NON SELF-DETERMINING FACES - AN EXAMPLE

J. D. PRYCE

Alfsen comments [1,p.111] that it is rather hard to find a closed face F of a compact convex set K in a locally convex space which is not self determining, that is, for which the set

$$\{x \in K : a(x) = 0 \text{ for every } a \in A(K) \text{ which vanishes on } F\}$$

properly contains F. An example of such a face, due to Asimow, is given in Ellis’ lecture notes on affine functions and faces of convex sets [2, p.46]. This note gives a very simple example of a K and an F such that any bounded (not assumed continuous) affine function on K that vanishes on F must vanish identically, so that F is rather drastically non self-determining.

The following lemma is proved by a simple computation. (aff S, co S denote the affine and convex hull of a set S respectively.)

Lemma. Let F, G be convex sets in a linear space E such that aff F misses G. Then F is a face of co $(F \cup G)$.

Now let E be the real space $L_2[0,1]$ with the usual pointwise ordering. ($L_p, 1 < p < \infty$, will do equally well). Let

$$F = \{x \in E : 0 \leq x \leq 1\},$$

$$G = \{x \in E : x \geq 0 \text{ and } ||x|| \leq 1\}.$$

Let a be any non-negative element of E which is essentially unbounded on $[0,1]$. Define

$$K = \text{co} \left(F \cup (a + G) \right),$$

in the weak topology of E. Clearly F and G are convex, closed and bounded and hence weakly compact since E is norm-reflexive. Hence K is compact.

Further, since all the members of aff F are bounded functions, while those in $a+G$ are (essentially) unbounded, the Lemma implies that F is a face of K — clearly a closed face.

Received October 30, 1972.
THEOREM. Let f be a bounded affine function on K such that $f = 0$ on F. Then $f = 0$.

Proof. It is clear that $\text{aff } G = E$, hence $\text{aff } K = E$. Thus the affine function f on K extends uniquely to an affine function, also called f, on the whole of E. Since f vanishes at $0 \in F$, it must in fact be linear. Now f is bounded on $a + G$, hence on $G - G$: the latter is a norm-neighbourhood of 0 and therefore $f \in E^*$. But the linear span of F (which is L_∞), is norm-dense in E, so F is total for E^* and hence $f = 0$.

REFERENCES

UNIVERSITY OF ABERDEEN, SCOTLAND