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PERIODICITY OF RECURRING SEQUENCES
IN RINGS

TORLELV KLYQVE

1.

In this paper all rings are commutative (not necessarily containing
a unit). A recurring sequence in a ring R is a sequence z,,&,,... of ele-
ments from R satisfying.

(1.1) Ty = P@p_y,..., %, )+7r, forallm 2o,

where P is a polynomial without constant term and with coefficients
71,79, - Ty I B. We call rye R “the constant term of the recurring
sequence’’. When P is a polynomial of first degree the sequence is called
a linear recurring sequence.

A sequence z,,,,... in R is called periodic if there exist integers
p>0 and N =0 such that

Tpiy = T, foralnz N;

u is then a pertod for the sequence.
We shall prove the following theorem.

THEOREM 1. If the linear recurring sequence defined by xy=0,%,=x,_, +7,
(that is z, =mnr,) is periodic and the linear recurring sequences defined by
Xy=r,%, =1, _, (that is z,=r"*1) are periodic for each r € R then every
recurring sequence in R with constant term r, ts periodic.

2.

For each r € R let S(r) be the least positive integer such that S(r)r=0.
If no such integer exists we put S(r)=oco. We shall need the following
lemmas.

Lemma 1. The following two condstions are equivalent:
(i) For each r € R the linear recurring sequence defined by xy=r,x, =rx,
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(ii) For each r € R there exist two positive integers k(r),l(r) such that
R+ = U7,

LemMMA 2. Let ry € R. The following two conditions are equivalent:

(i) The Unear recurring sequence defined by x,=0,%,=x,_1+7, @S
pertodic.

(ii) S(ry) 95 finste.

LemmA 3. Let R be a ring satisfying condition (ii) of lemma 1.

(i) For each r € R there exists a positive integer A(r) such that S(r¥®) is
finite.

(ii) If S(a) is finite for some a € R, then S(ar) is finite and divides S(a)
for all re R.

Lemmas 1 and 2 are immediate consequences of the definition of
periodicity. To prove lemma 3 we first note that if r+!=rl then rok+i=r4
for all integers 20 and 221. Let A=A(r) =max(l(r),!(2r)), k=k(r) and
% =k(2r). Then

211-). — (27-)1 —_ (21-)kx+l —_ 2kx+1rnk+2 — 2kn+/17~/1 .
Hence
(Qn+d _90)pd = ()
which proves (i). To prove (ii) we note that
S(@)ar = (S(a)a)r = 0.
Hence S(ar)<8(a). Put S(a)=pS(ar)+q where 0=g<S(ar). Then
qar = S(a)ar — pS(ar)ar=0

and hence ¢=0 by the minimality of S(ar).

We note that if R of lemma 3 is a ring with unit e, then S(r) is finite
for all r € R. This is a consequence of lemma 3 since ¢*9=e¢, hence S(e)
is finite and so S(r)=8(er) is finite. In particular, the two equivalent
conditions of lemma 2 are satisfied for such rings.

3.

‘We now turn to the proof of theorem 1. Suppose conditions (i) (and hence
conditions (ii)) of lemma 1 and 2 are satisfied and let z,,,,... be any
recurring sequence satisfying (1.1). Applying (1.1) repeatedly we get

(3.1) xn = Qn(xo, ce ey xo_l) + rogn*(xo 30 0 ey xe_l) >
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where @, is a polynomial whose coefficients are polynomials g,,;,
j=12,...,J(n), in rq,ry,...,r, with integral coefficients, r,,r,,...,7,
being the coefficients of P, and @, * is a polynomial whose coefficients are
polynomials q,;*,j=1,2,...,J%n), in ry,ry,...,7,.
The polynomials @, are given recursively by

(3.2) Qn(@gs- - +5%pq) =, if 0=n =<p-1,
(8.3)  @u®@gye s Xpy) = P(Qpa(--2)sev s @uyl-+2)) if m 2 .
Let d(n) be the degree of the term in the polynomials g,,; of least degree.
By (3.2) and (3.3)
dn) =0 if0=n=p-1,
d(n) Z min;_; {d(n—0)+1} if n 2.

By induction on » we get

(3.4) d(n) 2 [nfo]

where [x] denotes the greatest integer =<z. Put S=least common
multiple of S(r;*"), 4=1,2,...,m. Then

Sr*. .. m =0
if o, = A(r;) for at least one i by lemma 3. Hence, if
nZo{Mry)+ ... +A(r,)—m+1}

then, by (3.4), ¢,, is a polynomial with coefficients <. Since g,; is of
degree <k(r;)+A(r;) in r;, there are only a finite number of such poly-
nomials. Further @, is a polynomial of degree < k(z;)+!(x;) in z,, hence
there are only a finite number of different @,’s.

As to the polynomials r,Q, * we note that the coefficients of ryq,,* are
< 8(r,), hence there are only a finite number of different r,@,*. Finally,
by (8.1), there are only a finite number of different x,’s and so there are
only a finite number of different arrays «,,,%,41,. . - ,%p4,~1. Hence there
exist integers N =0 and x>0 such that

Zyy, = %, form =NN+1,...,N+o—1.
By (1.1), z,,,=x, for all n 2 N.

4

Ward [1] defined periodicity modulo an ideal 4 in R as follows:
The sequence x,,2;,... is periodic modulo 4 if #,,,—x, € 4 for all
nzN.
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This, however, is the same as periodicity of the sequence z,+ 4,
2+ A4,. .. in the ring R/A. Thus the first part of Ward’s theorem 6.1 is a
corollary of our theorem 1.

5.

We may define recurrence somewhat more generally and prove an
analogous theorem in the general case.

Let C be a set containing R, in which there is defined a multiplication

(i) which extends the multiplication in R,

(ii) which is commutative, assosiative, and distributive over addition
in R,

(iii) such that cre R for all ce C, r € R.

A recurring sequence in R with coefficients in C is a sequence z,,x;,, . . .
of elements from R satisfying (1.1) where now P is a polynominal with
coefficients in C; the 7, in (1.1) is still an element of R.

A possible choice of €' is C=RUZ,Z being the set of integers. The
multiplication in C is defined in the natural way. This choice of C covers
all recurrences with integral coefficients, these would not be otherwise
covered if R is a ring without unit.

Another choice is C being a ring having R as an ideal.

We get the following theorem (which reduces to theorem 1 if C'=R).

THEOREM 2. If the linear recurring sequence defined by xy=0,z, =z, _;+ 7,
(that is x,=mnr,) 48 periodic and the linear recurring sequences defined by
Zy="r,T,=C%,_, (that is x,=c") are periodic for each re R and ceC
then every recurring sequence tn R with coefficients in C and constani term
ro (in R) ts periodic.

‘With minor alterations the proof of theorem 1 also applies to theorem 2.
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