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SOME APPLICATIONS OF CONVEXITY THEORY
TO BANACH ALGEBRAS

A.J. ELLIS

1. Introduction.

Let A be a complex unital Banach algebra with state space S and with
Z=co(Su —18). We study the representation of 4 as the real Banach
space A(Z), consisting of all real-valued continuous affine functions on Z.

In section 2, we show how the fact that 4 is a B*-algebra if and only if
A** is a B*-algebra is related to a convexity theorem, and we deduce
the fact that if 4 is a complex Lindenstrauss space then 4 is a C(X) space.
We show also that this latter conclusion is valid if 4 is a complex Linden-
strauss space for its supremum norm over S.

It is well-known that if 4 is a B*-algebra then A(S)* has the unique
minimal decomposition property, that is every ¢ in A(S8)* has a unique
decomposition @=@, —@, With ¢;,¢,20 and |lp[|=|lp/|+ [lpall. We prove
in section 3, that 4 is a B*-algebra if and only if 4(Z)* has the unique
minimal decomposition property.

In section 4, we show that if K is a compact convex set and if the
extreme boundary of a closed face F is the union of the extreme bound-
aries of a sequence {F,} of closed split faces of K then F is a split face
of K. If, moreover, each F, is a simplex then K is also a simplex. A
consequence of this result is that if the Choquet boundary of a function
algebra 4 on X is covered by a sequence of generalized peak interpola-
tion sets for A, then 4 =C(X).

We wish to thank Dr N. J. Kalton for several helpful conversations
on the contents of this paper.

2.

Throughout this section we will let 4 denote a complex unital Banach
algebra with identity e. Let S denote the state space of A and let Z=
co(Su —t8), in the Banach dual space A*. It was observed in [3] that
the Bohnenblust-Karlin theorem implies that there is a real-linear
homeomorphism 6 of 4 onto A(Z), the Banach space of all real-valued
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continuous affine functions on Z with the supremum norm, where 6 is
defined by fa(p)=re¢(a) for all @ in 4 and ¢ in Z. In the same paper the
Vidav—Palmer theorem was interpreted to show that 4 is a B*-algebra
if and only if S is a split face of Z.

A complex Banach space whose dual space is isometrically isomorphic
to a complex Ll-space is called a complex Lindenstrauss space. If L is a
uniformly closed linear subspace of the continuous complex-valued func-
tions on a compact Hausdorff space, such that L contains constants and
separates points, then Hirsberg and Lazar [9] have proved that L is a
complex Lindenstrauss space if and only if co(7'u —37') is a simplex,
where

T={FelL*: F(1)=1=|F|}

is the state space of L.

Let A, denote 4 equipped with the equivalent norm, |a||,=sup {|p(a)|:
@€ 8} for all @ in 4. Then 4, is a closed linear subspace of C(S) con-
taining constants and separating points, and it is easy to verify that S
is also the state space of 4;. If Z is a simplex then § is necessarily a
split face of Z.

Combining these results, together with the fact that the state space of
a B*-algebra with identity is a simplex if and only if the algebra is com-
mutative, we immediately obtain the following result.

THEOREM 1. 4, 1s a complex Lindenstrauss space if and only if A =C(X),
Jor some compact Hausdorff space X.

For the case of a function algebra 4 the theorem was first proved in [7]
and in [9]. We shall show below that Theorem 1 remains true if 4 re-
places A,. First, however, we prove a convexity theorem.

We recall (cf. [1]) that if K is a compact convex subset of a locally
convex Hausdorff space then K may be identified with the state space
of A(K). The second dual space A(K)** can be represented as a space
A(K**) for some compact convex set K**. Alternatively 4(K)** coin-
cides with the space AP(K) of all bounded real-valued affine functions
of K, with the supremum norm.

If E is a subset of a Banach space V then £ will denote the canonical
embedding of B in X** and E will denote the w*-closure of £ in X**,

THEOREM 2. Suppose that K=co(FuUG@) where F=u"1(0) and G=
u=Y1) for some u in A(K). Then F=2-10) and G=2"Y1), and K**=
co(Fu@). Moreover, F is a split face of K if and only if F is a split face
of K**,
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Proor. We have 0<% =1 and hence, because the orderings of A(K)
and A(K)** are compatible, it follows that 0 <4 < 1. For similar reasons
R is w*-dense in K** and so K**=¢o(Fu@) =co(Fu@). If F=20-1(0)
and G@=2-1(1) then FcF and G<@. Suppose that ¢ belongs to F\F.
Then ¢=Af+(1—1)j for some 0<A<1,fin F and § in G. Therefore, §
belongs to the face F as well as to G, which is impossible. Hence we have
F=F and similarly G=@.

If F is split in K** then, since F = Fn K, it follows that F is split in K.
Conversely, suppose that F is a split face of K. For each p in AY(K)
define p* in AY(K) by

P*(Af+(1=2)g)=p(Af—(1—2)g) forall fin F,gin @.

Then p* is well defined and (p+ p*) is zero on G and equals 2p on F.
Consequently (p+ p*) is zero on G and equals 2p on F. Therefore, if

1f1 Mg = }-zfz +(1=25)7,

for some 0<4;,<1, f; in F, g; in @, then A,p(f;)=A,p(f,) for all p in
A(K)**. Tt follows that A,=21, and f,=f,, and hence F is split in K**.

Suppose that 4** is also a Banach algebra with identity é. Then the
mapping 0 represents A as A(Z) and, using the result [4,12.3], we get that
the natural analogue of 0 represents A** ag A(Z)** = A(Z**). Moreover
S=(6e)-1(1), —18=(0e)1(0) and so Theorem 2 shows that the state
space of A** coincides with S.

It is well-known that if 4 is a B*-algebra with identity e then, for
the Arens multiplication, A** is a B*-algebra with identity & (cf. [4]).
A proof of that result is included in the proof of the more general result
in Corollary 3 below, where we assume no relationship between the alge-
braic structures of 4 and A**, or their identities.

CoROLLARY 3. Let A and A** be complex unital Banach algebras. Then
A is a B*-algebra if and only if A** is a B*-algebra.

Proor. Let A be a B*-algebra with identity e. Then for the Arens
multiplication 4** is a Banach algebra with identity ¢. We know that
8 is a split face of Z and hence, by Theorem 2, S** is a split face of Z**.
Therefore, for the Arens multiplication, A** is a B*-algebra with identity
¢ and (cf. [11]) the identity u of the given algebra A** is unitary.

Let S; denote the state space of the given algebra A** and for each ¢
in A*** let g (a)=gp(au*) for all @ in A** (where au* is the product in
the B*-algebra A**). If 1(p) =g, then 7 is a linear map from A*** into
itself which is injective since @,=¢’, implies that g(auu*)=g'(auu*),
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that is ¢(a)=¢’'(a). It is easy to verify that = maps S** into S;; in fact,
since each y in §; has the form ¢,, where p(a)=y(au), T maps S** onto
8. Theretore, the restriction of v to Z**=co(S**u —48**) is an affine
isomorphism onto Z,=-co(S;U —4S;). Since S** is a split face of Z** it
follows that S, is a split face of Z,, and hence the given algebra A4**
is a B*-algebra.

Conversely, let A** be a B*-algebra with identity « and let 4 be a
Banach algebra with identity e. By repeating the argument just given,
we see that for the Arens multiplication A** is a B*-algebra with iden-
tity . Therefore, S** is a split face of Z**, and Theorem 2 shows that §
is a split face of Z. Hence A4 is a B*-algebra.

COROLLARY 4. 4 complex unstal Banach algebra A is a complex Linden-
strauss space if and only if A =C(X) for some compact Hausdorff space X.

Proor. If 4 is a complex Lindenstrauss space then 4** is isometrically
isomorphic to a commutative B*-algebra C(Y). By Corollary 3, 4 is a
B*-algebra and so is A** for the Arens multiplication. The proof of
Corollary 3, shows that the state space S** of A** for the Arens multi-
plication is affinely isomorphic to the state space of C(Y), and hence S**
is a simplex. Therefore, the Arens multiplication is commutative and
so A4 is a commutative B*-algebra.

3.

As in the previous section, let K be a compact convex set. We recall
[6, Theorem 2] that A(K)* has the unique minimal decomposition prop-
erty if and only if every y in A(K)* with y(1)=0 and |ly||=1 has a unique
decomposition y =3y, —4y,, where y, and y, belong to K; moreover,
this is the case if and only if for each z in A(K)* the set Kn(x+ K) is
either empty, or a single point, or it contains y + AK for some y in A(K)*
and some real 1> 0.

THEOREM 5. Suppose that K =co (F UG) where F =u~(0) and G=u"1(1)
for some u in A(K). Then the following statements are equivalent.

(i) A(K)* has the unique minimal decomposition property.

(i1) A(F)* and A(G)* both have the unique minimal decomposition prop-
erty, and F and G are complementary split faces of K.

ProoF. (i) = (ii). If F and G are not split faces of K then there exist
%, %y in F and yy,y, in G with 2, +2,, y,+y,, and 32, + 3y, =12, + 3y,.
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It follows that a,,z, belong to Kn (K + x; —y,) and therefore there exists
some z in A(K)* and A > 0 such that z + AK is contained in K n(K +x, — y,).
However, for y in Kn(K +x, —y,) we have y=x + 2, —y, for some z in K,
so that 0Zu(y) 21 and u(y)=wu(x)+ u(z,) —u(y,) =u(x) —1 £0. Hence u
is constant on Kn(K +x;—v,), but is evidently not constant on z+ K.
This contradiction proves that F and G are complementary split faces
of K.

The closed unit ball of A(K)* is co(Ku — K), which is the convex hull
of co(FuU ~—F) and co(GU — @), the closed unit balls of A(F)* and A(G)*
respectively. It is straightforward now to verify that A(F)* and A(G)*
have the unique minimal decomposition property.

(ii) = (i). Since F and G are complementary split faces of K every z
in A(K)* has a unique decomposition z=x+y, where z belongs to lin ¥
and y belongs to lin@, and moreover |z||=|jz||+|ly|l. Let ||z]]=1 and let

z2 = A —(1—=Aw; = Avy,— (1 —2A)w,
for 0=4<1 and v,,w,; belonging to K. Then

z = A+ (1—A)yy) — (L= A)(ug ey + (1 — py)yy)
= MAgxy+ (1 —Ax)ys) — (1 — A)(uay” + (1 — po)yy”)

where 0<1,u;,<1, z,,2,” belong to F and y,,y," belong to G. We there-
fore have

Mgy — (1 =Dy &y = M@y — (1= Ay,
and also

1AAy 2y — (1 = Ay e[| 4+ 1AL = A4y, — (L= A) (1 — )y 'l| =1,
80 that
1Ay 2y — (1 = Ay || = Ady+(1=2A)p, .

Since A(F)* has the unique minimal decomposition property we must
have AA,x,=2A4,x, and (1—A)u 2, =(1—A)u,x,’. Using the fact that
A(@)* has the unique minimal decomposition property, in a similar man-
ner we obtain v, =v, and w, =w,, so that 4(K)* has the unique minimal
decomposition property.

If A is a unital B*-algebra with state space S then lin§ is the set of
hermitian linear functionals in A* and it is well-known (cf. [8]) that
A(S)*=1in S has the unique minimal decomposition property. This prop-
erty of lin S is not however sufficient to distinguish B*-algebras amongst
complex unital B-algebras A with state space S. In fact, the state space
of any Dirichlet algebra is a Bauer simplex, in which case lin § is a vector
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lattice, and so certainly possesses the unique minimal decomposition
property. We can however obtain the following result in this context.

COROLLARY 6. Let A be a complex unital Banach algebra with state space
S and with Z =co(Su —18). Then A is a B*-algebra if and only if A(Z)*
has the unique minimal decomposition property.

Proor. If 4 is a B*-algebra then, as noted above, lin S, and similarly
lin(—48), has the unique minimal decomposition property. Theorem 5
shows that 4(Z)* has the same property, since § and —S are comple-
mentary split faces of Z.

Conversely, if 4(Z)* has the unique minimal decomposition property
then, by Theorem 5, S is a split face of Z. The Vidav—-Palmer theorem
(cf. [3, Theorem 4]) now shows that 4 is a B*-algebra.

It should be noted that Corollary 6, shows that A4 is a B*-algebra if
and only if Z has the intersection property referred to above, whereas
A is a C(X) if and only if Z has the intersection property which charac-
terizes simplexes.

4.

Again in this section K will denote a compact convex set, and 0K will
denote its set of extreme points. The following result is probably known.

THEOREM 7. Let F be a closed face of K and let {F,} be a sequence of
closed split faces of K such that 0F =U,,_,0F, . Then F is a split face of K.
If, in addition, each F, is a simplex then F is a simplex.

Proor. Let u be a boundary measure in the annihilator 4 (K)* of 4(K).
In order to show that F is a split face of K we need to show that the
restriction measure up belongs to A(K)* (cf. [1, 11.6.12]). Since each F,
is a closed split face of K, each uj belongs to A(K)!. By taking convex
hulls of finite collections of the F,, if necessary we may assume that {F,}
is an increasing sequence and put G =U;_, F,. Therefore, if f is in A(K)
then fy, converges to fys pointwise on K, and so the dominated con-
vergence theorem gives

0= Sde.“F,, = SafdMF :

Now up is a boundary measure on F (cf. [2, Lemma 1]) and hence van-
ishes on the Gyset N,_,(F\ F,) which is disjoint from 0F. Therefore,
we obtain {xfdup=0, so that uz belongs to A(K)!, and F is a split face.
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Now suppose also that each F, is a simplex. In this case each up is
a boundary measure belonging to A4(F,)*, and hence is zero, by the
Choquet-Meyer uniqueness theorem. Since uj is supported by U F,
it follows that uz=0, and hence F is also a simplex.

There are many non-simplexes K with the property that every ex-
treme point is a split face; for example, if K is the set Z, described in
previous sections, for any non-trivial function algebra. The following
result shows that any such K must necessarily have uncountably many
extreme points.

CoroLLARY 8. If K has at most countably many extreme points, each of
which is a split face of K, then K is a simplex.

Theorem 7 and Corollary 8 have an application to function algebras,
as the next result shows.

CoROLLARY 9. Let A be a function algebra on X with Choguet boundary
0A. If 0A is covered by a sequence {E,} of generalized peak sets for 4 in X,
such that A |E, =C(E,) for each n, then A =C(X). In particular, if 04 s
countable then A=C(X).

Proor. Let S be the state space of 4, and let Z=co(SuU —iS). Then
the sets co(#,U —iE,) are Bauer simplexes and split faces of Z (cf. [6]).
Since the faces {co(E,uU —iE,)} cover 0Z, Theorem 7 shows that Z is a
simplex. Hence S is a split face of Z so that 4(S), which can be identified
with red, is uniformly closed. The Hoffman-Wermer theorem shows
now that 4 =C(X). Every point in 04 is a generalized peak point for 4,
and so the last statement follows directly.

If A is a function algebra on X such that 4|E,=C(E,) tor each n,
where {£,} is a sequence of closed subsets of X covering X, then it is
known [10] that A =C(X). Using Corollary 9, together with a theorem
of Varopoulos we obtain an associated result.

CororLLARY 10. Let A be a function algebra on X and let {E,} be a
sequence of subsets of 0A which are closed in X and such that 04=U,_, E,
and A|E,=C(E,) for each n. Then A=C(X).

Proor. The conditions on each E, imply that E, is generalized peak
set for 4 [12]. The result now follows from Corollary 9.
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