SOME APPLICATIONS OF CONVEXITY THEORY TO BANACH ALGEBRAS

A. J. ELLIS

1. Introduction.

Let A be a complex unital Banach algebra with state space S and with $Z = \operatorname{co}(S \cup -iS)$. We study the representation of A as the real Banach space A(Z), consisting of all real-valued continuous affine functions on Z.

In section 2, we show how the fact that A is a B^* -algebra if and only if A^{**} is a B^* -algebra is related to a convexity theorem, and we deduce the fact that if A is a complex Lindenstrauss space then A is a C(X) space. We show also that this latter conclusion is valid if A is a complex Lindenstrauss space for its supremum norm over S.

It is well-known that if A is a B^* -algebra then $A(S)^*$ has the unique minimal decomposition property, that is every φ in $A(S)^*$ has a unique decomposition $\varphi = \varphi_1 - \varphi_2$ with $\varphi_1, \varphi_2 \ge 0$ and $\|\varphi\| = \|\varphi_1\| + \|\varphi_2\|$. We prove in section 3, that A is a B^* -algebra if and only if $A(Z)^*$ has the unique minimal decomposition property.

In section 4, we show that if K is a compact convex set and if the extreme boundary of a closed face F is the union of the extreme boundaries of a sequence $\{F_n\}$ of closed split faces of K then F is a split face of K. If, moreover, each F_n is a simplex then K is also a simplex. A consequence of this result is that if the Choquet boundary of a function algebra A on X is covered by a sequence of generalized peak interpolation sets for A, then A = C(X).

We wish to thank Dr N. J. Kalton for several helpful conversations on the contents of this paper.

2.

Throughout this section we will let A denote a complex unital Banach algebra with identity e. Let S denote the state space of A and let $Z = \operatorname{co}(S \cup -iS)$, in the Banach dual space A^* . It was observed in [3] that the Bohnenblust-Karlin theorem implies that there is a real-linear homeomorphism θ of A onto A(Z), the Banach space of all real-valued

Received January 21, 1973.

continuous affine functions on Z with the supremum norm, where θ is defined by $\theta a(\varphi) = \operatorname{re} \varphi(a)$ for all a in A and φ in Z. In the same paper the Vidav–Palmer theorem was interpreted to show that A is a B^* -algebra if and only if S is a split face of Z.

A complex Banach space whose dual space is isometrically isomorphic to a complex L^1 -space is called a *complex Lindenstrauss space*. If L is a uniformly closed linear subspace of the continuous complex-valued functions on a compact Hausdorff space, such that L contains constants and separates points, then Hirsberg and Lazar [9] have proved that L is a complex Lindenstrauss space if and only if $\operatorname{co}(T \cup -iT)$ is a simplex, where

$$T = \{F \in L^*: \ F(1) = 1 = ||F||\}$$

is the state space of L.

Let A_1 denote A equipped with the equivalent norm, $||a||_1 = \sup \{|\varphi(a)| : \varphi \in S\}$ for all a in A. Then A_1 is a closed linear subspace of C(S) containing constants and separating points, and it is easy to verify that S is also the state space of A_1 . If Z is a simplex then S is necessarily a split face of Z.

Combining these results, together with the fact that the state space of a B*-algebra with identity is a simplex if and only if the algebra is commutative, we immediately obtain the following result.

THEOREM 1. A_1 is a complex Lindenstrauss space if and only if A = C(X), for some compact Hausdorff space X.

For the case of a function algebra A the theorem was first proved in [7] and in [9]. We shall show below that Theorem 1 remains true if A replaces A_1 . First, however, we prove a convexity theorem.

We recall (cf. [1]) that if K is a compact convex subset of a locally convex Hausdorff space then K may be identified with the state space of A(K). The second dual space $A(K)^{**}$ can be represented as a space $A(K^{**})$ for some compact convex set K^{**} . Alternatively $A(K)^{**}$ coincides with the space $A^{\mathfrak{p}}(K)$ of all bounded real-valued affine functions of K, with the supremum norm.

If E is a subset of a Banach space V then \widehat{E} will denote the canonical embedding of E in X^{**} and \overline{E} will denote the w^* -closure of \widehat{E} in X^{**} .

THEOREM 2. Suppose that $K = \operatorname{co}(F \cup G)$ where $F = u^{-1}(0)$ and $G = u^{-1}(1)$ for some u in A(K). Then $\overline{F} = \widehat{u}^{-1}(0)$ and $\overline{G} = \widehat{u}^{-1}(1)$, and $K^{**} = \operatorname{co}(\overline{F} \cup \overline{G})$. Moreover, F is a split face of K if and only if \overline{F} is a split face of K^{**} .

PROOF. We have $0 \le u \le 1$ and hence, because the orderings of A(K) and $A(K)^{**}$ are compatible, it follows that $0 \le \widehat{u} \le 1$. For similar reasons \widehat{K} is w^* -dense in K^{**} , and so $K^{**} = \overline{\operatorname{co}}(F \cup G) = \operatorname{co}(\overline{F} \cup \overline{G})$. If $\widetilde{F} = \widehat{u}^{-1}(0)$ and $\widetilde{G} = \widehat{u}^{-1}(1)$ then $\overline{F} \subseteq \widetilde{F}$ and $\overline{G} \subseteq \widetilde{G}$. Suppose that φ belongs to $\widetilde{F} \setminus \overline{F}$. Then $\varphi = \lambda \overline{f} + (1 - \lambda)\overline{g}$ for some $0 \le \lambda < 1, \overline{f}$ in \overline{F} and \overline{g} in \overline{G} . Therefore, \overline{g} belongs to the face \widetilde{F} as well as to \widetilde{G} , which is impossible. Hence we have $\overline{F} = \widetilde{F}$ and similarly $\overline{G} = \widetilde{G}$.

If \overline{F} is split in K^{**} then, since $\widehat{F} = \overline{F} \cap \widehat{K}$, it follows that F is split in K. Conversely, suppose that F is a split face of K. For each p in $A^{\mathfrak{b}}(K)$ define p^* in $A^{\mathfrak{b}}(K)$ by

$$p*(\lambda f + (1-\lambda)g) = p(\lambda f - (1-\lambda)g)$$
 for all f in F,g in G .

Then p^* is well defined and $(p+p^*)$ is zero on G and equals 2p on F. Consequently $(p+p^*)$ is zero on \overline{G} and equals 2p on \overline{F} . Therefore, if

$$\lambda_1 \bar{f}_1 + (1 - \lambda_1) \bar{g}_1 = \lambda_2 \bar{f}_2 + (1 - \lambda_2) \bar{g}_2$$

for some $0 < \lambda_i < 1$, \bar{f}_i in \bar{F} , \bar{g}_i in \bar{G} , then $\lambda_1 p(\bar{f}_1) = \lambda_2 p(\bar{f}_2)$ for all p in $A(K)^{**}$. It follows that $\lambda_1 = \lambda_2$ and $\bar{f}_1 = \bar{f}_2$, and hence \bar{F} is split in K^{**} .

Suppose that A^{**} is also a Banach algebra with identity \hat{c} . Then the mapping θ represents A as A(Z) and, using the result [4,12.3], we get that the natural analogue of θ represents A^{**} as $A(Z)^{**}=A(Z^{**})$. Moreover $S=(\theta e)^{-1}(1), \quad -iS=(\theta e)^{-1}(0)$ and so Theorem 2 shows that the state space of A^{**} coincides with \bar{S} .

It is well-known that if A is a B^* -algebra with identity \hat{e} then, for the Arens multiplication, A^{**} is a B^* -algebra with identity \hat{e} (cf. [4]). A proof of that result is included in the proof of the more general result in Corollary 3 below, where we assume no relationship between the algebraic structures of A and A^{**} , or their identities.

COROLLARY 3. Let A and A^{**} be complex unital Banach algebras. Then A is a B^* -algebra if and only if A^{**} is a B^* -algebra.

PROOF. Let A be a B^* -algebra with identity e. Then for the Arens multiplication A^{**} is a Banach algebra with identity \hat{e} . We know that S is a split face of Z and hence, by Theorem 2, S^{**} is a split face of Z^{**} . Therefore, for the Arens multiplication, A^{**} is a B^* -algebra with identity \hat{e} and (cf. [11]) the identity u of the given algebra A^{**} is unitary.

Let S_1 denote the state space of the given algebra A^{**} and for each φ in A^{***} let $\varphi_u(a) = \varphi(au^*)$ for all a in A^{**} (where au^* is the product in the B^* -algebra A^{**}). If $\tau(\varphi) = \varphi_u$ then τ is a linear map from A^{***} into itself which is injective since $\varphi_u = \varphi'_u$ implies that $\varphi(auu^*) = \varphi'(auu^*)$,

that is $\varphi(a) = \varphi'(a)$. It is easy to verify that τ maps S^{**} into S_1 ; in fact, since each ψ in S_1 has the form φ_u , where $\varphi(a) = \psi(au)$, τ maps S^{**} onto S_1 . Therefore, the restriction of τ to $Z^{**} = \cos(S^{**} \cup -iS^{**})$ is an affine isomorphism onto $Z_1 = \cos(S_1 \cup -iS_1)$. Since S^{**} is a split face of Z^{**} it follows that S_1 is a split face of Z_1 , and hence the given algebra Z^{**} is a Z^{**} is a Z^{**} is a Z^{**} is a Z^{**} in Z^{**} is a Z^{**} in Z^{**} in

Conversely, let A^{**} be a B^{*} -algebra with identity u and let A be a Banach algebra with identity e. By repeating the argument just given, we see that for the Arens multiplication A^{**} is a B^{*} -algebra with identity \hat{e} . Therefore, S^{**} is a split face of Z^{**} , and Theorem 2 shows that S is a split face of Z. Hence A is a B^{*} -algebra.

Corollary 4. A complex unital Banach algebra A is a complex Lindenstrauss space if and only if A = C(X) for some compact Hausdorff space X.

PROOF. If A is a complex Lindenstrauss space then A^{**} is isometrically isomorphic to a commutative B^* -algebra C(Y). By Corollary 3, A is a B^* -algebra and so is A^{**} for the Arens multiplication. The proof of Corollary 3, shows that the state space S^{**} of A^{**} for the Arens multiplication is affinely isomorphic to the state space of C(Y), and hence S^{**} is a simplex. Therefore, the Arens multiplication is commutative and so A is a commutative B^* -algebra.

3.

As in the previous section, let K be a compact convex set. We recall [5, Theorem 2] that $A(K)^*$ has the unique minimal decomposition property if and only if every y in $A(K)^*$ with y(1) = 0 and ||y|| = 1 has a unique decomposition $y = \frac{1}{2}y_1 - \frac{1}{2}y_2$, where y_1 and y_2 belong to K; moreover, this is the case if and only if for each x in $A(K)^*$ the set $K \cap (x+K)$ is either empty, or a single point, or it contains $y + \lambda K$ for some y in $A(K)^*$ and some real $\lambda > 0$.

THEOREM 5. Suppose that $K = co(F \cup G)$ where $F = u^{-1}(0)$ and $G = u^{-1}(1)$ for some u in A(K). Then the following statements are equivalent.

- (i) $A(K)^*$ has the unique minimal decomposition property.
- (ii) $A(F)^*$ and $A(G)^*$ both have the unique minimal decomposition property, and F and G are complementary split faces of K.

PROOF. (i) \Rightarrow (ii). If F and G are not split faces of K then there exist x_1, x_2 in F and y_1, y_2 in G with $x_1 \neq x_2$, $y_1 \neq y_2$, and $\frac{1}{2}x_1 + \frac{1}{2}y_1 = \frac{1}{2}x_2 + \frac{1}{2}y_2$.

It follows that x_1, x_2 belong to $K \cap (K + x_1 - y_2)$ and therefore there exists some z in $A(K)^*$ and $\lambda > 0$ such that $z + \lambda K$ is contained in $K \cap (K + x_1 - y_2)$. However, for y in $K \cap (K + x_1 - y_2)$ we have $y = x + x_1 - y_2$ for some x in K, so that $0 \le u(y) \le 1$ and $u(y) = u(x) + u(x_1) - u(y_2) = u(x) - 1 \le 0$. Hence u is constant on $K \cap (K + x_1 - y_2)$, but is evidently not constant on $z + \lambda K$. This contradiction proves that F and G are complementary split faces of K.

The closed unit ball of $A(K)^*$ is $co(K \cup -K)$, which is the convex hull of $co(F \cup -F)$ and $co(G \cup -G)$, the closed unit balls of $A(F)^*$ and $A(G)^*$ respectively. It is straightforward now to verify that $A(F)^*$ and $A(G)^*$ have the unique minimal decomposition property.

(ii) \Rightarrow (i). Since F and G are complementary split faces of K every z in $A(K)^*$ has a unique decomposition z=x+y, where x belongs to $\lim F$ and y belongs to $\lim G$, and moreover ||z|| = ||x|| + ||y||. Let ||z|| = 1 and let

$$z = \lambda v_1 - (1 - \lambda)w_1 = \lambda v_2 - (1 - \lambda)w_2$$

for $0 \le \lambda \le 1$ and v_i, w_i belonging to K. Then

$$z = \lambda (\lambda_1 x_1 + (1 - \lambda_1) y_1) - (1 - \lambda) (\mu_1 x_1' + (1 - \mu_1) y_1')$$

= $\lambda (\lambda_2 x_2 + (1 - \lambda_2) y_2) - (1 - \lambda) (\mu_2 x_2' + (1 - \mu_2) y_2')$

where $0 \le \lambda_i, \mu_i \le 1$, x_i, x_i' belong to F and y_i, y_i' belong to G. We therefore have

$$\lambda \lambda_1 x_1 - (1 - \lambda) \mu_1 x_1' = \lambda \lambda_2 x_2 - (1 - \lambda) \mu_2 x_2'$$

and also

$$||\lambda\lambda_1x_1-(1-\lambda)\mu_1x_1'||+||\lambda(1-\lambda_1)y_1-(1-\lambda)(1-\mu_1)y_1'||=1\ ,$$

so that

$$||\lambda\lambda_1x_1-(1-\lambda)\mu_1x_1'|| \ = \ \lambda\lambda_1+(1-\lambda)\mu_1 \ .$$

Since $A(F)^*$ has the unique minimal decomposition property we must have $\lambda \lambda_1 x_1 = \lambda \lambda_2 x_2$ and $(1-\lambda)\mu_1 x_1' = (1-\lambda)\mu_2 x_2'$. Using the fact that $A(G)^*$ has the unique minimal decomposition property, in a similar manner we obtain $v_1 = v_2$ and $w_1 = w_2$, so that $A(K)^*$ has the unique minimal decomposition property.

If A is a unital B^* -algebra with state space S then $\lim S$ is the set of hermitian linear functionals in A^* and it is well-known (cf. [8]) that $A(S)^* = \lim S$ has the unique minimal decomposition property. This property of $\lim S$ is not however sufficient to distinguish B^* -algebras amongst complex unital B-algebras A with state space S. In fact, the state space of any Dirichlet algebra is a Bauer simplex, in which case $\lim S$ is a vector

lattice, and so certainly possesses the unique minimal decomposition property. We can however obtain the following result in this context.

COROLLARY 6. Let A be a complex unital Banach algebra with state space S and with $Z = co(S \cup -iS)$. Then A is a B*-algebra if and only if A(Z)* has the unique minimal decomposition property.

PROOF. If A is a B^* -algebra then, as noted above, $\lim S$, and similarly $\lim (-iS)$, has the unique minimal decomposition property. Theorem 5 shows that $A(Z)^*$ has the same property, since S and -iS are complementary split faces of Z.

Conversely, if $A(Z)^*$ has the unique minimal decomposition property then, by Theorem 5, S is a split face of Z. The Vidav-Palmer theorem (cf. [3, Theorem 4]) now shows that A is a B^* -algebra.

It should be noted that Corollary 6, shows that A is a B^* -algebra if and only if Z has the intersection property referred to above, whereas A is a C(X) if and only if Z has the intersection property which characterizes simplexes.

4.

Again in this section K will denote a compact convex set, and ∂K will denote its set of extreme points. The following result is probably known.

THEOREM 7. Let F be a closed face of K and let $\{F_n\}$ be a sequence of closed split faces of K such that $\partial F = \bigcup_{n=1}^{\infty} \partial F_n$. Then F is a split face of K. If, in addition, each F_n is a simplex then F is a simplex.

PROOF. Let μ be a boundary measure in the annihilator $A(K)^1$ of A(K). In order to show that F is a split face of K we need to show that the restriction measure μ_F belongs to $A(K)^1$ (cf. [1, II.6.12]). Since each F_n is a closed split face of K, each μ_{F_n} belongs to $A(K)^1$. By taking convex hulls of finite collections of the F_n if necessary we may assume that $\{F_n\}$ is an increasing sequence and put $G = \bigcup_{n=1}^{\infty} F_n$. Therefore, if f is in A(K) then $f\chi_{F_n}$ converges to $f\chi_G$ pointwise on K, and so the dominated convergence theorem gives

$$0 = \int_K f d\mu_{F_n} = \int_G f d\mu_F.$$

Now μ_F is a boundary measure on F (cf. [2, Lemma 1]) and hence vanishes on the G_{δ} -set $\bigcap_{n=1}^{\infty} (F \setminus F_n)$ which is disjoint from ∂F . Therefore, we obtain $\int_K f d\mu_F = 0$, so that μ_F belongs to $A(K)^{\perp}$, and F is a split face.

Now suppose also that each F_n is a simplex. In this case each μ_{F_n} is a boundary measure belonging to $A(F_n)^{\perp}$, and hence is zero, by the Choquet-Meyer uniqueness theorem. Since μ_F is supported by $\bigcup_{n=1}^{\infty} F_n$ it follows that $\mu_F = 0$, and hence F is also a simplex.

There are many non-simplexes K with the property that every extreme point is a split face; for example, if K is the set Z, described in previous sections, for any non-trivial function algebra. The following result shows that any such K must necessarily have uncountably many extreme points.

COROLLARY 8. If K has at most countably many extreme points, each of which is a split face of K, then K is a simplex.

Theorem 7 and Corollary 8 have an application to function algebras, as the next result shows.

COROLLARY 9. Let A be a function algebra on X with Choquet boundary ∂A . If ∂A is covered by a sequence $\{E_n\}$ of generalized peak sets for A in X, such that $A \mid E_n = C(E_n)$ for each n, then A = C(X). In particular, if ∂A is countable then A = C(X).

PROOF. Let S be the state space of A, and let $Z = \operatorname{co}(S \cup -iS)$. Then the sets $\operatorname{co}(E_n \cup -iE_n)$ are Bauer simplexes and split faces of Z (cf. [6]). Since the faces $\{\operatorname{co}(E_n \cup -iE_n)\}$ cover ∂Z , Theorem 7 shows that Z is a simplex. Hence S is a split face of Z so that A(S), which can be identified with $\operatorname{re} A$, is uniformly closed. The Hoffman-Wermer theorem shows now that A = C(X). Every point in ∂A is a generalized peak point for A, and so the last statement follows directly.

If A is a function algebra on X such that $A \mid E_n = C(E_n)$ for each n, where $\{E_n\}$ is a sequence of closed subsets of X covering X, then it is known [10] that A = C(X). Using Corollary 9, together with a theorem of Varopoulos we obtain an associated result.

COROLLARY 10. Let A be a function algebra on X and let $\{E_n\}$ be a sequence of subsets of ∂A which are closed in X and such that $\partial A = \bigcup_{n=1}^{\infty} E_n$ and $A \mid E_n = C(E_n)$ for each n. Then A = C(X).

PROOF. The conditions on each E_n imply that E_n is generalized peak set for A [12]. The result now follows from Corollary 9.

REFERENCES

- E. M. Alfsen, Compact convex sets and boundary integrals (Ergebnisse der Mathematik N.F. 57), Springer-Verlag, Berlin · New York, 1971.
- T. B. Andersen, On dominated extensions of continuous affine functions on split faces, Math. Scand. 29 (1971), 298-306.
- L. Asimow and A. J. Ellis, On Hermitian functionals on unital Banach algebras, Bull. London Math. Soc. (to appear).
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras (London Math. Soc. Lecture Notes Series 2), Cambridge University Press, Cambridge, 1971.
- A. J. Ellis, Minimal decompositions in partially ordered normed vector spaces, Proc. Cambridge Philos, Soc. 64 (1968), 989-1000.
- 6. A. J. Ellis, On split faces and function algebras, Math. Ann. 195 (1972), 159-166.
- 7. R. Fuhr and R. R. Phelps, Uniqueness of complex representing measures on the Choquet boundary, (to appear).
- A. Grothendieck, Un résultat sur le dual d'une C*-algèbre, J. Math. Pures Appl. (9) 36 (1957), 97-108.
- 9. B. Hirsberg and A. J. Lazar, Complex Lindenstrauss spaces with extreme points, (to appear).
- R. E. Mullins, The algebra of continuous functions characterized by a countable number of restrictions, Arch. Math. (Basel) 21 (1970), 66-68.
- A. L. T. Paterson, Isometries between B*-algebras, Proc. Amer. Math. Soc. 22 (1969), 570-572.
- N. Th. Varopoulos, Ensembles pics et ensembles d'interpolation pour les algèbres uniformes, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A866-867.

UNIVERSITY COLLEGE OF SWANSEA, GREAT BRITAIN