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LINEAR RECURRING SEQUENCES IN BOOLEAN RINGS

TORLEIV KLOVE

A Boolean ring 4 is a commutative ring with unit satisfying a?=a
and 2a=0 for all @ € 4. We note that GF[2]={0,1} is a subring of 4.

A linear recurring sequence of order r in A is a sequence {z,},-_, of
elements from A4 satisfying

(1.1) Tp=0Tp 1+ ... +0,Z, .,

for all n=0. We call z_,, .. .,z_, the initial values and a,, .. .,a, (which
are again elements of A) the coefficients of the linear recurring sequence.

A sequence {z,} of elements from A is periodic if there exist integers
p>0 and X such that

(1.2) R

for all n = N. We call p a general period. The least general period is cal-
led the period of the sequence. Note that the period divides any general
period.

Every linear recurring sequence in a Boolean ring is periodic. This is
implied by a general theorem proved in [1]. Now, suppose that a,, .. .,a,
are independent parameters (i.e. they are having no non-trivial relations
between them). Let P(r) be the period of the sequence {z,} satisfying
(1.1) with initial values 0,...,0,1. The period of any linear recurring
sequence of order r always divides the period of the linear recurring se-
quence with the same coefficients and with initial values 0,...,0,1 (cf.
Selmer [2]. The argument given therein is valid in any ring). Hence P(r)
is a general period of any linear recurring sequence of order r in 4. We
shall prove the following theorem (where lem denotes least common mul-
tiple and [x] denotes the greatest integer =w).

THEOREM. (i) There exists a least positive integer P(r) such that, for any
linear recurring sequence {x,} of order r, we have x,,pn=2, for all n=0.

(ii) For r 2 1 we have
P(ry=2""1em, ;. {27 -1},
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where

IA
=2}

v(r)=—[—loger] for 1 =r
r <290 < 2r[§(r+1)] for r

Iv
[

2.

To each relation (1.1) we associate a polynomial in A[X], namely
(2.1) X' +a, X 1+... +a,,

and vice versa. If the sequence {x,} satisfies (1.1), then (2.1) is said to
be associated with {x, }.

If a,,...,a, are independent and {z,} satisfies (1.1) with initial values
0,...,0,1, then {w,} satisfies z, p,=2,. Hence XF"—1 ig associated
with {z,}. Let F(X) be the polynomial in GF[2]{X] of least degree
associated with {x,}.

The number of irreducible polynomials of degree n in GF[2][X] is
(cf. Selmer [2 p. 13])

(2.2) I(2) =1 3ogop pl0)2° .

Let ¢,,(X), 21, 1<v=1I(n) be these irreducible polynomials. In par-
ticular, the two of degree 1 are ¢;(X)=X+1 and ¢;,(X)=X. In the
following we shall not be interested in ¢,4(X). Define I*(n) by

I*(1)=1; I*(n)=I(n) for =n > 1.
Let

(2.3) FoX) =TI, TIED g, (X)erim

We prove the following main lemma.

LemmMa 1. (i) For 1 <7 <6 we have
or;m,w)=[r/n] for m 21, 1< < I*n).
(i) For r= 1 we have
[r/n] < o(r;n,») < [r/nl[3(r+1)] for n21,15ysI*n).

In particular o(r;n,v)=0 for all n>r.

Part (ii) of the theorem is an immediate consequence of this lemma
and the theorems IV. 5, p. 82 and IV. 6, p. 84 of Selmer [2].
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3.

In this section we prove the lower bound for o(r;=»,») and in section
4 we prove the upper bound. In section 5 we take a closer look at F (X)
for r <6 and make a conjecture on the values of o(r;n,v) for general r.

If we for the parameters a, choose particular values lying in GF[2],
then the associated polynomial must be a divisor of F(X). If 1=Sn<r
and 1<» < I*(n) then

Py (X)X 4 1)r—nlrln)
is such an associated polynomial. Hence, in particular
(3.1) Pn( X )M | F(X) .
This proves that o(r;n,»)  [r/n].

4.

For m a positive integer put
(4.1) A(m) =[logym] ,

and define ,(m) for m=20,¢=1 by

(4.2) m= 322 o Bi(m)2¢

where B,m)e {0,1}. Then for m=1, B,y(m)=1 and B, (m)=0 for
$>A(m)+ 1. Let 7(m) be the number of binary 1’s in m (that is =(m)=
Zi’ilﬂz(m))

Now let, a,,...,a, be independent and let {x,} be a sequence satis-
fying (1.1) with initial values 0,...,0,1. Applying (1.1) repeatedly we
get z,, expressed as a polynomial in a,, . . .,a,. The terms of this polyno-
mial are of the form C a,...a,’r where C,8,,...,8, € {0,1} since 2a=0
and a?=a for all a € 4. Hence

(4.3) Ty =2 T (m,n)a,/1™. . .qfl™
where T'(m,n) € {0,1}. Substituting in (1.1) we get
ST (m,n)aP ™. o ™ = 3% ST LT (m,n—fa; a1, a0,
Equating coefficients we get, for n>0,
(4.4) Tim,n)=3; {T(m,n—j)+T(m—2-1,n—j)},

where the summation is over all j satisfying 1 <j <A(m)+1 and g,(m)=1.
The congruence = is modulo 2. The initial values of 7'(m,n) are
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Tm,m)=0 for allmifn < —1;
Tim,—-1)=1 for m=0,
=0 for m > 0.

Note that 7'(0,n) =0 for n2>0.

It is clear from the periodicity of {,} that {T'(m,n)} is periodic in n
(m being fixed). Let f,,(X) be the polynomial in GF[2][X] of least degree
associated with {T'(m,n)}. Then

(4.5) F(X) | lem;_peory frn(X) -
Let
(4.6) Qp(X) = XAm+L 1 B, (m) XA .+ Bym(m) X +1 .

Let D denote the set of integers j satisfying 1 <j<A(m)+1 and ;(m)=1.
With this notation we prove the following lemma.

LeMMA 2. For m=1 we have

(4°7) fm(X) | Qm(-X) lcmjeDfm—zf—l(X) ,

Proor. If the linear recurrence relation associated with the lem of
(4.7) is applied to (4.4), all the terms 7'(m — 27-1,n—j) are cancelled. We
are left with the linear recurrence relation associated with the polyno-
mial to the right of | in (4.7), applied to {T'(m,n)}.

Define g,, recursively by

gZ"‘(‘X) = Q2"‘(X) fOI' 0‘=O,1’-",
gm(X) = Qm(-X) lcmieD Im—2i-1 X.

We have the following lemma.

(4.8)

Levma 3. (i) If By(my) < By(my) for all i2 1 then gy, (X) | gy (X)-

(ii) For all m=1 we have f,(X) | g,.(X).
(iii) For all r=1 we have F (X) | gor_(X).

Proor. We prove (i) by induction on z(m,). Note that z(mg)= 7(m,).
First, if 7(m,)=t(m,), then f,(m,)=pF,(m,) for all :=1. Hence m,=m,.
Next, if 7(m,) > 7(m,), then there exists at least one j such that §;(m,)=1
and f;(m,)=0. For this j we have

Bi(m,) < B(my—2i-1) foralli z 1,
and
T(my— 291 =1(my)—1 .
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By the induction hypothesis g,,, | g,,-2i-1. Hence, by (4.8), gum, | G,
We prove (ii) by induction on z(m). First, by (4.4)

T2*n)=T(2*n—-x—1).
Hence
forl X) | X4 —1=Qpu(X) =gpa(X) .

Next, let t(m)>1. By the induction hypothesis, f,,_si—1| gn_si—1 for all
J such that 1<j<A(m)+1 and g;(m)=1. Hence f,, | g,, by lemma 2 and
(4.8)

Finally, (iii) is a consequence of (i), (ii), and (4.5).

Let o(m;n,») and q(m;n,v) be the exact powers of ¢, (X) dividing
gn(X) and @,,(X) respectively. By (4.8)
(4.9) o(m;n,v)=q(m;n,v)+max,; 5 o(m—21-1;n,v) .

We prove the following lemma.

LeMMA 4. For mz1,m21 and 1 £y < I*(n) we have
o(m;n,v) = [(Am)+ D)/n][4(z(m)+1)] .
Proor. The proof is by induction on z(m). Let t(m)=1, that is m =2*
Then o(2%;m,v)=q(2%;n,v) £ [(A(2%)+1)/n]
by (4.6). Next, let 7(m)> 1. We distinguish between two cases.

Case 1.
g(m;n,»)=0. Then, by (4.9),
o(m;n,v) =max;., o(m—29-1,n,»)
Smax,,p {{(Am — 29-1) + 1)[n][3(z(m — 29-1) + 1)1}
= [(A(m) + 1)/m][}z(m)] .
Case II. g(m;n,»)>0. Then gq(m—2i-1;n,9)=0 for all j such that

1=5j=A(m)+1 and B;(m)=1. For if ¢(m—2-1;n,)>0, then some posi-
tive power of ¢, (X) would divide

Qm(X) - Qm—2f—l(X) = XAm)+1-7 ’
and this is impossible. Hence, by case I,
o(m;n,v) =q(m;n,v) + max; , o(m—29-1;n,v)

= [(l(m) + 1)/n] + [(A(m) + 1)/n][§(1(m) - l)]
=[(A(m) + 1)/n][}(z(m) + 1)] .



10 TORLEIV KLOVE

The upper bound of lemma 1 (ii) now follows from lemma 3 (iii) and
lemma 4 choosing m=27—1.

Note that the upper bound for v(r) is fixed by the upper bound for
6(27—1;1,1). Hence it may be improved by giving the exact value of
a(27—1;1,1). For r=14 this is provided by the following table.

TABLE.

r 2 3 4 5 6 7 8 9 10 11 12 13 14
o(2—1;1,1) |1 2 5 6 10 14 21 22 27 32 42 48 59 70
r[3(r+1)] 1 2 6 8 15 18 28 32 45 50 66 72 91 98

Let s(m) be the period of {T'(m,n)} and let N(m) be the least non-
negativ integer such that T'(m,n+m(m))=T(m,n) for all nzN(m). To
complete the proof of part (i) of the theorem we will show that N(m)=0
for all m = 0. The proof is by induction on z(m).

First, let ©(m)=0; that is m =0. Since 7'(0,n) =0 for all n =0 we have
N(0)=0. Next, let 7(m)> 0. Put

a=lem, p, w(m —29-1) .
By the induction hypothesis
Tm—2"1n+n)=T(m—29-1,n)
for n > 0. Hence, by (4.4),
T(m,n+n)—T(m,n)=3;.p{T(m,n+n-j)—T(m,n—j)}
for n 2 A(m)+ 1. Rearranging, we get (putting 1= A(m))

(4.10) Tmn)=Tm,n+rn+A+1)+T(mn+1+1)+T(m,n+x)
+ 201 Bim){T(mn+ 7+ A+ 1=5)+ T(m,n+A+1-j)}

for n = 0. Suppose N(m) > 0. By (4.10) we get
T(m, N(m)—1)=T(m,N(m)+n(m)—1).
This contradicts the definition of N(m). Hence N(m)=0.

We now look at f, (x) for m <28 —1. Let
hoa(X) = Qo X),  Iipp(X) =lem {@,,,(X), lemy, p, B —g1-1(X)}

where again D is the set of integers j satisfying 1<j<A(m)+1 and
Bi(m)=1.
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LEMMA 5. For 1<m<28—1 we have

Jn(X) | hp( X)) -

This was proved by brute force. We computed 7'(m,n) for 1 <m <63
and 0= <300 using (4.4). By lemma 2 and induction on z(m) we get

(5.1) JulX) | @u(X) lem by g5 (X)) .

If Q,(X) is coprime to the lom factor there is nothing more to prove.
Otherwise, we checked that {I'(m,n)} satisfied the linear recurrence re-
lation associated with A, for n< the degree of the polynomial to the
right of | in (5.1).

Now, for 2 6 (as in lemma 3),
(5.2) F(X) | hyr_y(X) =lom zpcor 1@un(X) = (X + 1) [T TT @ (X )i,
By (3.1), F (X)) =hy_,(X) which proves lemma 1 (i).

On the basis of lemma 5 we put forward the following conjecture.

CONJECTURE. For m =1 we have

Sl X) | B X)) -
The conjecture implies that F(X)=he (X) for all r=1 and hence
that v(r)= —[—log,r] for all r= 1.

As a concluding remark we note that
A=degree hyr_(X)=2r+1—r—2.
By (5.2) we have
A=r+3 o nl(n)r/n]= —r+ 3, _, nl(n)[r[n] .

If J(d) is any number theoretic function, then

2;=1 Ec¢=p J(d) = 21§cdng(d) = 23=1J(d) Zd—lgcérd—ll = z:!ﬂ](d)["/d] .
Hence, by (2.2)

Atr =30 nl(n)r/n]
= 22=1 ch=p dl(d) = Z;=1 ch=p Zya.,d/z(y)?’
= E;)=l Zyﬁsp ”(7)26 = z;)=1 236:1) 26 zey=s ”(?)

=3 w=2rti_2,
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