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THE GROUP PROPERTY OF THE INVARIANT § OF
VON NEUMANN ALGEBRAS

ALAIN CONNES and ALFONS VAN DAELE*

Abstract.

We prove that if M is any countably decomposable factor, the in-
variant S(M) defined in [1] is a closed subgroup of the group of positive
real numbers. Moreover multiplication by any element of S(M) leaves
the spectrum of any state on M invariant.

THEOREM 1. (a) Let M be a countably decomposable factor, then the non
zero elements of the intersection S(M) of the spectra of the modular operators
4, associated with ¢, when ¢ runs through all faithful normal states on M,
ts a closed subgroup of the multiplicative group of positive real numbers.

(b) For any faithful normal state  on M the spectrum of A, is invariant
under multiplication by S(M).

To prove the theorem we need a few lemmas.

Let o/ be an achieved generalized left Hilbert algebra, 4 the modular
operator of .

LemMmA 2. Let V be any compact interval of 10, 00[ and x the characteristic
Junction of V. If &€ such that y(A)s=E& then for all integers n € Z we
have £ € D(4A™) and A™E € A

Proor. It is not hard to see that there exists a function fe L,(R)
such that

+00

= S Wfedt  forall AcV .

- 00

Received September 28, 1972.
* Aspirant van het Belgisch N.F.W.O. .



188 ALAIN CONNES AND ALFONS VAN DAELE

It then follows that

+00

AnE = Any(A)E = S Aty (A)EF () dt

+00

- S~A“§f(t)dt .

—00

Clearly A& € 2(AY) and ||m(47€)]| < ||f|lll=(&)]] so that A& € .

LemMma 3. Let V, and V, be two compact intervals of 10,00[ and
V = {pql pE Vl’ qE Vz}.

Let x4y, x5 and y be the characteristic functions of respectively V,, Vaand V.
Then for any &, € &, &, € A such that y(4)é;=§, and yy(A4)é;=E, we have

x(A)e1&y = &6, .
Proor. By lemma 2 we know that A%&, € o for all n € Z. With the
notations of [2] and using [2, lemma 8.3] this implies that A7, € &’ for

all n € Z and therefore A&, € o7*. This holds also for 4%, and by in-
duction we get that &, &, € 2(4™) and that

A™§, &) = (A476)(A"E) .

Let A4, =Ay,(4) +a(1 — x,(4)) for some x € V;; then Sp4, <=V, and 4§, =
A,7&,. For any simply closed smooth curve I" enclosing ¥V, we have

aA™(§,&,) = ”'(Anfz)Aln‘fl
= (2n)-14 <jin'((m Yo&)(Ay — )1, dA .

As in the proof of lemma 2 we can find a function fe L,(R) such that

+00

@y-2% = { 2% 5@

-00

and by the same arguments (4,—1)~%; € & whenever 4¢ V,. So for
any polynomial p we have

P = (20)L 35((A1—z)-1§1)p<zz1)£zdz -
r
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Now let ¥, be any compact interval disjoint from V and Ey= y,(4) where
%o i8 the characteristic function of V,. Then

Ip(A)E & &l = (| Eop(A)EL &Sl
s (2n)7? sup ll(4y — )& Ip(AA)E] | ] -

Choose ¢ sufficiently small such that the two open sets

W, = {z| z€ C, distance(z, V,) <e},
W = {z| zeC, distance(z, V)< ¢}

have disjoint closures.
Then it is possible to choose I" such that the set

{pg| pe Vs, qis inside I'}

is contained in W. Let f be the analytic function on Wy u W which is 1
on W, and 0 on W. By Runge’s theorem it is possible to find a sequence
of polynomials p, tending uniformly to f on Wy u W. Then

Pr(A)E &, &, tends to By &,
and
pi(Ad%5(4))&, tends to 0

uniformly in AeI'. Moreover |n((4,—2)71&)|| is uniformly bounded
on I'. Therefore Ey& &,=0 and since this holds for all compact closed
intervals disjoint from V,

x(A)E1Er =616 .
This completes the proof.
Let ¢ be a faithful normal state on the von Neumann algebra M.

Let (M, H,&,) be the G.N.S.-construction of ¢ on M. As in [2]let S =J4}
be the corresponding involution. Remind that JMJ=M’, and that

afx) = A*xA-% for xe M
defines a one parameter group of automorphisms of M. In [2, lemma
15.8] it is proved that the subalgebra

{xe M| ofx)=x for all ¢ e R}
equals the set
{xe M| pxy)=gp(yx) for all ye M}.

As in [2] we call this subalgebra M.
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Let ¢ be a non zero projection of M, we shall first determine the
modular operator of the state ¢, defined on the reduced von Neumann
algebra M, by

Pe(x) = P(x)/ple) .
The closed subspace

H, = Imagee N Image JeJ = eJeJH

is invariant by any element of the algebra M,. So we can consider the
algebra M, induced by M, in H, and the canonical homomorphism 5 of
M, onto M,. The element ef, of H is in H, because

Jleo = Je£0 = JeA*Eo — JA}ego - 860

hence ef,e€eJeJH. Let & =e&yf|le&,|l; then it is easy to check that
(7, H,, &) is the G.N.S.-construction of the state ¢, on M,. To check
that &, is cyclic for M, in H, it is enough to prove that € M implies
eJeJx&, € M &, which follows from the equality

eJeJxby = exJeJE, = exek, .

Now edi#=A%e for all ¢ € R and similarly JeJ commutes with 4% for all ¢,
8o 4 leaves H, invariant and its restriction to H, is a closed positive oper-
ator.

Let « € M,, then there exists an X in M, such that #(X)==, in par-
ticular

lleollwé, = ze&y = X&,
and
llebolix*sy = a*efy = X*&,,

hence Sxz&,=x*£, and the involution 8, corresponding to (M,,H,,é&,)
coincides with S on M,&,. Similarly we get the coincidence of F, with
F on M, . It follows that S,=JzAzt where Jy is the restriction of J
to H, and Ay the restriction of 4 to H,. By the uniqueness of the polar
decomposition of closed operators we get the equality 4,=A45. Hence
the modular operator of the state ¢, on M, is the restriction of the modu-
lar operator of ¢ on M to the invariant subspace eJeJH.

DreFINITION 4. For a faithful normal state ¢ on M put
S, = N {spectrum of the modular operator of ¢, on M}

where e runs throuph all non zero projections of the center of M.

Lumma 5. Let 4,>0, A, € &, and 43> 0, A, € Sp4 then 4,45 € Sp4.
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Proor. (a) We first show that if a bounded open interval V of ]0, o0
intersects SpA there exists a non zero x € M with

X(A)xgo = xfo s

z being the characteristic function of V. By hypothesis y(4)+0, so there
is a ye M with y(A4)y&,+0. Let y, be a sequence of C* functions on
10, 00[ with 0=y, =y and y,(4) - x(4) strongly when n - co. Then there
exists an n with y,(4)y&,=+0. Further by [2] one has

xn(d)yéo € My,
and obviously

A D Ayes = 2a(A)yE, -

(b) Let ¥, be a compact interval of ]0,occ[ with 4, in its interior, then
let e be a non zero projection of the center of M. Since the interior of
V, intersects SpA, there exists by (a) an element 2+ 0 of the reduced
induced algebra M, of M in eJeJH such that

xby = xy(de)wé,
where y, is the characteristic function of V,. Now z£; € H,, hence
11(de)xéy = ypa(4)wé, .
Since x € M, there exists an X in M, with x&, =X§&,, so
n(A)Xg = X§, X +0, XinM,.

We claim that for such ¥, the supremum VSuppxz, where x runs over
all elements in M with

11(A)wéy = x&y

is equal to one. In fact it is a certain projection k£ with for all teR,
A%k A-% =k because

qa( DA A-E) = AitgA-iE,
if y,(A)xéy=x&,. Also for all unitary u € M, uku*=k because
1 uzu*éy = ypy(AdyuJudJxéy = uwudy,(A)xé,

since » and JuJ commute with 4. So we know that % belongs to the
center of M, hence 1—% is a projection e in the center of M,. If ¢+0,
there exists an X € M with

X&) = p(A)XE, X *0, eX =Xe=2X,
80 SuppX <e which contradicts SuppX <k if X 0.
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(c) Now let W be any neighbourhood of 4,4, in ]0, o[, choose V; and
V4 compact intervals containing respectively 4, and 4, in their interior
and such that V,-V,= W. Let y,, v, and y be the respective characteristic
functions of V,, V, and V. By (a) there exists x € M with x40 and

wly = ya(d)aéy ,
by (b) there exists ¥ € M with

yéo = 11(A)yéo
and yx+0 because 1=VSuppy, when y runs over all elements in M
satisfying

1(A)yéy = y&o -
If we apply lemma 3 to the left generalised Hilbert algebra & =M§,
we get

x(A)yxky = yx&,

hence V intersects the spectrum of A. It then follows that 4,4, Sp4
as far as W was arbitrary.

Proor oF THE THEOREM. Since the theorem is obvious in the semi-
finite case we assume M is type III. It is enough to prove b). Let ¢ be
a faithful normal state on M, let 1,>0, 4, € Sp4,, let 4,>0, 4, € S(M),
then 4,4, € Sp4,, will follow from the inclusion S(M) < &,. This inclusion
is true because for each non zero projection e in the center of M, M,
is isomorphic to M and hence Sp4,>S5(M) because ¢, is a faithful
normal state on M,.

This result will be used later to improve the classification of type ITI
factors.
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