NON SELF-DETERMINING FACES - AN EXAMPLE

J. D. PRYCE

Alfsen comments [1,p.111] that it is rather hard to find a closed face F of a compact convex set K in a locally convex space which is not self determining, that is, for which the set

$$\{x \in K : a(x) = 0 \text{ for every } a \in A(K) \text{ which vanishes on } F\}$$

properly contains F. An example of such a face, due to Asimow, is given in Ellis' lecture notes on affine functions and faces of convex sets [2, p.46]. This note gives a very simple example of a K and an F such that any bounded (not assumed continuous) affine function on K that vanishes on F must vanish identically, so that F is rather drastically non self-determining.

The following lemma is proved by a simple computation. (aff S, co S denote the affine and convex hull of a set S respectively.)

LEMMA. Let F, G be convex sets in a linear space E such that aff F misses G. Then F is a face of $\operatorname{co}(F \cup G)$.

Now let E be the real space $L_2[0,1]$ with the usual pointwise ordering. $(L_p,1< p<\infty,$ will do equally well). Let

$$\begin{array}{l} F \,=\, \{x \in E: \ 0 \, \leq \, x \, \leq \, 1\} \,, \\ G \,=\, \{x \in E: \ x \, \geq \, 0 \ \text{and} \ ||x|| \, \leq \, 1\} \,. \end{array}$$

Let a be any non-negative element of E which is essentially unbounded on [0,1]. Define

$$K = \operatorname{co}\left(F \cup (a+G)\right),\,$$

in the weak topology of E. Clearly F and G are convex, closed and bounded and hence weakly compact since E is norm-reflexive. Hence K is compact.

Futher, since all the members of aff F are bounded functions, while those in a+G are (essentially) unbounded, the Lemma implies that F is a face of K — clearly a closed face.

Received October 30, 1972.

22 J. D. PRYCE

THEOREM. Let f be a bounded affine function on K such that f = 0 on F. Then f = 0.

PROOF. It is clear that aff G=E, hence aff K=E. Thus the affine function f on K extends uniquely to an affine function, also called f, on the whole of E. Since f vanishes at $0 \in F$, it must in fact be linear. Now f is bounded on a+G, hence on G-G: the latter is a norm-neighbourhood of 0 and therefore $f \in E^*$. But the linear span of F (which is L_{∞}), is norm-dense in E, so F is total for E^* and hence f=0.

REFERENCES

- E. M. Alfsen, Compact convex sets and boundary integrals, (Ergebnisse der Mathematik 57) Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- A. J. Ellis, Lecture notes on affine functions and faces of convex sets, Calif. Inst. of Tech. (mimeographed).

UNIVERSITY OF ABERDEEN, SCOTLAND