THE GROUP PROPERTY OF THE INVARIANT S OF VON NEUMANN ALGEBRAS

ALAIN CONNES and ALFONS VAN DAELE*

Abstract.

We prove that if M is any countably decomposable factor, the invariant S(M) defined in [1] is a closed subgroup of the group of positive real numbers. Moreover multiplication by any element of S(M) leaves the spectrum of any state on M invariant.

THEOREM 1. (a) Let M be a countably decomposable factor, then the non zero elements of the intersection S(M) of the spectra of the modular operators Δ_{φ} associated with φ , when φ runs through all faithful normal states on M, is a closed subgroup of the multiplicative group of positive real numbers.

(b) For any faithful normal state φ on M the spectrum of Δ_{φ} is invariant under multiplication by S(M).

To prove the theorem we need a few lemmas.

Let \mathscr{A} be an achieved generalized left Hilbert algebra, Δ the modular operator of \mathscr{A} .

LEMMA 2. Let V be any compact interval of $]0,\infty[$ and χ the characteristic function of V. If $\xi \in \mathcal{A}$ such that $\chi(\mathcal{A})\xi = \xi$ then for all integers $n \in \mathbb{Z}$ we have $\xi \in \mathcal{D}(\Lambda^n)$ and $\Lambda^n \xi \in \mathcal{A}$.

PROOF. It is not hard to see that there exists a function $f \in L_1(R)$ such that

$$\lambda^n = \int_{-\infty}^{+\infty} \lambda^{ii} f(t) dt$$
 for all $\lambda \in V$.

Received September 28, 1972.

^{*} Aspirant van het Belgisch N.F.W.O. .

It then follows that

$$\Delta^{n}\xi = \Delta^{n}\chi(\Delta)\xi = \int_{-\infty}^{+\infty} \Delta^{it}\chi(\Delta)\xi f(t)dt$$
$$= \int_{-\infty}^{+\infty} \Delta^{it}\xi f(t)dt.$$

Clearly $\Delta^n \xi \in \mathcal{D}(\Delta^{\frac{1}{2}})$ and $\|\pi(\Delta^n \xi)\| \le \|f\|_1 \|\pi(\xi)\|$ so that $\Delta^n \xi \in \mathcal{A}$.

Lemma 3. Let V_1 and V_2 be two compact intervals of $]0,\infty[$ and

$$V \, = \, \{ pq \ | \ \ p \in V_{\mathbf{1}}, \ q \in V_{\mathbf{2}} \} \; .$$

Let χ_1 , χ_2 and χ be the characteristic functions of respectively V_1 , V_2 and V. Then for any $\xi_1 \in \mathcal{A}$, $\xi_2 \in \mathcal{A}$ such that $\chi_1(\Delta)\xi_1 = \xi_1$ and $\chi_2(\Delta)\xi_2 = \xi_2$ we have

$$\chi(\Delta)\xi_1\xi_2 = \xi_1\xi_2.$$

PROOF. By lemma 2 we know that $\Delta^n \xi_1 \in \mathscr{A}$ for all $n \in \mathbb{Z}$. With the notations of [2] and using [2, lemma 8.3] this implies that $\Delta^n \xi_1 \in \mathscr{A}'$ for all $n \in \mathbb{Z}$ and therefore $\Delta^n \xi_1 \in \mathscr{A}^{\sharp}$. This holds also for $\Delta^n \xi_2$ and by induction we get that $\xi_1 \xi_2 \in \mathscr{D}(\Delta^n)$ and that

$$\Delta^n(\xi_1\xi_2) = (\Delta^n\xi_1)(\Delta^n\xi_2) .$$

Let $\Delta_1 = \Delta \chi_1(\Delta) + \alpha (1 - \chi_1(\Delta))$ for some $\alpha \in V_1$; then $\operatorname{Sp} \Delta_1 \subset V_1$ and $\Delta^n \xi_1 = \Delta_1^n \xi_1$. For any simply closed smooth curve Γ enclosing V_1 we have

$$\begin{split} \varDelta^n(\xi_1\xi_2) \;&=\; \pi'(\varDelta^n\xi_2)\varDelta_1{}^n\xi_1 \\ \;&=\; (2\pi)^{-1}i\, \oint\limits_{\mathbf{n}} \pi'\bigl((\lambda\varDelta)^n\xi_2\bigr)(\varDelta_1-\lambda)^{-1}\xi_1d\lambda\;. \end{split}$$

As in the proof of lemma 2 we can find a function $f \in L_1(R)$ such that

$$(\varDelta_1 - \lambda)^{-1} \xi_1 = \int\limits_{-\infty}^{+\infty} \varDelta^{it} \xi_1 f(t) dt$$

and by the same arguments $(\Delta_1 - \lambda)^{-1} \xi_1 \in \mathscr{A}$ whenever $\lambda \notin V_1$. So for any polynomial p we have

$$p(\varDelta)\xi_1\xi_2\,=\,(2\pi)^{-1}\,i\,\oint\limits_{\Gamma} \left((\varDelta_1-\lambda)^{-1}\xi_1\right)\!p(\lambda\varDelta)\xi_2d\lambda\;.$$

Now let V_0 be any compact interval disjoint from V and $E_0 = \chi_0(\Delta)$ where χ_0 is the characteristic function of V_0 . Then

$$\begin{split} \|p(\varDelta)E_0\xi_1\xi_2\| &= \|E_0p(\varDelta)\xi_1\xi_2\| \\ &\leq (2\pi)^{-1} \sup_{\Gamma} \|\pi(\varDelta_1-\lambda)^{-1}\xi_1\| \|p(\lambda\varDelta)\xi_2\| \, |\varGamma| \ . \end{split}$$

Choose ε sufficiently small such that the two open sets

$$W_0 = \{z \mid z \in C, \text{ distance}(z, V_0) < \varepsilon\},\$$

 $W = \{z \mid z \in C, \text{ distance}(z, V) < \varepsilon\}$

have disjoint closures.

Then it is possible to choose Γ such that the set

$$\{pq \mid p \in V_2, q \text{ is inside } \Gamma\}$$

is contained in W. Let f be the analytic function on $W_0 \cup W$ which is 1 on W_0 and 0 on W. By Runge's theorem it is possible to find a sequence of polynomials p_k tending uniformly to f on $W_0 \cup W$. Then

$$p_k(\Delta)E_0\xi_1\xi_2$$
 tends to $E_0\xi_1\xi_2$

and

$$p_k(\lambda\Delta\chi_2(\Delta))\xi_2$$
 tends to 0

uniformly in $\lambda \in \Gamma$. Moreover $\|\pi((\Delta_1 - \lambda)^{-1}\xi_1)\|$ is uniformly bounded on Γ . Therefore $E_0\xi_1\xi_2=0$ and since this holds for all compact closed intervals disjoint from V,

$$\chi(\Delta)\xi_1\xi_2 = \xi_1\xi_2.$$

This completes the proof.

Let φ be a faithful normal state on the von Neumann algebra M. Let (M, H, ξ_0) be the G.N.S.-construction of φ on M. As in [2] let $S = J\Delta^{\frac{1}{2}}$ be the corresponding involution. Remind that JMJ = M', and that

$$\sigma_t(x) = \Delta^{it} x \Delta^{-it}$$
 for $x \in M$

defines a one parameter group of automorphisms of M. In [2, lemma 15.8] it is proved that the subalgebra

$$\{x \in M \mid \sigma_t(x) = x \text{ for all } t \in R\}$$

equals the set

$$\{x \in M \mid \varphi(xy) = \varphi(yx) \text{ for all } y \in M\}$$
.

As in [2] we call this subalgebra M_{σ} .

Let e be a non zero projection of M_{φ} , we shall first determine the modular operator of the state φ_e defined on the reduced von Neumann algebra M_e by

$$\varphi_e(x) = \varphi(x)/\varphi(e)$$
.

The closed subspace

$$H_e = \text{Image } e \cap \text{Image } JeJ = eJeJH$$

is invariant by any element of the algebra M_e . So we can consider the algebra M_1 induced by M_e in H_e and the canonical homomorphism π of M_e onto M_1 . The element $e\xi_0$ of H is in H_e because

$$JeJ\xi_0 = Je\xi_0 = Je\Delta^{\frac{1}{4}}\xi_0 = J\Delta^{\frac{1}{4}}e\xi_0 = e\xi_0$$

hence $e\xi_0 \in eJeJH$. Let $\xi_1 = e\xi_0/||e\xi_0||$; then it is easy to check that (π, H_e, ξ_1) is the G.N.S.-construction of the state φ_e on M_e . To check that ξ_1 is cyclic for M_1 in H_e it is enough to prove that $x \in M$ implies $eJeJx\xi_0 \in M_1\xi_1$ which follows from the equality

$$eJeJx\xi_0 = exJeJ\xi_0 = exe\xi_0.$$

Now $e\Delta^{it} = \Delta^{it}e$ for all $t \in \mathbb{R}$ and similarly JeJ commutes with Δ^{it} for all t, so Δ leaves H_e invariant and its restriction to H_e is a closed positive operator.

Let $x \in M_1$, then there exists an X in M_e such that $\pi(X) = x$, in particular

$$||e\xi_0||x\xi_1 = xe\xi_0 = X\xi_0$$

and

$$||e\xi_0||x^*\xi_1 = x^*e\xi_0 = X^*\xi_0$$
,

hence $Sx\xi_1=x^*\xi_1$ and the involution S_e corresponding to (M_1,H_e,ξ_1) coincides with S on $M_1\xi_1$. Similarly we get the coincidence of F_e with F on $M_1'\xi_1$. It follows that $S_e=J_R\Delta_R^{-1}$ where J_R is the restriction of J to H_e and Δ_R the restriction of Δ to H_e . By the uniqueness of the polar decomposition of closed operators we get the equality $\Delta_e=\Delta_R$. Hence the modular operator of the state φ_e on M_e is the restriction of the modular operator of φ on M to the invariant subspace eJeJH.

DEFINITION 4. For a faithful normal state φ on M put

 $\mathfrak{S}_{\sigma} = \bigcap \{ \text{spectrum of the modular operator of } \varphi_{e} \text{ on } M_{e} \}$

where e runs through all non zero projections of the center of M_{φ} .

LEMMA 5. Let $\lambda_1 > 0$, $\lambda_1 \in \mathfrak{S}_{\varphi}$ and $\lambda_2 > 0$, $\lambda_2 \in \operatorname{Sp} \Delta$ then $\lambda_1 \lambda_2 \in \operatorname{Sp} \Delta$.

PROOF. (a) We first show that if a bounded open interval V of $]0,\infty[$ intersects $\operatorname{Sp}\Delta$ there exists a non zero $x \in M$ with

$$\chi(\Delta)x\xi_0 = x\xi_0,$$

 χ being the characteristic function of V. By hypothesis $\chi(\Delta) \neq 0$, so there is a $y \in M$ with $\chi(\Delta)y\xi_0 \neq 0$. Let χ_n be a sequence of C^{∞} functions on $]0,\infty[$ with $0 \leq \chi_n \leq \chi$ and $\chi_n(\Delta) \to \chi(\Delta)$ strongly when $n \to \infty$. Then there exists an n with $\chi_n(\Delta)y\xi_0 \neq 0$. Further by [2] one has

$$\chi_n(\Delta)y\xi_0\in M\xi_0$$
,

and obviously

$$\chi(\Delta)\chi_n(\Delta)y\xi_0 = \chi_n(\Delta)y\xi_0$$
.

(b) Let V_1 be a compact interval of $]0,\infty[$ with λ_1 in its interior, then let e be a non zero projection of the center of M_{φ} . Since the interior of V_1 intersects $\operatorname{Sp} \Delta_e$ there exists by (a) an element $x \neq 0$ of the reduced induced algebra M_1 of M in eJeJH such that

$$x\xi_1 = \chi_1(\Delta_e)x\xi_1$$

where χ_1 is the characteristic function of V_1 . Now $x\xi_1 \in H_e$, hence

$$\chi_1(\Delta_e)x\xi_1 = \chi_1(\Delta)x\xi_1.$$

Since $x \in M_1$ there exists an X in M_e with $x\xi_1 = X\xi_0$, so

$$\chi_1(\Delta)X\xi_0 = X\xi_0, \quad X \neq 0, X \text{ in } M_e.$$

We claim that for such V_1 the supremum VSupp x, where x runs over all elements in M with

$$\chi_1(\Delta)x\xi_0 = x\xi_0 ,$$

is equal to one. In fact it is a certain projection k with for all $t \in \mathbb{R}$, $\Delta^{ii}k\Delta^{-ii}=k$ because

$$\chi_{1}(\Delta)\Delta^{it}x\Delta^{-it}\xi_{0} = \Delta^{it}x\Delta^{-it}\xi_{0}$$

if $\chi_1(\Delta)x\xi_0 = x\xi_0$. Also for all unitary $u \in M_{\varphi}$, $uku^* = k$ because

$$\chi_1(\varDelta)uxu*\xi_0 \,=\, \chi_1(\varDelta)uJuJx\xi_0 \,=\, uJuJ\chi_1(\varDelta)x\xi_0$$

since u and JuJ commute with Δ . So we know that k belongs to the center of M_{φ} hence 1-k is a projection e in the center of M_{φ} . If $e \neq 0$, there exists an $X \in M$ with

$$X\xi_0 = \chi_1(\Delta)X\xi_0, \quad X \neq 0, \quad eX = Xe = X,$$

so Supp $X \leq e$ which contradicts Supp $X \leq k$ if $X \neq 0$.

(c) Now let W be any neighbourhood of $\lambda_1\lambda_2$ in $]0,\infty[$, choose V_1 and V_2 compact intervals containing respectively λ_1 and λ_2 in their interior and such that $V_1 \cdot V_2 \subset W$. Let χ_1, χ_2 and χ be the respective characteristic functions of V_1 , V_2 and V. By (a) there exists $x \in M$ with $x \neq 0$ and

$$x\xi_0 = \chi_2(\Delta)x\xi_0,$$

by (b) there exists $y \in M$ with

$$y\xi_0 = \chi_1(\Delta)y\xi_0$$

and $yx \neq 0$ because $1 = V \operatorname{Supp} y$, when y runs over all elements in M satisfying

$$\chi_1(\Delta)y\xi_0 = y\xi_0.$$

If we apply lemma 3 to the left generalised Hilbert algebra $\mathscr{A}=M\xi_0$ we get

$$\chi(\Delta)yx\xi_0 = yx\xi_0$$

hence V intersects the spectrum of Δ . It then follows that $\lambda_1 \lambda_2 \in \operatorname{Sp} \Delta$ as far as W was arbitrary.

PROOF OF THE THEOREM. Since the theorem is obvious in the semi-finite case we assume M is type III. It is enough to prove b). Let φ be a faithful normal state on M, let $\lambda_2 > 0$, $\lambda_2 \in \operatorname{Sp} \Delta_{\varphi}$, let $\lambda_1 > 0$, $\lambda_1 \in S(M)$, then $\lambda_1 \lambda_2 \in \operatorname{Sp} \Delta_{\varphi}$ will follow from the inclusion $S(M) \subset \mathfrak{S}_{\varphi}$. This inclusion is true because for each non zero projection e in the center of M_{φ} , M_e is isomorphic to M and hence $\operatorname{Sp} \Delta_{\varphi_e} \supset S(M)$ because φ_e is a faithful normal state on M_e .

This result will be used later to improve the classification of type III factors.

ACKNOWLEDGEMENTS. We are greatly indebted to Prof. E. Størmer as far as this proof was completed during our stay at the University of Oslo.

REFERENCES

- A. Connes, Un nouvel invariant pour les algèbre de von Neumann, C. R. Acad. Sci. Paris Sér. A 273 (1971), 900-903.
- M. Takesaki, Tomita's theory of modular Hilbert algebras and its application. Lecture Notes in Mathematics 128, Springer-Verlag, Berlin · Heidelberg · New York 1970.

UNIVERSITY OF OSLO, NORWAY, UNIVERSITY OF LEUVEN, BELGIUM

AND

C.N.R.S., PARIS, FRANCE