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ON A THEOREM OF STUDY CONCERNING CONFORMAL
MAPS WITH CONVEX IMAGES II

MAURICE HEINS

The present paper is concerned, as was its predecessor [3], with a
question arising from the classical theorem of Study which states that
sf the image of a univalent analytic function f on the open unit disk is convex,
then for each r,0 <r < 1,f({|2| <r}) i convex (see[5]). E is to denote through-
out this paper a subset of the open unit disk. # will be said to have the
property S provided that f(Z) is convex for each f allowed by the Study
theorem. The problem of characterizing the sets £ having the property
S was proposed by Maxwell Reade to Christian Pommerenke who gave a
brief elegant solution of the problem [4]. We may formulate the result of
Pommerenke as follows. £ will be said to have the property P provided
that F is convex and that whenever @ and b are distinct points of E, the
arcs of the two oricycles passing through a and b, which have endpoints
a and b and do not contain points of the unit circumference, lie wholly
in E. The result of Pommerenke may be stated as follows:

The E having the property S are exacily those having the property P.

The requirement of convexity in the definition of the property P may
be dropped. We first note that given a and b as above, A4, the closure of
the bounded region whose frontier consists of those arcs of the oricycles
passing through a and b which were specified in the definition of the pro-
perty P, is convex. Further, an oricycle passing through a given inner
point of 4 is such that its two open arcs with endpoints the given point
of int 4 and the point where the oricycle is tangent to {|z|=1} both
contain points of fr 4. Since E is assumed to have the property P save
for convexity, so that, in particular, fr A <E, we conclude, using the
observation of the preceding sentence, that A < E. Since [a,b]<A4,[a,b]
denoting, as usual,

{1-t)a+tb: 051},

[a,b]<E. Hence E is convex.
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We shall want to have available that part of Pommerenke’s theorem
which asserts that ‘P’ implies “S”. We recall the elegant reasoning of
Pommerenke. The set 4 of the preceding paragraph is the intersection
of the relative closures 4,(k=1,2) of bounded disks whose frontiers are
oricycles. (Throughout, ‘“‘relative” is construed in the sense of the relative
topology of the open unit disk considered as a subset of the finite com-
plex plane.) For any f allowed by the Study theorem each f(4,,) is convex.
Cf. [3; p. 175, line 16, (ii)]. Hence so is f(A4). Consequently, [f(a),f(b)]<
J(4)<f(E). Thus if E has the property P, it also has the property S.

In my paper [3], unaware of the work of Pommerenke, I introduced
the notion of D-convexity (¥ is D-convex provided that for distinct @ and
b in E the set A4, associated above with a and b, is contained in ) and
showed the equivalence of the property S and D-convexity. It is, of
course, immediate that the property P and D-convexity are equivalent.
While my paper lacked the deftness of Pommerenke’s approach in
showing that “D” (“P”’) implies “S”, it did yield representation results
of Minkowskian type for relatively closed £ having the property S: they
are intersects of relatively closed disks bounded by oricycles, and, in
particular, apart from the trivial case of the open unit disk, such & are
esther relatively closed disks bounded by oricycles or else are compact (possibly
empty). (The intersection of an empty family is taken as the open unit
disk.)

The object of this paper is to continue the study of the sets having the
property S. We shall obtain another characterization for these sets
(Theorem 2.2) and a canonical representation theorem (Theorem 3.1).
The mathematical development of the present paper is independent of
its predecessor [3], save for the convenient reference to the simple conse-
quence of Study’s theorem used by Pommerenke, which was noted above.

G-convexity. We let G denote the group of directly conformal automor-
phisms of {|z| < 1} onto itself. £ will be said to be Q-convex provided that
«(#) is convex for each « € Q. If E has the property S, then £ is G-convex
(G being a subset of the f allowed by Study’s theorem). The exact con-
verse proposition is not true. It suffices to note that an open disk bounded
by an oricycle together with two distinct points of the oricycle, neither
the point of tangency of the oricycle with {|z| =1}, is G-convex but does
not have the property S. However, the converse holds for open or relatively
closed G-convex sets. Cf. the three paragraphs following the statement
of Lemma 2.1. Theorem 2.1 yields the result that “modulo a boundary
subset the G-convex sets have the property S.”

The property I. E will be termed elementary provided that it is the union
of the bounded open disk bounded by an oricycle and a connected subset
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of the intersection of the oricycle and the open unit disk. E will be said
to have the property I provided that it is the intersection of elementary
sets. We shall see that the property S and the property I are equivalent
(Theorem. 2.2).

For the moment we note: (1) an elementary set has the property S,
and consequently, (2) the property I implies the property S. Of course,
(2) follows at once from (1) and the fact that property S remains pre-
served under intersection, the intersection of an empty family being
understood as the open unit disk. To see that (1) holds we invoke the
result of Pommerenke and reduce the problem to showing that an
elementary set has the property P.

To show this, we use a Mébius transformation mapping {|z| <1} onto
{Imz >0} and taking the point of tangency of the elementary set into o
and prove the following equivalent proposition.

LemMMA 1.1. Given a positive number ¢, a set X of the form {Imz>c}uY,
where Y $8 a connected subset of {Imz=c}, has the property that, with u and v
distinct points of X, the arc y, having endpoints u and v and lying n
{Imz> 0}, of a circle x, passing through u and v and tangent to the real axis,
satisfies
(1.1) Imz>min{Imu, Imv}, ze€y,z + u,v.

This lemma is an immediate consequence of the utterly elementary
observation that » has at most two points in common with a horizontal
line and that the points of intersection of {Imz=d}, where d < min {ITmu,
Imo}, is fully accounted for by that closed arc of » with endpoints « and »
which contains the point where  is tangent to the real axis.

The fact that an elementary set has the property S is thereby estab-
lished.

2. G-convex sets.

In this section we obtain a geometric characterization of G'-convex
sets and apply the result to show that the property S implies the property
L

THEOREM 2.1. E ts G-convex if and only if st is the intersection of a
SJamily of sets sntermediate to open disks bounded by oricycles and their
relative closures, the sntersection of an empty family being understood as

{lz| < 1}.
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Proor. The intermediate sets in question are G-convex, as it is verified
routinely. Consequently, the intersection of a family of such intermediate
gets is G-convex.

The converse proposition, to which we now turn, is less obvious. Let Z
be a G-convex subset of {|z| <1}. The cases where E is either empty or
{|2| <1} are trivial, while the case where % is a singleton is easy for we
may suppose that £ ={0} and note that here

E = {Re[(1+2)/(1-2)] 2 1} n{Re[(—1+2)/(—1—2)] = 1}.

In the remaining case, to which we shall restrict our attention for the rest
of the proof of Theorem 2.1, E is a proper subset of {|z| <1} and int £ + 4.
(It is to be noted that F contains the convex hull of a circular arc.) The
proof of the converse for the restricted £ will be reduced to showing the
following lemma.

LeMMA 2.1. Given E as restricted, a e frE, |a| <1, ] a supporting line of
E, such that acl. Then the oricycle tangent to I at a which lies in the same
closed half-plane bounded by | as does E is such that K is contained in the
closed disk bounded by the oricycle.

That the proof of the converse proposition for restricted £ may be
referred to Lemma 2.1 may be seen as follows.

We first apply to E the classical representation of a closed plane
convex set as the intersection of a family of closed half-planes (see
[2, p. 5]) and shall infer with the aid of Lemma 2.1 that E is the inter-
section of the family of closed disks which are bounded by oricycles and
which contain E.

To that end, we first note that fr Z =fr £ since E is a plane convex set.
Consequently, frE contains points of {|z| <1} thanks to the assumption
on E.

If for two distinct such points the oricycles associated by Lemma 2.1
with the points and supporting lines of £ through them have distinct points
in common with {|z| =1}, then E is a compact subset of {|z| <1} and the
asserted representation of F follows readily, every point of frE being in
{l2| <1}.

If this assumption is not fulfilled, then the oricycles associated by
Lemma 2.1 with the points of frEn{z|<1} have one and the same
point in common with {z|=1}. The argument now proceeds as follows.
We note that the entering oricycles are equal. Let » be the oricycle in
question and let ¥ denote  less its point on {|z| =1}. As is readily verified,
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frEn{|z] <1} (a subset of y) is both open and closed in the sense of the
relative topology of y. Consequently, y being connected

frEn{z <1} =y.

It follows that fr £ = » and that Z is the bounded closed disk with bound-
ary x.

Hence in each case Z is the intersection of the family of closed disks &
bounded by oricycles and containing E.

Continuing, we show that Nintd is open. To that end, we introduce X,
the set consisting of 0 and the centers of the . K is a compact subset
of {|z] <1}. Thanks to this fact and the obvious continuity of the func-
tion p on {|z| <1} assigning to 0 the value 1= (radius of {|z|=1}) and to
2+ 0 the radius of the unique oricycle with center z (so that g(z)=1—|z|,
|2 < 1), we see that, with {(d) denoting the center of d, for @ € Nintd we
have

m = inf{o[{(6)] —[{(6) —al} > 0.

(Consider z > g(z) — |z —al|,2€K.) Hence {jz—a|<m}<Ninté. It follows
that Nintd is open.

We observe that int E<inté<XE and that since E is convex,
int Z=int E. Now using the fact that Nintd is open, we conclude:

intE = Ninté .
It follows that
(2.1) E = N(E uintd) ,
and hence since
intéd =« Evintd < én {2z < 1},

the asserted reduction of the remaining part of the proof of Theorem 2.1
to Lemma 2.1 is established.

Proor or LEmmA 2.1. We apply the rotation ¢ about 0 which takes I
onto a vertical line v and E onto a set of the closed right half-plane
bounded by v, the term ‘rotation’ being understood to allow the identity
map. We thereupon apply the Mobius transformation v which keeps
fixed the points of intersection of v with {|z| =1} and maps ¢(a) onto the
point of » on the real axis. We note that = maps {|z| < 1} onto itself and the
open right half-plane bounded by v onto itself. The set 7 o o(E) is G-
convex. If it is contained in the closed circular disk which has [to a(a), 1]
as a diameter, £ has the property stated in Lemma 2.1.

We confine our attention therefore, as we may, to the case where [ is
vertical, E lies in the closed right half-plane bounded by I, and a is real.
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We introduce the Mdbius transformation 8, depending on the parameter
b,0<b<1, given by

zb (2—b)/(1-b2),2z€C, oop> —b1.

The map f carries ! onto a circle which is orthogonal to the real line less
the point of this circle furthest left (= —b-1). The point of this circle
furthest right is f(a). Now

(2.2) B(E) < {Rez = fla)} .

Otherwise, f(E), which is convex by virtue of the G-convexity of E,

would contain a segment [f(a),c], Rec < f(a), and hence a point arbitrarily

close to B(a) of the bounded open circular disk D with frontier

B(2) U {B(c0)}. On applying inv B to B(E)nD we conclude that En{Rez<a}

#+¢. This is a contradiction. (An argument of this type is used in[3].)
From (2.2) it follows that

(2.3) B = invp[A(E)] < invp({Rez 2 f(a)}) .

That is, E is contained in the closed circular disk with diameter [a,b—1].
Since b is restricted only by the condition 0 <b < 1, it is immediate that E
is contained in the closed circular disk with diameter [a,1].

The proof of Lemma 2.1 is completed. »
.

It is clear from the developments of this section that if F is G-convex,
then int £ and En{|z| <1} both have the property S. Consequently, in
the case where £ contains more than one point, E is intermediate to an
open set having the property S (namely int ) and its relative closure.

Theorem 2.1 gives an easy access to the next theorem, which is of
central interest in the investigation of Study sets.

THEOREM 2.2. E has the property S if and only if it has the property 1.

Proor. We need show only “S” — “I”. The converse proposition is
just observation (2) of section 1. Let E be given having the property S.
Then E is G-convex. Putting aside the trivial cases (£ empty, a singleton
or the open unit disk) we consider the representation (2.1) of £ and let D
be an intermediate set of the constructed type (i.e. of form Euintd).
D —int D is connected since E has the property P. Hence D is elementary.
Theorem 2.2 follows.

The proof of the following theorem is left to the reader. It may be
based on Theorem 2.1 and the definition of 4.
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THEOREM 2.3. E is G-convex if and only if {a,b}uint A<E, when
a,bel, with a+b, A being the set associated with the points a and b n
section 1.

3. A canonical representation theorem.

This section develops a representation theorem for sets having the
property S which draws its inspiration from the Minkowskian notion of
a support function. For convenience we put aside the trivial cases of the
empty set and {|z|<1}. Any other set having the property S whose
closure contains a point of {|z|=1} is necessarily elementary as we see
by appeal to Theorem 2.2. We put this case aside as well.

Given, then, a set X having the property S, which is not g,{|z| <1},
nor elementary, and a point 5 of the unit circumference, we note that
there is a (necessarily unique) elementary set H(n) satisfying:

(i) it contains X,

(ii) its frontier is tangent to {|z| =1} at 7,

(iii) it is contained in all elementary sets satisfying (i) and (ii).

Indeed, introducing for each 7 of the unit circumference u,, the normal-
ized minimal positive harmonic function on {|z| <1} given by

(8.1) u,(2) = Re[(n+2)/(n—2)],

and u defined on the unit circumference by

(3.2) utn) = infu,(X),

we verify that u(n) > 0 and

(3.3) H(n) = {u,(z)>pu(n)} v [Xn{u,2) = un)]}].
Further

(3.4) X = NpyarH)

as we see with the aid of Theorem 2.2. The representation (3.4) is of
Minkowskian kind. The sets {u,(z)Z¢(>0)} take over the role of the
half-planes of the Minkowskian theory. We remark that the function u
is continuous thanks to the uniform continuity of (z,7) > u,(2), 2€X,
|pl=1. We now consider the following problem in the Minkowskian
spirit for sets having the property S:

Characterize the maps n > u(n),n > H(n), [p|=1.

We proceed to obtain necessary conditions on x and H which will be
seen to be characteristic.
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CoNDITION ON u. Let #,,...,7, be n(22) distinet points of {|z|=1}.
Let

(3'5) Y = nlékgn{um‘(z) z ,“(’7k)} .
Then Y is compact and contains X. Further
(3.6) minu,(Y) = u(n) £ maxu,(Y),

as follows at once from the definition of 4 and the noted properties of Y.
NoraTioN. 04 will denote 4 —int 4.

CoxpirioN oN H. The following condition on H is obvious.
(3.7) 0H(n) < H(),

where 7 and { are unrestricted points of the unit circumference.

We shall now see that the condition that Y 4@ and (3.6) hold is
characteristic for u, and that the conditions N H(z) 4+ and (3.7) together
with the characterizing condition for u are characteristic for H.

DrrNiTION OF @. We introduce the class @ consisting of the positive
finite-valued functions ¢ on {|2|=1} satisfying the conditions that the
set, Z obtained by replacing u by ¢ in (3.5) is not empty and that (3.6)
holds with Y and u replaced respectively by Z and ¢. Clearly

(3.8) Npy=1{uy(2) Z @(n)}

is compact and has the property S. It is non-empty by virtue of the Heine-
Borel-Lebesgue theorem since each Z is not empty. We shall see that ¢
is the u associated with (3.8). In particular, by the remarked continuity
of the u it will follow that the function ¢ is continuous.

DEFINITION OF A(p). Given pe®, we introduce A(p), the set of maps
A from {|z| =1} into the family of elementary sets satisfying:

(a) For each #,|p|=1,A(n) is an elementary set intermediate to
{u,(2) > @(n)} and {u,(2) 2 ¢(n)}.

(b) Niyo1d(n) + 2.

(c) 9[A(n)]<A(L), where 7 and { are unrestricted points of {|z|=1}.
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Let G (“&” for “Study’’) denote the family of sets having the property
S which are non-empty subsets of compact subsets of {|z| <1}, that is,
the subfamily of the family of sets having the property S to which atten-
tion was confined at the beginning of this section. Let uy denote the
function x with domain {|z| =1} associated with Xe& by (8.2) and let
Hx denote the function H with domain {|2|=1} associated with Xe&
by (3.3). We have (canonical representation theorem):

TarorEM 3.1. X b Hy 8 a bijective map of & onto U, ,A(p) whose
tnverse 18 given by
A (=4 nl,ﬂ,ll(n) .

CoroLrARY 3.1. (Characterszation of the H.)
{Hy: Xe@} = U, o A(g).

That is, the H are the maps A of the unit circumference into the family of
elementary sets which satisfy (b) and (c) and for which there exists pe®
such that (a) is satisfied.

Proor or THEOREM 3.1. It is clear that X - Hyx maps & tnto
U,_.s4(p). That it is injective then follows from the observation that if

pED

.HX=Hy, then
X = n|q|=1Hx(77) = n[q|=1HY(7]) =Y.

The following considerations yield the surjectivity of X > Hyx. We
consider A€ U, ,4(p) and let p denote the unique member of & such
that 4 € A(y). From the observations made when the class @ was defined
we see that

Xy = Npyaa{u,(2) 2 v(n)}e &,

Further, as we shall see, ux,=v. Indeed, it is evident that ux 2. To
show that uy <y, we fix {,|{|=1, and show that ux () <y({). Now

{w(2) = (O} 0 Ny {u,(2) Z 9(n)} + 2.

Otherwise, using the compactness of {|2| <1}, we would conclude that
(3.6) with Y and u replaced respectively by Z and y would not be true
for all allowed Z. Hence

X,n {uc(z) =9()} + 0

and so ux (£) < y(f) as we wished to show. It now follows that uy, =y.



264 MAURICE HEINS

We pause to note that the result of the preceding paragraph concerning
v is valid for an arbitrary member @ of @. That is, ux,=¢ with g replacing
v in the definition of X,. Hence we conclude (1) membership tn @ is
characteristic for the u, and (2) the members of @ are continuous, as was
noted when @ was introduced.

We return to the main argument and show

int X, = Npyaa{u,() > wn)}.

It suffices to show that the set of the right side is open. The proof can be
referred to that given in the seventh paragraph after the statement of
Lemma 2.1 with appropriate modifications. The following demonstra-
tion is direct. If a is a member of the set in questlon then using the
continuity of v, we see that

7 > wy(a) —p(n)
is a continuous, positive-valued function on the unit circumference, and
hence that it has a positive minimum. Consequently, by uniform conti-
nuity, there exists a neighborhood of a such that for z in this neigh-
borhood and || =1,%,(2)>y(n), so that @ is an inner point of

n|n|=1{“n(z) > y(n)},
which is therefore open, a being an arbitrary member.

The set ﬂlﬂlﬂll(n) will be denoted by X,. We shall show that Hy =41.
The surjectivity of X > Hyx and the fact that the preimage of 1 is
Niy=1A(n) follow. It is evident that intX,<X,<X, Further X,+0
by condition (b) on 4. We conclude that X,e&. If int X,= ¢, X, reduces to
a singleton thanks to the property P and so X, =X,. In this case uy, =y.
If int X+ 0, then u;,, x,=pux,. This follows from the inclusions

intX,cX,cintX,,

the right inclusion being a consequence of the fact that X, is convex
and int Xy+ 0. We now infer that uy =ux =v.
To complete the proof we proceed as follows. At all events,

(3.9) intA(n) © Hx,(n) < A(n), Inl =
Now 9A(n) < A(¢) by condition (¢) on the A and hence 9i()<X,. Ob-
viously

0A(n) < {u,(2) = v(n)}.

These facts and (3.9) yield A=Hy,.
The proof of Theorem 3.1 is complete.
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4. A property of Hy.
Given X € &, the associated set Hy enjoys the property stated in the
following theorem.

THEOREM 4.1. Given |a| <1, the set
(4.1) K = {n: aedHx(n)}

18 a closed connected subset of the unit circumference.

Before turning to the proof we make two remarks. First, K+¢ if
and only if ¢ €0X. Indeed, if K+, acdH x(n) for some 7, || =1, and so
acoX, while the converse follows from the fact that if a€0X, then

a¢intX = N, _,intHx(n),
so that for some n we have
a € Hx(n)—int Hx(n) = 0Hx(n),

and thus K +¢. Second, as is readily verified, K is the full circumference
if and only if X ={a}.

Proor or THEOREM 4.1. K connected. We show that if , and 7, are two
distinet points of K, then they belong to an arc of the unit circumference
lying in K. The connectedness of K is then immediate. Under the hypo-
thesis just made KX is not empty.

If the sets {u,,(2) =u(7;)},k=1,2, have only a in common, then X ={a}
and, consequently, K is the unit circumference. There is no need of
further consideration of this case.

Otherwise, let b denote the other point of intersection of {u,(2)=
w(m)} k=1,2. Let w denote the open arc of {|2|=1} with endpoints #,
and 7, which abuts on the component of

(4.2) {le] < 13— Ui i {u,(2) = uime)}

which does not have a as a frontier point. Let Y denote

n%=l{unk(z) 2 :u'(ﬂk)} ‘
We start by showing

(4.3) minu(Y) = u,(a), new.
To that end, we introduce

a(z) = n(z—1)/(z+1), Rez >0,
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and note that u, o x(z)=Rez. Hence

miny,(Y) = min{Rez: z € «Y(Y)}
= min{Re[inva(a)], Re[inv«(b)]}

(minimum principle applied to Rez and argument used in the proof of
Lemma 1.1.). Now thanks to the definition of « we have

Re[inva(a)] + Re[inva(d)] .
Otherwise, three distinet oricycles would contain @ and b. If
Re[inva(a)] > Relinva(d)],

then u, would be unbounded on the component 2 of (4.2) which does not
have b as a frontier point since u, o x(z)=Rez and the image with
respect to « of

{inva(a) +t[inva(e) —inva(d)] : ¢ > 0}

would lie in 2. But u, is bounded on 2. We conclude that
Re[inva(a)] < Re[inva(d)] .
Thus we obtain (4.3). It is routine to conclude
u,(a) = minu, (Y) < infu(X) = u(y) .

Since aeX, u,(a)2pu(n). Consequently, w,(a)=u(n). Hence neK. We
conclude that w < K. The asserted property of #,,%, follows.
K closed. We may put aside the case where a ¢ 0X for then K is empty.
With a€0dX,
K = {n: ufa) = p(n)},

which is closed by the continuity of 5 > u,(a) — u().
The proof of Theorem 4.1 is completed.
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