FREE SUBGROUPS AND FØLNER'S CONDITIONS

MELVEN KROM and MYREN KROM

It has been conjectured [3, p. 9] that any group has a free nonabelian subgroup if and only if it is not amenable. The characterization of the class of nonamenable groups given in Theorem 1 below is due to Følner [2, p. 245]. Here we analyze some possibilities for restricting parameters in Følner's conditions and we show that instances of the conditions identify finitely generated free subgroups.

THEOREM 1. (Følner.) A group G is not amenable if and only if for every k in the interval 0 < k < 1 there exist finitely many, not necessarily distinct, elements a_1, \ldots, a_n of G such that for every finite $E \subseteq G$

$$n^{-1} \sum_{i=1}^{n} N(E \cap Ea_i) < kN(E)$$

where for any S, N(S) denotes the cardinality of S.

The following theorem shows that Følner's conditions in Theorem 1 can never be satisfied unless $N(\{a_1,\ldots,a_n\}) \ge 1/k$.

THEOREM 2. For any group G, for any k in the interval 0 < k < 1, and for any finite sequence a_1, \ldots, a_n of not necessarily distinct elements of G, if $N(\{a_1, \ldots, a_n\}) < 1/k$ then there exists a finite subset E of G such that

$$n^{-1} \sum_{i=1}^{n} N(E \cap Ea_i) \geq kN(E) .$$

PROOF. For finite G we may use E = G. Assume G is infinite and let $H = \{a_1, \ldots, a_n\}$. For m > 0 and $a \in H$ an m-set for a is a set L of the form

$$L \,=\, \big\{ a, a^{\mathbf{2}}, \dots, a^{h}, b_{1}a, b_{1}a^{\mathbf{2}}, \dots, b_{1}a^{h}, b_{2}a, b_{2}a^{\mathbf{2}}, \dots \big\}$$

such that $N(L \cap La) \ge m-1$ and N(L)=m. Let E be a union of disjoint m-sets, one for each $a \in H$, with m sufficiently large. Then for every $a \in H$,

$$N(E \cap Ea) \geq kN(E).$$

Since Følner's conditions can only be satisfied if $k \ge 1/N(\{a_1, \ldots, a_n\})$, cases where the conditions are satisfied with a_1, \ldots, a_n all distinct and k=1/n are extreme instances of Følner's conditions. The next theorem shows that these extreme instances of Følner's conditions characterize finite sets of free generators for free subgroups.

THEOREM 3. For any group G and any finite $F \subseteq G$ the subgroup generated by F is free on F if and only if for every finite $E \subseteq G$

$$\sum_{a \in F} N(E \cap Ea) < N(E) .$$

PROOF. First assume the subgroup $\mathcal{G}(F)$ generated by F is not free on F for a finite $F \subseteq G$. We may assume that $1 \notin F$, since otherwise obviously

$$\sum_{a \in F} N(E \cap Ea) \ge N(E)$$

for every finite $E \subseteq G$. Let w be a reduced word of minimal length on F with w=1 and the right most symbol occurrence in w an element of F, not an indicated inverse of an element of F. Let E be the set of all elements expressible as reduced subwords of w which can be obtained by deleting right terminal substrings of w. For $z \in F \cup F^{-1}$ let

 $E(z) = \{x \in E \mid z \text{ is the right most factor of the expression for } x \text{ as a reduced subword of } w\}.$

Then for any $a \in F$,

So $N(E \cap Ea) = N(E(a^{-1})) + N(E(a))$ and we conclude that

$$\sum_{a \in F} N(E \cap Ea) \ge N(E) .$$

Next we assume that $\mathscr{G}(F)$ is free on F for a finite $F \subset G$. Let L be a set consisting of one element from each left coset of $\mathscr{G}(F)$ in G such that $1 \in L$. For any $y \in G$ the *length* of y is the length of f where f is the unique reduced word on F such that y = xf for some $x \in L$. The proof is completed by induction on the maximum length of the words in E.

A consequence of Theorem 3 is that the finite sequence a_1, \ldots, a_n mentioned in Følner's theorem can be limited to a two term sequence and the number k can be restricted to $\frac{1}{2}$ if and only if the conjecture is true that the class of groups with free nonabelian subgroups is exactly the class of nonamenable groups. Also, since a free nonabelian group has for n > 0 a free subgroup on n free generators, cf. [1, p. 259], the conjecture

is true if and only if the restriction $1/k = N(\{a_1, \ldots, a_n\})$ may be added to Følner's theorem. Finally we observe that in Theorem 3, even for a fixed value of N(F), no limitation in the form of a finite upper bound for N(E) is possible. This follows from a consequence of the compactness theorem for first-order logic that any elementary class of groups which contains all groups with subgroups free on n-element sets also contains a finite group cf. [4, p. 426].

BIBLIOGRAPHY

- 1. B. Baumslag and B. Chandler, Theory and problems of group theory, McGraw-Hill, New York, 1968.
- 2. E. Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243-254.
- F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Company, New York, 1969.
- M. Krom and M. Krom, Groups with free nonabelian subgroups, Pacific J. Math. 35 (1970), 425-427.

UNIVERSITY OF CALIFORNIA, DAVIS SACRAMENTO STATE COLLEGE CALIFORNIA, U.S.A.