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TOPOLOGIES ON THE EXTREME POINTS OF
COMPACT CONVEX SETS II

ALAN GLEIT!?

Abstract.

We continue the study of topologies on the extreme points of compact
convex sets begun in [6]. Here, we analyze the auxiliary condition (C2)
introduced there. We find sufficient conditions for the topologies of
L-ideals and of split faces to satisfy (C2). We also apply these results
to the generalized peak set topology of function algebras.

Introduction.

In [6] we studied certain topologies on the extreme points of compact
convex sets. In particular, let K be a compact convex subset of a locally
convex topological (real or complex) vector space E. Let .7 be any collec-
tion of closed convex subsets of K. Let

R=N{T,: 0T, eT}.
Suppose .7 satisfies the following conditions:
1. 9,KeJ.
. T,Tye T = co(T,,Ty)eT.
.T,eT eachaed = NT, eT.

. Ext(T)=Ext(K)nT for each T € 7, T+ R.
. Ext(R)=Ext(K)nR or J=Ext(K)nR.

Cu B W N

We use Ext(-) for the extreme points of the given set. Given the collec-

tion J as above, we define the r-topology on Ext(K) by the following
scheme:

F < Ext(K) is v-closed < F = Ext(K)nT for some T'eJ .

Hence, all t-closed sets are of the form F =Ext(7') for some 7' € J, but
the converse need not hold. We seek conditions under which the follow-
ing statement is true.
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STATEMENT 0.1. Suppose K is metrizable. Then the following are equiv-
alent for a fixed p € Ext(K):

1. The z-topology is first countable at p.
2. The t-topology is locally compact at p.
3. The t-topology is locally sequentially compact at p.

Further, if the t-topology is first countable for each p € Ext (K), ¢t is second
countable.

For q € K, we take T'(q) to be the minimal element of J which con-
tains g. (It exists by properties 1 and 3 of 7.) We let

D(q9) = Ext(K)nT(q) foreach ge K.

We note that @(q) is t-closed for each ¢ € K and that @(q)+0 for q ¢ R.
We say that the t-topology satisfies condition (C2) if the following
holds:

If the sequence {p,} = Ext(K) converges to g, then all the t-cluster points
of {p.} are in &(q).

We then have the following result.

THEOREM 0.2. [6, Theorem 2.5]. Suppose K is metrizable satisfying (C2).
Then Statement 0.1 holds.

We outlined in [6] several examples of collections 7 which satisfy
(1)—(5) above. Of these, the topology generated by the split faces need
not satisfy condition (C2). Also, we do not know whether the topology
generated by the weak* closed L-ideals always satisfies (C2). The purpose
of this paper is to give sufficient conditions for either of these topologies
to satisfy (C2) and hence for Statement 0.1 to hold for them.

In section 1 we consider necessary and sufficient conditions for J to
satisfy condition (C2). To more easily verify this condition, in section 2
we consider a group @ of transformations acting on a compact metric
space Z. We introduce the concept of @ acting smoothly on Z. We apply
this to a group of one-to-one J -affine maps of Ext(K) onto Ext(K).
The notions of sections 1 and 2 are then applied in section 3 to the two
topologies in question. Finally in section 4 we shall show that the gener-
alized peak sets for a function algebra are the closed sets for a z-topology
for which Statement 0.1 holds.
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1. Discussion of condition (C2).

We let K, E, and . be as in the introduction. .7 is said to be smooth
if the following condition holds:

Whenever the sequence {p,}<Ext(K) converges to q, we have

UaL, @(p,)-u T(9)
18 closed in K.

LemMA 1.1. Suppose I is smooth and the sequence {p,}< Ext(K) con-
verges to q. Then

Un Q(pn) U Q(q) = Ext (K) n OO_(T(Q), Un T(pn))
= Ext co~(T(g), U, T(p,)) .

Proor. Let S=co-(T(g), U,T(p,)). Then
8 = co~(U,co-D(p,), co-ExtT(q))
by the Krein-Milman Theorem and therefore

8 = co~(U, D(p,), ExtT(q)) .
So

ExtS < [U, &(p,) U ExtT(q)]~
by the Milman Theorem and hence
Ext8 ¢ U, &(p,)~u T(9)

since J is smooth. Since @(p,)-<T(p,)<S we know that all points of
@(p,)~ which are not extreme in 7'(p,) cannot be extreme in §. Similar
statements are true about 7'(q). Hence

Ext(S) € U, ®(p,) u ExtT(q) .

If T(q)+ R, then ExtT(q)=D(q). If T'(¢)=R, then T'(9) < D(p,) for each
n, and so, as above

ExtT(q9) n Ext(S) < U,, D(p,,) -
Hence

Ext(8) ¢ U, &(p,) U D(q) -
On the other hand, clearly
Ext(8) 2 Ext(K)n S 2 U, &(p,) u D(q)

and the lemma is proven.

We may now give necessary and sufficient conditions for 7 to satisfy
condition (C2).

Math. Scand. 33 — 3
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THEOREM 1.2. I satisfies (C2) if and only if the following conditions
hold for any sequence {p,} such that p, - q and {p,}<Ext(K):

1. co=(T(g), U, T(p,)) €
2. Ny Ungk¢(pn)5¢(fns
3. U, ®(p,)-UT(q) is closed, i.e. T is smooth.

Proor. We first assume (1), (2), and (3). Let {p, } < Ext(K) and p,, - q.
Let
Dk = EXt(K) n OO“(T(q), Unng(pn)) .

From (1), D, is t-closed so clearly each z-cluster point of {p,} is in D,
for each k. Hence, it suffices to show that N, D, =®(q). But from Lemma
1.1,
Dy = U2y O(p,) U D(9)
and from (2), N D, =D(q).
Now suppose J satisfies condition (C2). Let {p,}<Ext(K) and
P, > ¢. We show first that 7 is smooth. Let

PE (Un¢(pn))—_ Un¢(pn)—

It suffices to show that p e T(q). If p € R, there is nothing to prove.
So we may assume there is a z € O(p). Let k, € D(p,) and k, - p. If {p,}
does not z-cluster to 2, there is a 7-closed set F' and a subnet {p,} such
that p ¢ F while p, € F. Find T €  so that Ext(7T)=F. Then p,eT
and so k, e D(p,)sT(p,)<T. As {k,} is cofinal in {k,}, k, > p and so
peT. Hence ze€ @(p)=ExtT(p)<ExtT=F, a contradiction. Hence
{p,} t-clusters at z and so by (C2) ze€ P(¢q). As this is true for each
z € D(p), we have D(p) < D(q) and so p € T(p)=T(q). A very similar argu-
ment shows that

N U,or @(p,) < {r-cluster points of {p,}}
and so by (C2) is a subset of @D(q). Finally, we show that

0~ (T(g), UnT(pn) € T .
As J is smooth, using Lemma 1.1 this is equivalent to showing that
S=U, d(p,)ud(q) is 1-closed. If not, let p belong to the z-closure of S
minus S. As &(q) is z-closed, p belongs to the 7-closure of U, ®(p,). It
is therefore a r-cluster point of {p,} and so by (C2) is in @(q). Hence S
is 7-closed and the proof is complete.

We now wish to give easily verifiable conditions which will imply the
three conditions of Theorem 1.2. Recall first that a topological space is
R, if closures of points are either disjoint or equal.
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ProrosiTioN 1.3. Suppose the t-topology is R, and that D(p) is compact
for each p € Ext(K). Suppose {p,}<Ext(K) and p, - q. Then
N Upzi @(p,) < D(g) -

Proor. If MU, ., P(p,)=0, we are done. So suppose
(L.1) ze N, U,., D(p,) .

Hence z € Ext(K) and for each k, there is n; 2k with z € D(p,,). As the
7-topology is R, ®D(z) = D(p,,) for each k. Since P(z) is compact, ¢ € D(z)
and so z € P(z) =D(q) since the topology is R,. As this holds for each z
satisfying (1.1) we are again done.

So much for the second hypothesis. As to the first, we have the fol-
lowing characterization of co—(7T(g), U,T(p,)) which will be of use in
the applications in section 3. We shall return to the hypothesis that 7
is smooth in the next section after we discuss transformation groups.

ProrosiTionN 1.4. Let K be metrizable and let T be smooth. Let {p,}<

Ext (K) converge to q. Suppose p, ¢ T(q) for each n, and p, & T(p,,) for
each n,m. Let

F = {ﬂf‘f'zno‘nfn : feT(q), fa€ T(pa),

ﬂ‘>—'0’ OCngO, Zn‘xn_l_ﬂ: 1} *
Then F =co~(T(q), YU, T(p,)).

Proor. Let S=co~(T(q), U, T(p,)). From Lemma 1.1,

We give the proof for the case @(q)+& and leave the case D(q)=0 to
the reader. By hypothesis, the right hand side is a disjoint union of a
countable number of Borel sets. Let « € S and find x, a probability meas-
ure supported by Ext(S), such that x=r(u)=resultant of u. [For the
existence of u see 1, Theorem I.4.8.] Then

p = zn o‘nvn""ﬂv s

where », is a probability measure supported by @(p,), » a probability
measure supported by ®D(q), «,20, =0, and 3,x,+pf=1. Thus

z = r(u)
= zn “nr(vn)'*'ﬁr(”) 5
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and since »,,,» are supported by disjoints sets

T = zn ’x'n.fn+.3f’

where f, € co-®D(p,)=T(p,) and feco-D(q)=T(g). Thus ScF. The
other inclusion is trivial.

2. The group of J -affine maps.

Before discussing the applications we first must consider a somewhat
different setting. Let G' be a group of transformations on a compact
Hausdorff space Z, i.e., there is a homomorphism = taking @ to the 1 —1
maps n(g) of Z onto Z. We note that n(g) for ¢ € @ need not be continuous.
We will denote the action of n(g) on z by g-z where g€ G and z € Z.
If p € Z we let G(p) be the orbit of p under this action of @, i.e.

p) ={g'p: geG}.
We say that G acts smoothly on Z if the following condition holds:
Whenever the sequence {p,} converges to q in Z the union

U:=l G(pn)_ u G(Q)—
18 a closed subset of Z.

We say that G acts equi-continuously on the compact metric space Z if
for each ¢> 0, there is a d=4(¢) >0 such that for each p,ge Z and ge @
we have

dist (p,q) < 6 = dist(g-p,g:q) < €.

ProrosiTioN 1.1. If G acts equi-continuously on the compact metric
space Z then G acts smoothly.

Proor. It clearly suffices to show the following: if z, € G(p,)~ and
2z, — z then z € G(q)~. Suppose {z,} and z satisfy these conditions. Clearly
we may find g, € @ satisfying g, p, — 2. By going to a subsequence and
re-indexing, we may assume that there is a 2’ € G(¢)~ such that g,-q¢ — 2’.
Let ¢> 0 be given and find §=4(¢/3) in the definition of equi-continuity.
Then there is an N such that for all »> N we have:

dist (p,,q) < 6, dist(g, p,.2) < &/3,
dist(g9,°¢,2") < ¢/3.

Take g=gy and apply equi-continuity to get that dist(z,2’) <e. Hence
z=2'€ G(q)".
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CorROLLARY 1.2. Let G be compact and Z be a compact metric space.

Suppose G xZ — Z by (g,2) > g-z is jointly continuous. Then G acts equs-
continuously and, so, smoothly.

CorROLLARY 1.3. Let G be finite and suppose n(g) € C(Z) for each g € Z.
Then G acts equi-continuously and, so, smoothly.

We now return to the setting in the introduction. We take for Z the
set Ext(K)~. A map ¢: Z - Z is I -affine if

{gp): peTnZy=TnZ foreach TeJ .

Let H be the set of all 1-1 maps of Z onto Z which are J -affine. H is
clearly a group under composition; let G be a subgroup. G is a group of
transformations of the compact set Z. If p € Z, we let G(p) be the orbit
of p under G. Note that

Gp) = T(p)nZ

for each p € Z. We say that G is large [compare with 2, page 429] if for
each p € Ext(K) we have G(p)~=®(p)~. Note that we have not assumed
that any g € @ is necessarily continuous or is affine on Z. Neither have
we assumed that the map g g(p) is continuous for any p € Z.

ProrosiTION 2.4. Suppose G is large.

1. If G acts smoothly on Z, then T is smooth.

2. Suppose G is compact and the map gi>g(p) is continuous for each
p € Ext(K). Then the t-topology ts R,. Further, it ts T, (and hence T,)
off G={I}.

3. If, in addition to the hypotheses of 2, G maps Ext(K) into Ext(K),
then D(p) ts compact for each p € Ext(K).

Proor. As G(q)-<7T(q) for each ¢q € Z, (1) is immediate. The hypo-
theses of (2) easily yields G(p)=®(p)- for each p € Ext(K) and so (2)
and (3) are clear.

3. Two applications.

The first application we shall make of the previous results is to the
topology generated by the weak* closed L-ideals [see 3]. We let V be
any separable real Banach space and let K be the unit ball of V* with
the weak* topology. A map e from V* to V* is an L-projection if it
satisfies:
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1. e2=¢,
2. |lpll = llepl|+|p—epll forall pe V*.

A subspace of V*is a L-ideal if it is the range of an L-projection. We take
g to be the collection of intersections of weak* closed L-ideals with K.
It is not known whether (C2) holds for J in general. We give sufficient
conditions below, however.

Lemma 3.1. Suppose {L,} is a collection of mutually disjoint L-ideals.
Let f, € L,,. Let «,, be real numbers satisfying 3., ||, fnll < 00. Then

HZn ‘xnfn” = zn ”‘xnfn” .

ProoF. As a finite sum of L-ideals is again an L-ideal [3, Proposition
3.14], for each N we have

HZle“nfn” = iv=1 ”‘xnfn” .

Obvious estimates using the triangle inequality complete the proof.

THEOREM 3.2. Let K be the unst ball of V* for a separable Banach space
V. Let T be the collection of intersections of weak* closed L-ideals with K.
Suppose the following hold:

1. I is smooth.
2. Whenever {p,}< Ext(K) and p, - q, we have

Ny Ungk T(p,) < 2(q) -
Then I satisfies (C2) and so Statement 0.1 holds.

Proor. From Theorem 1.2 we need only show the following: Suppose
{p.} < Ext(K) converges to q. Then

co~(T(q), UpnT(p,) € T .

We let F be the closed convex hull of 7'(g) and U, T(p,). Without loss
of generality, we assume that p, ¢ T(q) and p,, ¢ T(p,) for each n,m.
By Proposition 1.4,

F = {5f+znanf'n | fET(Q)’fne T(pn)’ ﬁ;—()’ (xn;O’ .B+zno‘n=1} ¢
Let L be the linear span of F and

L' = {Bf+ Jnonfu | FE€TQ), fn € T(0n), Znlltnfull +1Bfll < 00} .
We first claim that L'nK =F. Indeed, let

9= ff+Snonfac I nK.
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Noting that each set in 7 is symmetric, by replacing f, [f] by a multiple
of modulus one wherever necessary, we may assume 820, «,20 for
each n. If g=0, then g€ F. So we may assume g+0. By Lemma 3.1,
we have

lgll = BlfIl+ Zn allfall -

Let
I =Flalifl i f+0,
ff=0 if f=0,
fo' = FallgllIfall if fo#0,
f. =0 if f,=0,

B = BIflNgl;  an" = aullfall/llgll -
Then f' € T(q) and f,’ € T(p,). Also
g = ﬁ,f"*'Zn O‘n’fn”
L=g+3,,.

Hence g € F. Using Lemma 3.1, the other inclusion is clear.

We next claim that L< L', Indeed, let ¢%,...,gM € F and consider
pylgi+ ... +yMgM, Since the infinite sums involved in the definition of
g%,...,g™ converge absolutely, we may re-arrange the summands at will.
Hence

Vgt Mg = YYD vl
= (B 4. +pMB M)+
Note that y'if 1+ ... +yMpMfM e T(q) and similar for T'(p,). As
B+ .o A yMBYMI+ o o fal + -y oMM
= g+ ..+ I < oo,
Yigt+ .. +yMgMe L.
Since Fc L, LnK=F. By the Krein-Smulian Theorem, L is weak*
closed and, so, norm closed. Clearly L includes (T'(q)+ 3,7 (p,))~ where

the bar indicates norm closure and where we consider sums of finitely
many elements. On the other hand, Lemma 3.1 implies that

(T(q)+3.T(py)~ 2 L'

L=L = (T(q)+znT(pn))— .
As the latter is an L-ideal [3, Proposition 3.14], we have F=LnK e J.

and so

Combining the results of section 2 with Theorem 3.2 yields
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COROLLARY 3.3. Let 7 be as in Theorem 3.2. Let G be a subgroup of the
group of 1-1 J -affine maps of Ext(K)~ onto Ext(K)-. Suppose the fol-
lowing hold :

1. G acts equi-continuously [or only smoothly] on Ext(K)-.
2. @ s large.

3. Whenever {p,}<Ext(K) converges to q, we have
Ny Upor @(0,) < D(9) -

Then Statement 0.1 holds.

N

Finally using the results of sections 1 and 2 we get

CorOLLARY 3.4. Let I and G be as in Corollary 3.3. Suppose the follow-
ing hold :

1. The map G x Ext(K)- - Ext(K)~ ¢s jointly continuous [or just con-
tinuous in G and equi-continuous in Ext(K)-).

2. G is large.

3. @ is compact.

4. @ maps Ext(K) into Ext(K).

Then Statement 0.1 holds.

We note that for V a separable Lindenstrauss space, we have G=1Z,
and so corollary 3.4 applies.

The second application we shall make is to the topology generated by
the closed split faces [see 1; 2]. Let K be a compact convex set in an
letvs E. Let F be a closed face of K. We let F’ be the union of all faces
disjoint from F. It is always true that K =co(FUF') [2, Cor. 1.2]. Thus
for each z € K, there are points fe F, f' € F' and 0 2« =1 satisfying

z = af+(1—a)f’ .

The face F is said to be split if F’ is a face and if for each x € K — (FUF"')
the elements f,f’, and « in the above decomposition are all unique. We
take 7 to be the set of all closed split faces of K. There are examples
in which J does not satisfy condition (C2). We present sufficient condi-
tions below.

TaeorEM 3.5. Let K be a compact convex set in a locally convex topological
vector space E. Let T be the collection of closed split faces of K. Suppose
the following hold:
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1. I s smooth.
2. Whenever {p,}< Ext(K) and p, — q, we have

nk Ungk T(pn) = T(Q) .
3. The t-topology is R,.

Then T satisfies (C2) and so Statement 0.1 holds.

Proor. We arrange, by translation if need be, that 0 Ext(K).
Again, from Theorem 1.2 we need only show the following: Suppose
{p,} = Ext(K) converges to q. Then co—(T(g), U,T(p,)) € 7. We let F
be the closed convex hull of 7'(q) and U,T(p,). We assume, without
loss of generality, that p, ¢ T'(¢) and p, ¢ T(p,,) for each n,m. By Pro-
position 1.4,

F = {8f+3nonfn: feT(Q) fneT(p,), 820,
%20,134‘27;%:1}-

Cram (1). F is a closed face.

JUSTIFICATION. Let 2,y € K and suppose g=2Ar+(1—A)ye F for 0<
A< 1. We must show that # and y belong to F. Since g € F' we may write

(3.1) g=x+(1-Ay = Zn ‘xnfn'*'ﬂf'

As O(p;)nD(p;) =0 for i+j we have that T(p,)nT(p;)=0 for ¢4j. A
trivial induction argument can be used to extend [2, Lemma 2.1] to get
for each N a unique decomposition:

z = Zrly=1anxn+a’N.rxN,r
(3'2) Yy = zrl:/;-l bnyn+bN,ryN.r
g = z'rl:;l o‘nfn+ZrZ:’=1 dngn+dN,rgN,r

where z, € T(p,), zy,€T(p;)'n...nT(py) and ZnN=1an+aN_,= 1 [and
similar statements for the other decompositions in (3.2)]. Neither a, nor
z, depend on N since T'(p,) is split [similar for the others]. As T'(p,) is
split, we get from (3.1)

(3.3) r,z,+(1-A)b,y, = ¢ fn+d,g9, for 1SnsN.

Choose convergent subsequences of {ay.}, {*y,}, and the corresponding
sequences in (3.2). In the limit we have (with obvious notation)
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z =0 6,2, +a,2,
(3.4) Y = 2ne1 ba¥nt 0.y,

9 = et ufut 21 dngn+drg.+ B -
Using (3.1) and (3.3) we easily get

Ay, + (1= A)byYp+ 20y dnnGnn = Bf -

If =0, then a,=56,=0 and the representation (3.4) shows F is a face.
If p<+0, by dividing through by § and using 7T'(q) is a face, one easily
gets that [a,=0 or z,.€7(q)] and [b,=0 or y, e T(q)]. Hence again
z,y € F and so F is indeed a face.

Cramv (2). F'=T(q)'nN,T(p,).

JustrFicaTioN. Clearly, F' < T(q)'nN, T (p,) - Conversely suppose

zeT(q) nN, Tp,) nF.

Then x=8f+3,«,f, since « € F. Since x € T(q)’ which is a face, f=0.
Similarly, «, =0 each n. Since $+3,«, =1, we have

T(@)' n nn T(pn)' nF=0.
Since T'(q)’'nN, T(p,) is a face, it is a subset of F’.

Cramv (3). F is a split face.

JUSTIFICATION. From Claim 2, F’ is a face. It follows from Claim 1
that each point z € K has a representation as a linear combination of
elements of F and F’'. So we need only show uniqueness of such decom-
positions. Hence, let € K and suppose

z = yi01+ (=19 = yaga+ (1 —72)92
for 09,1, g,€F, and g,/ € F'. Let
9gi = ﬂifi+2n o‘n,ifn,i 1=1,2
as above. Fix N. Then
* = yianifnit Donan SnifaitviBufi+(1=y)gd =1,2.
From Claim (1) co=(7'(q), U, .yT(p,)) is a face. As
Ext co_(T(q): Un:t:N T(pn)) n ¢(pN) =0
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using Lemma 1.1, we have that it is disjoint from 7'(py) and so is a sub-
set of T'(py)’. Since T'(py) is split, we have

Y1%N,1 = Y2on,20 Jn,1 =fn,2 foreach N,
Hence

(3.5) Y1iBufit L=y = yaBafot+(1—=72)92 -

Adding the requisite coefficient times zero to both sides of (3.5) we would
have two representations in terms of 7'(¢) and F'<=7(q)’. Since T'(q) is

split, y181=vaps, f1=f2, (1—y1)=(1—y,), and g,"=g,’. Clearly the two
representations of x are the same and we are done.

Combining the results of section 1 and 2 with Theorem 3.5 we get

COROLLARY 3.6. Let I be as in Theorem 3.5. Let G be a subgroup of the
group of 1-1 T -affine maps of Ext(K)~ onto Ext(K)-. Suppose the fol-
lowing hold :

1. The map G x Ext(K)~ -~ Ext(K)~ ts jointly continuous [or just con-
tinuous in @ and equi-continuous in Ext(K)-].

2. G is large.

3. G is compact.

4. G maps Ext(K) into Ext(K).

Then Statement 0.1 holds.

Further specializing we get

CorOLLARY 3.7. Let J be as in Theorem 3.5. Suppose the T-topology
18 Ty. Then Statement 0.1 holds.

4. Function algebras.

We shall here apply Corollary 3.4 to the generalized peak set topology
of function algebras [see, for example, 4, p. 113]. Let X be a compact
Hausdorff space. We denote by C(X) the complex valued continuous
functions on X and equip it with the supremum norm. A closed subalge-
bra 4 of C(X) is a function algebra if it contains the constants and sep-
arates the points of X. A subset E of X is a peak set if there is an fe 4
such that f|E=1 and |f(y)|<1 if y € X —E. We call a closed subset £
of X a generalized peak set if it is the intersection of peak sets. Clearly
a generalized peak set is a peak set iff it is a Gy-set. If K is a generalized
peak set, then we let
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Iz, ={acd: a=00nE}.
We let S be the state space of A4, i.e.
S ={Fed*: |F|=1=FQ1)}.

We note that {(z): x € X}<= 8 and we identify X with this subset of S.
We let K be the unit ball of 4*.

THEOREM 4.1. [7, Theorem 3.1 and Theorem 1.2]. If E is a generalized
peak set, then Izt is a weak* closed L-ideal in A*.

Conversely, if J is a weak* closed L-ideal in A*, then JnX is a gener-
alized peak set. Further, each weak* closed L-ideal in A*,, 1.e. A* considered
as a real Banach space, 18 a complex subspace of A*.

THEOREM 4.2. The maps given in Theorem 4.1 are snverse of each other.
Hence there is a one-to-one correspondence between the intersections of weak*
closed L-ideals with K and generalized peak sets.

Proor. Let E be a generalized peak set. We claim that Iz*nX =E.
Indeed,
If*nX ={xeX: (VaecA)a=0on E = a(z)=0}.

Let x ¢ E. Then there is a peak set P containing F with = ¢ P. Thus,
there is fe 4 with f|P=1 and |f(y)| <1 for y€ X —P. Then 1—f|E=0
and (1—f)(x)+0 so x ¢ Iz;*nX and the other conclusion is trivial. Now
let J be a weak* closed L-ideal. We claim that I} ,x=.J. Indeed, let
J'=I%,x. Then, by the first part of the proof and Theorem 4.1, J'nX =
JnX. Since X 2Ext(8), J'nS=JnS. However, the circled closed con-
vex hull of § is K. Since the L-ideals are complex subspaces, we have
J'NK=JnK. But then J=J'.

THEOREM 4.3. Let A be a function algebra on a compact metric space X.
Then the following are equivalent for each peak point pe X :

1. The peak set topology ts first countable at p.
2. The peak set topology ts locally compact at p.
3. The peak set topology is sequentially locally compact at p.

Further, if the peak set topology is first countable for each peak point

p e X, it is second countable.

Proor. Let .7 be the collection of intersections of weak* closed L-ideals
in A* with K. Let s € Ext(8) and let Z(s)={zs: |z|=1}. We recall that
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the collection of peak points of X is precisely Ext (S) [4, Theorem 2.3.4].
Using Theorems 4.1 and 4.2, we see that Z(s) is r-closed and is the
minimal 7-closed set containing s. Hence ®(s)=Z(s). Further, if
p € Ext(K), then p=2s for |2|=1 and s € Ext(S). Hence G = circle group
is a subgroup of all one-to-one .7 -affine maps of Ext(K)~ onto Ext(K)-.
Clearly G is compact, large, and maps Ext(K) into Ext(K). By taking
the standard metric for K [see 5 p. 426, for instance], one easily checks
that the map G x Ext(K)- — Ext(K)~ is jointly continuous. Thus by
Corollary 3.4, Statement 0.1 applies to the t-topology. But Theorem 4.2
implies that the r-topology is the same as the peak set topology and the
theorem follows immediately.
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