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ON AN ASYMPTOTIC FORMULA OF RAMANUJAN

D. SURYANARAYANA and R. SITA RAMA CHANDRA RAO

1. Introduction.

Let ©(n) denote the number of divisors of a positive integer #. In 1915
S. Ramanujan (cf. [6], (3)) stated without proof the following asymptotic
formula:

(1.1)  X,<,7%n) = Azlog®z+ Brlog2x+ Cxlogx + Dx+ O(zt+) ,

for every >0, where A =n"2, B=(12y — 3)n~%2— 367~%'(2), etc., y being
Euler’s constant, {'(2) is the derivative of the Riemann Zeta function
£(s) at s=2. He also stated that the order of the error term in (1.1) may
be improved to O(x***), on the assumption of the Riemann hypothesis.
In 1922, B. M. Wilson [10] gave a proof of (1.1) with error term O(zt+e)
without assuming any hypothesis.

The object of the present paper is to further improve the order of the
error term (denoted throughout the paper by E(z)) in (1.1).

Let 74(n) denote the number of representations of » in the form
n=d,d,dsd, and let x denote the number which appears in the divisors
problem for 7,(n), namely

(1.2) DnseTa(n) = axlog®z +bxlog®x + cxlogw +dx + O(x®),

where a=1}, b=2y — 4}, etc.

The formula (1.2) was originally obtained in 1881 by A. Piltz [56] with
error term equal to O(ztlog?r). In 1912, E. Landau [4] proved that
a=3+¢ for every £¢>0 and this result was improved further in 1922 by
G. H. Hardy and J. E. Littlewood [2] to «=%+¢. On the other hand,
G. H. Hardy [1] in 1915 proved that « >3§. There is a conjecture (cf. [8,
p- 270]) that « =3+¢. If this conjecture were true, then it would follow
that « < . For a discussion about the divisor problem for ,(n), we refer
to E. C. Titchmarch (cf. [8, theorem 12.3 and theorem 12.6(B)]).

Through out the paper we assume that the number x appearing in
(1.2) is strictly less than }. With this assumption we prove in this paper
that

E(z) = O(xt exp {— Alogiz(loglogz)-t}) ,
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where 4 is a positive constant. Further, on the assumption of the Riemann
hypothesis, we prove that

E(z) = O(x@-/6-42 exp {4 log z (loglogx)-1}) ,

where 4 is a positive constant.

2. Preliminaries.

In this section, we prove some lemmas which are needed in our present
discussion. Throughout the following x denotes a real variable >3. We
need the following best known estimate concerning the Mobius function
p(n) obtained by A. Walfisz (cf. [9; Satz 3, p. 191]).

LeMma 2.1.
(2.1) M(z) = 3, pn) = Oxd(x)) ,
where
(2.2) é(x) = exp{—4 log%x(loglogx)'l} ,

A being a positive constant.

LeMMmaA 2.2, For s>1 and r=0,

(2.3) SnsaPtu(n)logm = (—1)m"(s) + O(z~-Dé(z)logz) ,
where

7O(s) = n(8) = L(8)™! and n")N8) for r=1 denotes the rth derivative of
n(s)=4(s)~*.

ProoF. From the well-known formula (cf. [3, theorem 287]),

S ntun) = {(8)71 = 5(s) ,
we have

Ef;ln—s‘u(n)logrn = (= 1)),
so that

Znsz”‘sl"(n)log m = (" l)"?(r)(g) _Zn>zn_8.u(n)log ™.
Putting f(n)=n"%log™, it can be easily shown that

fn+1)~f(n) = O(n~+Dlogrn) .



260 D. SURYANARAYANA AND R. SITA RAMA CHANDRA RAO

Therefore by partial summation and (2.1),

zn>xl‘(n)f(n) == M(x)f([x] + 1) - zn>zM('n) {f(”’ + 1) _f('n)}
= O(x~¢-Yd(x)log ) + O(3 5 n*6(n)logn)
= O(z~¢-V4(x)log ")+ O(6(z) 3., n—2log™n)
= O(z~¢-Vj(x)logz) + O(z~*-V§(x)log ')
= O(z~(¢-Vj(x)log™z) .

Hence the lemma follows.

Lrmma 2.3. (Cf. [8, theorem 14-26(A), p.316)). If the Riemann hypothesis
18 true, then

(2.4) M(z) = Spgap(n) = O@to(z)),
where
(2.5) o(x) = exp{4logz(loglogz)-1},

A being a positive constant.

Lrevma 2.4, If the Riemann hypothesis is true, then for s > 1,

(2.6) Dnsz n2u(n)log™ = (—1)5M(s) + O(at-2w(z)log ) .

Proor. Following the same argument adopted in lemma 2.2, we get
this lemma by making use of (2.4) instead of (2.1). In fact, we have
only to replace §(z) in lemma 2.2 by z—tw(z).

3. Main results.

In this section, we first prove a lemma and then prove the results
mentioned in the introduction.

Levma 3.1, 73(n) = 3 g, p(d)7y(nfd?) .

Proor. Since u(n) and t(n) are multiplicative it follows (cf. [7, lemma
2.4]) that the function on the right is a multiplicative function of ». Since
7%(n) is also multiplicative, it is enough, if we verify the identity for
n=p® where p is a prime and a > 1. We note that

74(p?) = (a+1)(a+2)(a+3)/6
(cf. [8, (1.2.6), p. 5]). We have
zdt!]p pw(@)Ty(p[d?) = u(l)zy(p) = 4,
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and for a=2,
Sanpe (@) T4(p?d?) = p(1)74(p®) + p(p)7o(p*2)
= (a+1)(a+2)(a+3)[6—(a—1)a(a+1)/6 = (a+1)2.

Hence the lemma follows.

THEOREM 3.1. For =3,
(3.1) Dp<p7%(n) = axlog3z[E(2)+ (b/C(2) + 6an®(2))xlog 2% +
+(c/E(2) + 4byD(2) + 12a7®(2))zlogx +
+(d/8(2) + 2en™(2) + 4b7®(2) + 8an®(2))x +
+ E(x) ,
where E(x)=0(x*(x)), 6(x) being given by (2.2), a,b,c,d are constants in

the asymptotic formula (1.2) and n™(s) is the rth derivative of n(s)={(s)?
at =2 for r=1,2,3.

Proor. In virtue of lemma 3.1 above, we have

(3-2) zngz Tz(n Znsz Zdﬁd n.u Zd&SSx/"(d 74(6) ’

the summation being extended over all ordered pairs (d,4) such that
d*=wx.

Let z=a% Further, let 0<p=p(x) <1, where the function ¢ will be
suitably chosen later. From (3.2), we have

zngx 72('”) = anrgx.u(n)r‘i(r) .

If n?r <z, then both n =gz and r = ¢~2 can not simultaneously hold good
and so we have

Dnsa M) = % w(m)Ty(r)+ Z p(n)Ty(r)— Z pn)Ty(r)

nr<z nrsz n<oez
n=<ez r<e—? rse—3
(3.3) = 8, +8,— 85,

say. Now, by (1.2),
Sy = 3 u(n)ry(r) = Znsul‘ ngm_z T4(7)

nirsa
n<ez

= Yu<wt(n){axn—2log3(xn-?) + brn-2log*(xn-2) + cxn-? log (xn=2) +
+dan-2 + O((xn-2)*)}
= (azlogdz + bxlogz + cxlogz + dir) 3, <, n~2u(n) —
— 2x(3alog2x +2blogx +c) 3, <. n~2u(n)logn +
+ 4x(3alogx +b) 3, <, n 2 u(n)log *n —
—8ax Yy 2p(n)logdn+ O@* Y <o) .
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Since 0<2x<1, by our assumption, we have

T* Y2 = O(x*(02)172%) = O(o'2%2) .
Hence applying lemma 2.2 for =0, 1,2,3 and s=2, we get that

8, = (axlog3x + bxlog %z + cxlogx + dx){(2)~1 + O(d(02)[ez)} —
—2x(3alog % + 2blog x + c){ — n™(2) + O(8(0z)log (02)/0z)} +
+4x(3alogz +b){n®(2) + O(d(ez) log *(ez)/e2)} —

— 8az{—4™(2) + O(d(¢z)log *(e2)/e2)} +
+O(p'~222) .

(3.4) = axlog3x[(2)+ (b/¢(2) + 6an®(2))xlog 2z +
+(c/E(2) + 4by™(2) + 12a7P(2))xlogx +
+(2[2(2) + 2cnD(2) + 4byD(2) + 8an®(2))x +
+ O(p~'26(0z)log 3z) + O(p'~2*%2) .

We have
8, = % B)TY(r) = Do 2Ta(r) Dngmt B(0) = Fpgoa Ta(r) M((2[r)})
rse—?

= O(x* Zr§0_214(r)r**6((x/r)*)) ,
by (2.1). Since d(z) is monotonic decreasing and (z/r)t>pz, we have

O((z/r)¥) < 6(pz). Also, by (1.2),

D<ot Ta(r)rt = O(e loge~?)) .
Hence

(3.5) 8, = O(e~'28(¢2)log*(1/e)) .
Also, we have by (2.1) and (1.2),
8, = 2 U(n)Ty(r) = ng—z T4(r) M (02)

n<ez
r<e—2

= O(o~*log*(g~*)gzd(¢2))

(3.6) = O(¢~"20(gz)log3(e™)) .

Hence by (3.3), (3.4), (3.5) and (3.6), we have

(3.7) Ynszti(n) = axlog®x[L(2)+ (b/(2) + 6an™(2))xlog 2z +
+ (G/C(2) + 4bnD(2) + l2a17(2)(2))xlogx +
+(2[2(2) + 2en®(2) + 4by@(2) + 8an®(2))z +
+ O(0~128(pz)10g 32) + O(0~'28(pz) log *(0~1)) +
+O(p'~%%2) .
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Now, we choose

(3.8) e = o) = {8=h)}t,
and write
(3.9) f(x) = logk(a?){loglog (z)}-% = (})bub(v—1loga)-t,

where u=logz and v=loglogxz.

(3.10) For v 2 2log4, thatis, u = 16,z = €%,
we have
vt < (u—logd)+% £ (3v)°%,
8o that
(3.11) 3 3)¥ubv+ < flz) < (H)Rubot.

(3.12) We assume without loss of generality that the constant 4 in (2.2)
is less than 1.
By (3.8), (2.2) and (3.9), we have

(3.13) ¢ = exp{~1Af()}.

By (3.10), we have (})sutv—% < }u.
Hence by (3.11), (3.12), (3.13) and the above,

exp{— A(htuto} 2 oxp(—(Phuto)
exp{—}u} = exp{—tlogza},

so that p2x~%. Hence

(3.14) log(p~!) < log(a?) = O(logz) and gz = at.

0

[\1\%

Since 8(x) is monotonic decreasing, d(oz) < d(x¥), by (3.8) and so by (3.11)
and (3.13), we have

(3.15) 018(02) £ o £ exp{—3}A(})sutvi}.

Hence by (3.14) and (3.15), the first and second O-terms of (3.7) are each
equal to
O(xtexp { — 3A(})8utv—+}log3r)
which is
O(ztexp{—3A(1 —2a)(})8utv1}) ,

since 0 <1—2x <1, by our assumption.

By (3.13) and (3.11), we see that the third O-term in (3.7) is also of the
above order. Thus, if E(x) denotes the sum of the three error terms in (3.7),
we have
(3.16) E(z) = O(atexp{— Bloghxz(loglogz)-1}),

where B is a positive constant.
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TaEOREM 3.2. If the Riemann hypothesis is true, then the error term E(x)
in the asymptotic formula for 3., _,v%(n) is
O(x(z—a)/(s-u) w(x)) ,
where « 18 the number given by (1.2) and w(x) s given by (2.5).

Proor. Following the same procedure adopted in theorem 3.1 and
making use of lemma 2.4 for r=0, 1,2,3 and s=2 instead of lemma 2.2
for r=0, 1,2,3 and s=2, we get that

(3.17) E(z) = O(p—2ztlog3zm(gz)) + O(p—tztlog3(0)w(0z)) + O(o'—22) .

NOW, ChOOSiIlg ] =Z'(5—4a)“1’ we see that 0 < o< 1,9—1 <z, 80 that ].Og(g‘l) <
logz and
ot = pl-2y = p-alG—da)

Since w(x) is monotonic increasing and pz<z, we have w(gz)<w(z).
Hence by (3.17) and the above, we have

E(@) = O(s-2/6-305(z)log3z)
- O(x(2—°‘)/(5—4“)w(x)) .

Hence theorem 3.2 follows.

REFERENCES

1. G. H. Hardy, On Dirichlet’s divisor problem, Proc. Lond. Math. Soc. (2), 15 (1915), 1-25.

2. G. H. Hardy and J. E. Littlewood, The approzimate functional equation tn the theory
of the Zeta-function, with applications to the divisor problems of Dirichlet and Piltz,
Proc. Lond. Math. Soc., (2), 21 (1922), 39-74.

3. G. H. Hardy and F. M. Wright, An introduction to the theory of numbers, 4th edition,
Clarendon Press, Oxford, 1960.

4. E. Landau, Uber die Anzahl der Gitterpunkte in gewissen Bereichen, Nachr. Akad.
Wiss. Gottingen Math.-Phys. Kl. (1912), 687-771.

5. A. Piltz, Uber das Gesetz, nach welchem die mittlere Darstellfarkeit der natirlichen
Zahlen als producte einer gegebenen Anzahl Faktoren mit der Grife der Zahlen wdchst.
Inagural dissertation, Berlin, 1881.

6. S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math.
45 (1915), 81-84.

7. D. Suryanarayana, The number of k-ary divisors of an integer, Monatsh. Math. 72
(1968), 445-450.

8. E. C. Titchmarsh, The theory of the Riemann Zeta function, Clarendon Press, Oxford,
1951.

9. A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische
Forschungsberichte 15, Berlin 1963.

10. B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. Lond. Math.
Soc., (2) 21 (1922), 235-255.
DEPARTMENT OF MATHEMATICS

ANDHRA UNIVERSITY
WALTAIR, INDIA



