur in X_m , so there are unused parameters available as witnesses.

The construction.

For each theory T let \mathscr{S}_T be the class of submodels of T, that is the class of structures \mathfrak{A} such that $\mathfrak{A} \subseteq \mathfrak{B}$ for some model \mathfrak{B} of T. Two theories T, T' are co-theories (mutually model consistent) if $\mathscr{S}_T = \mathscr{S}_{T'}$, equivalently if $T \cap \forall_1 = T' \cap \forall_1$. A structure \mathfrak{A} is a completing model of T if $\mathfrak{A} \in \mathscr{S}_T$ and

$$\mathfrak{A} \subseteq \mathfrak{B} \Rightarrow \mathfrak{A} \prec \mathfrak{B}$$

holds for all models \mathfrak{B} of T.

The following lemma is (well-known and) easily proved.

Lemma 1. For each theory T and structure $A \in \mathcal{S}_T$, the following are equivalent.

- (i) A is a completing model of T.
- (ii) For each formula φ , $\mathfrak A$ omits Γ_{φ} .

Here Γ_{φ} is the type $\Gamma(\varphi,0)$ that is

$$\{\varphi\} \cup \{\neg \theta: \ \theta \in \exists_1, \ fv(\theta) \subseteq fv(\varphi), \ T \vdash \theta \to \varphi\}.$$

The following lemma is due to Cusin [4, theorem 1']; it is proved using lemma 1 and theorem A.

THEOREM 2. For each theory T the following are equivalent.

- (i) T is the theory of its completing models.
- (ii) For each formula φ consistent with T there is some formula $\theta \in \exists_1$ consistent with T such that $T \vdash \theta \rightarrow \varphi$.

From now on let T be some fixed (but arbitrary) theory.

In [9] we showed that there is exactly one class of structures ${\mathscr F}$ such that

- (ω i) $T, T^* = \text{Th}(\mathscr{F})$ are co-theories,
- (ω ii) \mathscr{F} is the class of completing models of T^* .

Uniqueness followed by standard model theoretic arguments (compactness, method of diagrams, etc.), but existence used f-forcing. Here we construct \mathcal{F} using theorems A, B.

From [10] it also follows that for each integer $n \ge 0$ there is at most one class \mathcal{F}_n such that

- (ni) $T, T_n = \text{Th}(\mathscr{F}_n)$ are co-theories,
- (nii) \mathcal{F}_n is the class of submodels \mathfrak{A} of T such that

$$\mathfrak{A} \subseteq \mathfrak{B} \Rightarrow \mathfrak{A} \prec_n \mathfrak{B}$$

holds for all models \mathfrak{B} of T_n .

These classes (when they exist) form a chain

$$(h) \mathscr{F}_0 \supseteq \mathscr{F}_1 \supseteq \ldots \supseteq \mathscr{F}_n \supseteq \ldots \supseteq \mathscr{F}$$

with $\mathscr{F} = \bigcap \{\mathscr{F}_n : n < \omega\}$. We will construct (h) step by step.

First note that \mathscr{F}_0 must be \mathscr{S}_T , and so there is no existence problem here. (In fact there is no existence problem for \mathscr{F}_1 since $\mathscr{F}_1 = \mathscr{E}_T$, a class constructed by means of theorem C. See [9] for details.) We must provide a construction of \mathscr{F}_{n+1} from \mathscr{F}_n . This we do using [10, theorem 4].

Suppose we have \mathscr{F}_n (for some integer $n \geq 0$), and consider the class \mathscr{K} of submodels \mathfrak{A} of T such that

$$\mathfrak{A}\subseteq\mathfrak{B}\Rightarrow\mathfrak{A}\prec_{n+1}\mathfrak{B}$$

holds for all models \mathfrak{B} of T_n . Our problem is, of course, to show that \mathscr{K} is non-empty.

THEOREM 3. For each sentence $\sigma \in \exists_{n+1}$ consistent with T_n , there is some $\mathfrak{A} \in \mathscr{K}$ with $\mathfrak{A} \models \sigma$.

Proof. For each formula φ let Γ_{φ} be the type

$$\left\{\varphi\right\} \cup \left\{ \neg \theta: \ \theta \in \exists_1, \ fv(\theta) \!\subseteq\! f\!v(\varphi), \ T_n \vdash \theta \rightarrow \varphi \right\}.$$

We first show that for $\varphi \in \forall_{n+1}$, Γ_{φ} is a $T_n - (n)$ -np type.

Suppose $\psi \in \exists_{n+1}$ is such that $T_n \vdash \psi \to \gamma$, for each $\gamma \in \Gamma_{\varphi}$. (We will show that $T_n \cup \{\psi\}$ is inconsistent.)

If ψ is consistent with T_n then (ni) gives $\mathfrak{A}\models\psi[x]$ for some $\mathfrak{A}\in\mathscr{F}_n$ and \mathfrak{A} -assignment x. But then (nii) gives $\mathfrak{A}\models\theta[x]$ for some $\theta\in\exists_1$ where $T_n\vdash\theta\to\psi$. Now we have $T_n\vdash\psi\to\varphi$, and we can suppose that $fv(\theta)\subseteq fv(\psi)\subseteq fv(\varphi)$, so that $\neg\theta\in\Gamma_\varphi$. Thus we also have $T_n\vdash\psi\to\neg\theta$, so that $T_n\vdash\neg\theta$. This contradicts $\mathfrak{A}\models\theta[x]$, and so Γ_φ is $T_n-(n)-\mathrm{np}$.

Now let $\Gamma = \{\Gamma_{\varphi} \colon \varphi \in \forall_{n+1}\}, \ \sigma \in \exists_{n+1} \text{ be consistent with } T_n$. Theorem B gives us some structure $\mathfrak A$ such that

- (i) $\mathfrak{A} \models T_n \cap \forall_{n+1}$,
- (ii) $\mathfrak{A} \models \sigma$,
- (iii) \mathfrak{A} omits each Γ_{φ} , for $\varphi \in \forall_{n+1}$.

We show that $\mathfrak{A} \in \mathscr{K}$.

First (i) gives $\mathfrak{A} \prec_n \mathfrak{B}$ for some $\mathfrak{B} \models T_n$. In particular (using (ni)) \mathfrak{A} is a submodel of T.

Second, suppose that $\mathfrak{A} \subseteq \mathfrak{B}$ for some $\mathfrak{B} \models T_n$, $\mathfrak{A} \models \varphi[x]$ for some $\varphi \in \forall_{n+1}$ and \mathfrak{A} -assignment x. From (iii) we get $\mathfrak{A} \models \theta[x]$ for some $\theta \in \exists_1$ where $T_n \models \theta \rightarrow \varphi$. Thus $\mathfrak{B} \models \theta[x]$ (since $\theta \in \exists_1$) and so $\mathfrak{B} \models \varphi[x]$ (since $\mathfrak{B} \models T_n$). Hence we get $\mathfrak{A} \prec_{n+1} \mathfrak{B}$.

COROLLARY 4. $\emptyset \neq \mathcal{K} \subseteq \mathcal{F}_n$, $T_n \subseteq \operatorname{Th}(\mathcal{K})$, $\operatorname{Th}(\mathcal{K}) \cap \forall_{n+1} \subseteq T_n$, in particular T, $\operatorname{Th}(\mathcal{K})$ are co-theories.

To show that $\mathcal{K} = \mathcal{F}_{n+1}$ we must verify that

(K) \mathcal{K} is the class of submodels \mathfrak{A} of T such that

$$\mathfrak{A} \subseteq \mathfrak{B} \Rightarrow \mathfrak{A} \prec_{n+1} \mathfrak{B}$$

holds for all models \mathfrak{B} of $\operatorname{Th}(\mathcal{K})$.

First consider $\mathfrak{A} \in \mathcal{K}$ (so that \mathfrak{A} is a submodel of T) and suppose $\mathfrak{A} \subseteq \mathfrak{B}$ for some $\mathfrak{B} \models \operatorname{Th}(\mathcal{K})$. In particular $\mathfrak{B} \models T_n$ so that (by definition of \mathcal{K}) $\mathfrak{A} \prec_{n+1} \mathfrak{B}$.

Secondly, consider any $\mathfrak A$ satisfying the property of (K), in particular $\mathfrak A$ is a submodel of T. Now suppose that $\mathfrak A \subseteq \mathfrak B$ for some $\mathfrak B \models T_n$. Then (since $\operatorname{Th}(\mathcal K) \cap \forall_{n+1} \subseteq T_n$) we have $\mathfrak B \prec_n \mathfrak C$ for some $\mathfrak C \models \operatorname{Th}(\mathcal K)$. Thus (K) gives $\mathfrak A \prec_{n+1} \mathfrak C$, and so $\mathfrak A \prec_{n+1} \mathfrak B$. Hence $\mathfrak A \in \mathcal K$, as required.

We have now constructed the chain (h) except for \mathcal{F} . We also have a chain

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_n \subseteq \ldots, \quad n < \omega$$

of co-theories of T. Let $T^* = \bigcup \{T_n : n < \omega\}$ so that T, T^* are co-theories. To show that \mathcal{F} exists it is sufficient to show that T^* is the theory of its completing models. We do this using theorem 2.

Consider any formula φ consistent with T^* . We have $\varphi \in \forall_{n+1}$ for some n, and φ is consistent with T_n . Conditions (ni,ii) now give $T_n \vdash \theta \to \varphi$ for some $\theta \in \exists_1$ consistent with T_n . But T_n, T^* are co-theories, so θ is consistent with T^* . Also $T^* \vdash \theta \to \varphi$, so we may apply theorem 2.

Other remarks.

- (1) Theorems A, B depend heavily on the countability of L and Γ , however, we can replace " Γ countable" by " Γ meager in the appropriate stone space". Does this lead to interesting results about f-generic structures?
- (2) The construction of \mathcal{F}_T given here is analogous to the construction of \mathcal{G}_T (the T-F-generic structures) using a certain chain

$$\mathscr{G}_0 \supseteq \mathscr{G}_1 \supseteq \ldots \supseteq \mathscr{G}_n \supseteq \ldots \supseteq \mathscr{G}$$
.

This chain is built up step by step using a quantifier count as a measure of complexity (as we have done here). In particular the constructions at each step are similar but different. Cherlin noted that there was a certain construction $\mathcal{K} \mapsto \mathcal{K}'$ such that when iterated gave a chain

$$\mathscr{G}_0 \supseteq \mathscr{G}_0' \supseteq \mathscr{G}_0'' \supseteq \ldots \supseteq \mathscr{G}_0^{(n)} \supseteq \ldots \supseteq \mathscr{G}$$

with $\mathcal{G} = \bigcap \{\mathcal{G}_0^{(n)}: n < \omega\}$. Details can be found in [3].

Is there a corresponding construction which gives \mathcal{F}_T ? The following may be relevant.

- (3) Theorems A, B are clearly related. Indeed if we put " $n = \omega$ " in B we get A. Presumably there is a common generalization of A, B which is concerned with an unspecified set of formulas F. This set F would have to satisfy certain restrictions. The general theorem would be such that $F = \{\text{all formulas}\}\$ gives A and $F = \forall_n$ gives B. (See [5] and [6].)
- (4) Can B be deduced from A (or A from B)? Can A, B be proved using f-forcing?
- (5) The whole of the method used here can be lifted to suitable countable fragments of $L_{\omega,\omega}$ in the manner of [7].

REFERENCES

- J. Barwise and A. Robinson, Completing theories by forcing, Ann. Math. Logic 2 (1970), 119-142.
- 2. C. C. Chang, Omitting types of prenex formulas, J. Symbolic logic 32 (1967), 61-74.
- 3. G. Cherlin, The model companion of a class of structures, J. Symbolic logic 37 (1972), 546-556.
- R. Cusin, L'algèbre des formules d'une théorie complète et forcing-compagnon, C.R. Acad. Sci. Paris Sér. A. 275 (1972), 1269–1272.
- 5. R. Fittler, Direct limits of models, Z. Math. Logik Grundlagen Math. 16 (1970), 377-384.
- 6. R. Fittler, Generalized prime models, J. Symbolic logic 36 (1971), 593-606.

- 7. H. J. Keisler, *Model theory for infinitary logic*, (Studies in logic and the foundations of mathematics 62), North Holland Publ. Co., Amsterdam, 1971.
- S. Shelah, A note on model complete models and generic models, preprint, see Proc. Amer. Math. Soc. 34 (1972), 509-514 for revised version.
- 9. H. Simmons, Existentially closed structures, J. Symbolic logic, 37 (1972), 293-310.
- H. Simmons, A possible characterization of generic structures, Math. Scand. 31 (1972), 257-261.

UNIVERSITY OF ABERDEEN, SCOTLAND