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TWISTED MULTIPLICATIONS ON GENERALIZED
EILENBERG-MACLANE SPACES

DAVID KRAINES

In this paper we study the generalized Eilenberg-MacLane space
K = K(Z,,n)x K(Z,,pn)x ... x K(Z,,p*n) ,

where we assume throughout that p =2 or # is even. Let «, € H"®"(K; Z,)
denote the fundamental class of the rth factor. By [3] it is known that
H*(K; Z,) is the free unstable Steenrod algebra on the classes g, «y,. ..,
og. Also K can be taken to be an abelian topological group, and as such
the structure of H*(K; Z,) is determined as a Hopf algebra over 2/(p)
by the condition that «g,«,,. . .,x; are primitive.

In this paper we consider a twisted H structure on K and compute
H*(K;Z,) as a Hopf algebra over /(p). For p=2 and k=2, many of
these results can be found on [12] and [10]. Also for p=2 and k arbitrary,
these results were announced in [6].

In section 1, we describe the sub Hopf algebra A « H*(K; Z,) generated
by the fundamental classes «,...,x;. In section 2, we examine the
multiplication of K at the simplicial level. In section 3, we compute
H*(K; Z,) as a Hopf algebra over the mod p Steenrod algebra.

1.

Let A=A4;=7Z [xg,%,...,0;,] with dega,=np". By the results of [8]
it is possible to put a Hopf algebra structure 4 so that the dual 4*
will resemble a polynomial algebra.

THEOREM 1.1. Let & =(xg,%y,- . -,0). There are formal polynomials f,,
for i=0,...,p1—1, of k+1 variables and a bicommutative, biassociative
Hopf algebra structure on A with coproduct yp : A~AQ A satisfying

1. fo(“.) =1,

2. fpr(a) = %y

3. pfilx) = z;'=o Fia )R fi—(x) .

Proor. See section 1 of [8].
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For example if p=2, then using the fact that y is an algebra map, it
can be checked that the first six polynomials are

filx) = xg,  folx) = &y,
o) = apogt+og®,  falx) = oy
Joloe) = agog+oyg®,  folor) = oxgory + o003+ 0g®

Unfortunately there is no closed form for these polynomials.

Consider 4 as a Z, vector space with basis consisting of monomials
in the «,’s. Let a; € A*, the dual vector space, be dual basis elements to
ocol". A* is, of course, a Hopf algebra.

CoroLLARY 1.2. As an algebra over Z,,,
A* n Zj[ay, ay, ..., Gy, . . .,]/(af’kﬂ, oY)
that is the polynomial algebra on the a,,’s truncated at height p+1.

Proor. Using the fact that p*: A*QA*—>A* is the multiplication,
it follows easily from Theorem 1.1 that a,?" is dual to «,*". The result
follows from the Borel classification theorem [2].

Note that if we let

A, = UAd, ~ Z[ng, 000, - 2 00, ... ]

with the polynomials f,.f,. .. satisfying the conditions of Theorem 1.1,
then 4, ~A4,* as Hopf algebras over Z,. Thus 4, is a self dual bipoly-
nomial Hopf algebra.

If B is any algebra, and if b =(b,,. . .,b;) is a sequence of elements in
B, then we can ‘“‘evaluate” f; on b to get fi(b)eB. In particular 4AQA4
is an algebra and yx = (pxy,. . .,px;) is a sequence of elements in AR A.

ProPOSITION 1.3. For all x€ A
Jilya) = ;:=o Sl )®f—4(ox) -

Proor. This formula is immediate from Theorem 1.1 part 3 and the
fact that .
phie) = S0 file)®fiy()

since y is a map of algebras.

2.
In 1954, Eilenberg and MacLane introduced an abelian simplicial

group model for the K(x,n)’s. We will use some standard properties of

these models and of simplicial complexes. A good reference is [11].
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There is an abelian simplicial group, K(Z,,m), whose ¢ simplices form
the normalized cocycle group Z,(4,; Z,) of the ¢ simplex. Face and
degeneracy maps are homomorphisms induced by certain simplicial
inclusions and projections. If X and Y are simplicial complexes, then
X x Y is the simplicial complex with (X x ¥),=X,x Y.

These facts mean that we can take a simplicial model for K with

K, = ZMA; Z) % ... x ZvoM(A 5 Z,) .

Thus a g simplex of K is a k+1 tuple a =(a,,. . .,a;) of cocycles of 4,.
A ¢ simplex of K x K will be a pair (a,b) of such k+ 1 triples.

A simplicial map ¢ : X — Y is a sequence of functions ¢,: X, »> 7,
which commute with the face and degeneracy maps. The projections

n,: K- K(Z,, p'n)

are clearly simplicial maps. Furthermore simplicial maps ¢: X - K
are completely determined by the composites

w9 X - K(Z,, np") .

Although we will not use the fact, such maps are in one to one correspon-
dence with elements of Z"*"(X; Z,).

Our aim is to describe a simplicial map u: Kx K — K; which will
induce the desired Hopf algebra structure on H*(K; Z,).

DerintTiON 2.1. Let B be a graded connected associative algebra.
Then ¢B is the two sided ideal of B generated by the commutators
[z, y] = zy—(-1)®y=x

where z € B, and y € B;.

Clearly B/cB is a commutative algebra and a map from B to another
commutative algebra factors through B/cB. For example, let

TIX]=T[X,...,X;].
the tensor algebra on k+1 indeterminates, with deg X,=mnp", then
T[X )[cT[X] = Z,[X],

the polynomial algebra on these elements, remembering that p=2 or n is
even.

The formal polynomials of Theorem 1.1. can be considered to be
elements of Z [ X ]. We have an evaluation map (isomorphism) Z,[X ]-4.
defined by f; > fi(x).
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Let 0: Z,[X ] T[X] be a splitting of Z,, modules. Then there are
non commutative polynomials gf; for 0 <4 < p*+L,

ProrosrTION 2.2. In T[X],
ofivos- - -¥i) = icoof;®efi+0
where y,=3.;_profiQof; and O € cT[X ].

Proor. This equation follows from Proposition 1.3 and general algebra.

For any connected simplicial set X,Z*(X; Z,) is a connected, associa-
tive algebra with the Alexander Whitney cup product. Since H*(X; Z,)
is commutative, every element of ¢(Z*(X; Z,)) is a coboundary.

Let a =(a,,. . .,a;) be a g simplex of K. Then for any g e T[X ], we
get a cocycle g(a ) obtained by replacing X, by a, and ® by .

DerFintTION 2.3. The p twisted product on K is the simplicial map
p=plo): ExK—>K
defined on ¢ simplices by
7@, b) = Divj_profila) — of;(b)

where (a,b) e (KxK),n,: K-> K(Z,,np") is the projection, and
0: Z,[X]— T[X]is a splitting over Z,.

Note that since  is natural and since face and degeneracy maps are
induced by simplicial maps between simplices, u is a simplicial map.
this multiplication is, of course, quite different from the untwisted pro-
duct

m(a,b) = (ag+by, ..., a,+by) .

It is interesting to note, however, that the multiplications have the same
unit.

PrOPOSITION 2.4. The 0 simplex 0 =(0,...,0) € K, is a strict unit for u.
That is u(0,0)=wu(a,0)=a.

Proor. This follows immediately from the fact that f,(0)=0 if ¢>0
and fy(0)=1€2Z%4,; Z,).



TWISTED MULTIPLICATIONS ... 277

The next proposition states that u is homotopy commutative and
homotopy associative and independent of ¢ up to homotopy. The proof
is immediate since the formulas hold after dividing out byc(Z*(4,; Z,)).

ProrosiTioN 2.5. For any a,b, and ¢ in K, and any two splittings o
and o the following cocycles are in c¢Z*(A,; Z,):

L. ule)a,b)—pulo)a,b),

2. pla,b)—p(b,a),

3. u(px1)(a,b,c)—u(lxup)a,b,c).

Thus x induces an H structure on K with a strict unit. This means that
u* induces a Hopf algebra structure on H*(K; Z,). We will show that
under this structure, the sub Hopf algebra

A=Z,[og, ..., ] < H¥K; Z),)

has the structure described in Theorem 1.1.

LeMMA 2.6. Let
beZm A, n; Zy) = K(Zyym)py, ond ¢€Z™Ay0;Z,) = K(Zy, 0)pin -

Let peZ™K(Z, m); Zp), ye ZMK(Z,,n); Z,) and ne Zmin(K(Z,,
m+n); Zp) be fundamental cocycles. Then

{Bxy,bxcy =(n, bc)

y4

and if m=mn,

(B2 b) = (n,bb) .

Proor. By [5],
<"7’ buc> = (buc, Am+n>

where 4, is the standard simplicial q simplex. The evaluation of §xy on
bxc uses the Eilenberg-Zilber formula. The evaluation of bwc on 4,
uses the Alexander-Whitney diagonal formula. Comparison of these two
formulae, and a bit of computation, yields the first equation. The second
is proved similarly.

TrEOREM 2.7. The coproduct induced by u
HXK; Z,) "~ H*K xK; Z,) —— H*(K; Z,)QH*K; Z,) ,

% being an isomorphism, induces a Hopf algebra structure on H*(K; Z,)
satisfying
x o) = Do filx)®fij(x) -
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Proor. Let 1, .. ..,n € Z¥(K; Z,) be the fundamental classes. Clearly
it suffices to show that

w¥n,) = 3 eofiln) < efin)
in Z**KxK; Z,). Let (a,b) € (K xK),. Then this will follow from

<:u'#77r’ (a’b» = (nr’ z@fz(a)ugfj(b»
= Sofin) xofymn), (@, b))

These equations in turn follow from the linearity properties of the
Kronecker product and repeated use of Lemma 2.5.

Thus we have an explicit H structure defined on the simplicial level of
K. This H structure has a strict unit and is associative and commutative
up to homotopy.

It is not clear from the above that K has a classifying space. In fact,
as we will show in [9] (see also the appendix of [6]), Kis at least a 2p—2
fold loop space for odd primes p.

The deviation from strict associativity and commutativity of K is
contained in the ideal ¢(Z*(4,); Z,). Thus it should be possible to show
that K is a homotopy everything H space in the sense of [1] by showing
that the cocycle cup product is strongly homotopy commutative. This
will imply that K is an infinite loop space. The author has significant
partial results in this direction.

3.

We now compute H*(K; Z,) as a Hopf algebra over 2/(p). In constrast
with the results in [6], we will work entirely with the Milnor basis for
& (p). Unless explicitly stated to the contrary, we will assume that p is
an odd prime and that = is even.

NorarioNn 3.1. Let E=(g,éy,...) and R=(ry,r,,...) be sequences
of non-negative integers almost all 0 with ¢;=0 or 1. Then Z(E, R) will
be the element in the Milnor basis of &/(p) dual to

P 2y A

We write Z(R) for #(0, R) and 2, for #(4,,,,0) where 4,,,=(0,0,...,1,0,
...) with the 1 in the ¢ + 1’st place. Furthermore set

Pr) = P(r4;) = Z#(0,...,1,0,...)
and 2;=2,(1). Thus Z(r) is dual to &;".
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By [7], the excess of (X, R) is |E, R| =3¢, +23r;. Thus we can restate
Cartan’s theorem (see [3]) on the cohomology of K as an algebra over &/(p)
as follows.

ProrosrrioN 3.2. H¥*(K; Z,) is the free commutative Z,, algebra on ele-
ments P(E,R)x, with |E,R| <degx,=np".

Since the sub Hopf algebra 4 =« H*(K; Z,) is biassociative and bicom-
mutative, and since /(p) is biassociative and cocommutative, it is easy
to check that H*(K;Z,) is a biassociative and bicommutative Hopf
algebra.

By[14, Proposition 4.23), there is anexactsequence with H* = H*(K;Z ),

14

PH* % PH* ' QH* %, QH*

where £(c)=c? is the Frobenius homomorphism, » is the composite
PH* > H* - QH*,

and A is the dual of the homology Frobenius homomorphism. Thus
Mz)=y if z is the pth divided power of y. For dimension reasons,
v: PH? » QH? is an isomorphism if g==0 (mod 2p).

ProrosrrioN 3.3. A(«,)=o,_; with the convention that «_,=0.
Proor. This is immediate from Corollary 1.2 and the definition of A.

DerinrTION 3.4. If ¢=%=0 (mod 2p) and ¢ € HY, then {c) € PH? denotes
the unique primitive class such that {¢) —c is decomposable.

PrOPOSITION 3.5. Let @ € &/ (p) and assume that 2p does not divide dime
or dimBc. Then O{c)={Oc).

This follows since H* is a Hopf algebra over &/(p) and so & sends
primitives to primitives. If dim @¢c =0 (mod 2p), then ©{c) is still primitive
but may be a pth power.

Recall that the primitive elements of the Hopf algebra «/(p) are
generated as a Z, module by 2; and &; for + >0 and j = 1. These opera-
tions act as derivatives on H*(K; Z,) (see [13]).

ProrosiTiON 3.6. Let @ € PA(p). Then
On,) = OX,+XP-10X, 1+ ... + X -160X,
where X;=o;+g(y, - - -,%-1) 18 the polynomial in A described in (14) [8].
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Proor. See Theorem 11 in [8].

Tueorem 3.7. PH*(K;Z,) is generated as a left o/(p) module by
&g, {2,y and ( P,y for 120,21 and r=1,...,k.

Proor. These classes are surely primitive. Assume xe H*(K; Z,)
satisfies A(x)=0. We know that A is a map of 2/(p) modules so

NP(E,R)x,) = (AP(E,R))x,_y -

Also A(#(E,R))=0 unless E=0and r;=0 (mod p) for all ¢. Furthermore,
if R=(pr),pry,...), then A%(0,R)=2(0,R’) [15, Proposition 4.3]. Thus
Ker2 is the left ideal generated by the 2; and £;’s.

Since the elements #(E, R)x, form a Z, basis for H*(K; Z,), it follows
that (z) is in the left ideal generated by «,, (2;x,»> and (Zx,) if dimz =0
(mod 2p). If z is a decomposable primitive, then x=y? =% for some
primitive ye H2$(K; Z,)). Thus the result holds for all .

These generators do not generate PH*(K; Z,) freely. For example, it
18 easy to see that therelation 2,2;= — 2,2, implies 2,(2;x,y= — 2 2;,)-
To completely describe these relations, we must first examine the struc-
ture of the Steenrod algebra more closely.

. THEOREM 3.8. The kernel of, of A: A (p)— L (p) is generated as a
left o/ (p) ideal by Pof (p). A generating set of relations is given by

1. 2,2, = —-2;2;, and 22=0,

2. PP, =P P,

3. 2P, =22, if i>0,

2,P; = P; 20— 2,

4. (P =0.

Proor. By Theorem 4 in [13], it is easy to check that the above genera-
tors are indeed relations in &7(p). We must show these relations generate
all others.

A basic set of generators for the left ideal &, corresponds to a Z,
basis of Tor! ., (%;,Z,). A generating set of relations corresponds to
Tor? . (;; Z,). Following section 2 of [12], consider the Hopf algebra

I'=E(2y, 2,,...)9L, [P, Py, ... ] [(PP,...)
Then by basic algebra, the dual Hopf algebra
I'* = E(zy, 7y,...)QZ,[&, &, .. . )&, .. .)
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Clearly
I'* = Coker(A* : oZ(p)* — (p)*)

where A*(z)=aP. Thus, dually we have &/ 1=.saf(p)

Let B be a resolution of I" over Z,. Then o (p)®R is a resolution of
A(p) over &, and so

Tor? 4, (3, Z,) ~ Tor?,(Z,,Z,) .
By basic homological algebra [4],
Torp(Z,, Z,) = Z,[82y,82,,...1QE(sP18P,, ... )QZL [P, tP,,. . .].

where bidegsx=(1, degx) and bidegiz=(2,pdegz).
A simple counting argument shows that the set of generators and rela-
tions given in the Theorem suffice.

This Theorem will induce all the relations in PH*(K; Z,) arising from
gtable relations in &7(p). There are, however, more relations which arise
from excess considerations.

THEOREM 3.9. If O € o/, < (p) has excess e, then there are operations
Bis > ms and §; in L(p) for £20 and j= 1 satisfying

0 = 3 B 27"+ 3 v PP+ 3 02+ 3. L2,

where b;=e—1 and c;Ze—2, exc(n;) 2deg 2, +e, and exc((;) Zdeg P, +e.

Proor. We must first introduce an order on the set of sequences
R=(ry,ry,...) of non-negative integers, almost all 0. Recall that
|R|=23r;=exc(#(R)) [7].

We say R<R'if |R|<|R’'| or if |R|=|R’'| and R is less than R’ in the
lexiographic order from the right (compare [7]). For example

(2,1,1,1,0,...) < (2,11,1,0,...) < (11,2,0,1,0,...).

If R< R’ we say #(R') has higher order than #(R).

The following equations can be checked without much difficulty using
Theorem 4 [12].

1) P(ry, g, ...)=P(pry, prs, . . .) Pl 4 terms of higher order.

2) If p € &/(p), then there are 05 € &/ (p) such that 2,9 = Z, > 0;2; .
3) 2,.,.7¢ 2; o —1) i-iPs+p’+.. +p7g +(=1)i+19, PPt Hl
4) 1, P(ry, a5 .. ) =P(ri+ D57y ooy Ty — 1, .. )P, + terms of
higher order.
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By [7], the operation @ can be written as a linear combination of
Milnor basis elements 2(F, R) satisfying

|E, B = Se,+23r, 2 ¢.

Consider the summand Z(E,R) with least R. If E+0, then equations
1 and 2 show that we can write

PE,R) = I 0,P(E,,0)P¥ 4 terms of higher order

where E, are certain sequences with |E,| = |E)|.
If E,=(gg¢,...) contains a non zero entry e; for ¢+>0, then we can
write
P (B, 00 PR = P (E,—A,,02,PF

and iterated use of equation 3 enables us to write this term in the form

> Bi2e %+ 3 2, .

If E,=(1,0,0,...), then w,P(E,0)P® = ,2,P® is already in the desi-
red form.

If E=0, then we know that r,,;%0 (mod p) for some ¢>0, since
(0, R) is in the kernel of 4. If this is satisfied for some ¢ > 1, then equation
4 reduces #(0, R) to the form (&, + terms of higher order. If ; is the only
entry not divisible by p, then |R|=%=0 (mod p) and so

P(0,R) = yP'P'RI-1 | terms of higher order

by equation 1.

To finish the proof, simply note that the number of basis elements
P(E,R) of a fixed degree is finite. Therefore we simply iterate our proce-
dure to reduce @ to the desired form.

The following Proposition can be checked in a straight forward manner
using Theorem 4 [13].

ProrosriTION 3.10.
2,78 = 3(—1)P* P2,
and
SP8 = PIPs-1 — 2(_1)1+1g10‘-1’;gj ,

where p;=1+p+...+p"1 ¢f i>0 and py=0.
TaEOREM 3.11. The relations among the generators of PH*(K; Z,) as

an unstable o/ (p) module given in Theorem 3.7 are generated by the following
equations.
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[

Qi<’@j“r> = - gj('gi“r)’ Qi('gi“r) =0,
PLP %) = 2 j(gz 05
3. 2(Pjx,y=PK2x,) tf >0 and
2Py =PK200,) +{2s%,)
4. (PP KPr) = (Pjx,_1)?,
(1) PP D,y =0 if 2sZmp”
6. J(—1yHP PP, y=0 if 2s>np” and 8% 0(modp).

b

(o

Proor. With the exception of equation 4, all the equations occur in
dimensions not divisible by 2p. Thus they are relations in PH*(K; Z,)
by Proposition 3.5 and Theorems 3.8 and 3.9. To check equation 4,
we must show

(PP UP K+ ..+ X PP X)) = (PiX o+ .+ X THPX)P,

This follows from the Leibnitz formula on iterated derivations taken mod
p, since Z; is a derivation of Z, algebras.

Now assume that z is a relation in PH*(K; Z,). This means that # is
an element of F, the free left &/(p) module generated by «,, {(2,x,) and
(Pjpy, 120,521 and r=1,...,k, such that the natural projection onto
PH*K; Z,) sends  to 0. Let F, be the sub module of F' where we restrict
r to run from 1 to ¢ if ¢ > 1 and set Fy~.7(p) with generator «,.

Let t be the least number such that x € F,, We shall show that the
equations 1 through 6 suffice to transform x to y € F,_,. The Theorem
will follow.

We can write =30;2,x,+ >¢;%;5 modulo F,_; by the definition of
(2 and (Z;x;). This implies that

exc z @i'@i_*-z (P]ﬂj > dimzxt = ’np‘ .
By Theorem 3.8 and 3.9 we can write
& = 3 B 2P+ 3 v P P+ 3 2o+ 3 L Pjou

modulo F,_,, using only the relations 1 through 4 above. From excess
considerations, 7,2;x; and {;%#;x, are 0 in PH*(K; Z)).

The identities of Proposition 3.10 use only relations in the stable
Steenrod algebra. Thus relations 5 and 6 will finish the reduction of x
to an element of F,_;.

In [9] the cohomology of the classifying space of K will be computed
as a Hopf algebra over 2/(p). The relations of the previous Theorem will
imply similar relations in the cohomology of the classifying space. For
k=2 and p=2, Milgram [12] and Kristensen and Pedersen [10], using
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different techniques arrived at apparently different answers. Theorem
3.11 will imply that these differences are not real.
Let s=p;,;=p’+ ... +1>np". Then relation 5 implies that

j+(1) (_ 1)i+lgpj+1—pi<_@i(x'> =0

or
(D510 = Si_o (— 1)Y= PP 4990y

In Theorem 3 [6], relations were given for the case were p =2. This equa-
tion shows that relation ¢ follows from relation d in that theorem.

As another example of relations in PH*(K; Z,), it is easy to check
inductively that

Pip*=p*) ... PP —D)Ps(p— I Py = (= D)X Pjor, ).
Here we use the facts Z;(p—1)= —(£;)?~! and P(pR)xP =(P(R)x)P.
Let L = PH*(K;Z,) be the unstable .&/(p) module generated by
{2,y for 120 and r=0,1,...,k, where (2,5 =2,x,.Let G, be the Z,
submodule of PH*(K; Z,) generated by Z(R)«x, and inductively define

G, to be the union of G;_; and the Z, submodule of PH*(K; Z,) generated
by P(R)P;x;) for all R and j=1. Then clearly

PH*K; Z,) ~ L®G, ,

although the splitting is not as 2/(p) modules. Finally set M,=@G,/Q,_,
for t=0,1,...,k where G_;=0.

THEOREM 3.12. A4s a coalgebra
HYK;Z,) ~ E(L") ® I'y(L*) ® ®F_oIy_12(M))

where L+ and L~ are the even and odd dimensional submodules of L and I' (B)
is the divided power coalgebra on the Z,, module B truncated at height p®.

Proor. Let x = Z(K, R)x, be an arbitrary Z, basis element of H*(K; Z ).
If £ 40, then « € L modulo decomposables since Ax=0.

Assume E =0 and write R=(p™r,’, p™ry,...)=p™R’ for some m=0
where 7,2 0(mod p) for some ¢= 1. If m <r, then

]‘m‘@(me’)(xr = '?(R)(xr——m

which lies in M,_,, modulo decomposables. Similarly if m >r, then
A"(P(p™R')x, lies in My modulo decomposables. Thus z is a p™th or prth
divided power of a primitive modulo decomposables. The Theorem is
now easily deduced from Borel’s classification of commutative Hopf
algebras [2].
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We have inclusions of H spaces K(Z,,n)=K, < .. K, < ... where K,
is what we have called K. Let K =U,_ K,.

CorROLLARY 3.13. 4s a coalgebra
H*(K; Z,) = E(L7)QI(L*)QI'(G)
where @=UGQG, and I is the untruncated divided power Hopf algebra.

The analogous result for p=2 can be read off by setting all of L=0
(see [6, Theorem 4]).
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