PERIODICITY OF RECURRING SEQUENCES IN RINGS

TORLEIV KLØVE

1.

In this paper all rings are commutative (not necessarily containing a unit). A recurring sequence in a ring R is a sequence x_0, x_1, \ldots of elements from R satisfying.

(1.1)
$$x_n = P(x_{n-1}, \ldots, x_{n-n}) + r_0 for all n \ge \varrho ,$$

where P is a polynomial without constant term and with coefficients r_1, r_2, \ldots, r_m in R. We call $r_0 \in R$ "the constant term of the recurring sequence". When P is a polynomial of first degree the sequence is called a linear recurring sequence.

A sequence x_0, x_1, \ldots in R is called *periodic* if there exist integers $\mu > 0$ and $N \ge 0$ such that

$$x_{n+\mu} = x_n$$
 for all $n \ge N$;

 μ is then a *period* for the sequence.

We shall prove the following theorem.

THEOREM 1. If the linear recurring sequence defined by $x_0 = 0$, $x_n = x_{n-1} + r_0$ (that is $x_n = nr_0$) is periodic and the linear recurring sequences defined by $x_0 = r$, $x_n = rx_{n-1}$ (that is $x_n = r^{n+1}$) are periodic for each $r \in R$ then every recurring sequence in R with constant term r_0 is periodic.

2.

For each $r \in R$ let S(r) be the least positive integer such that S(r)r = 0. If no such integer exists we put $S(r) = \infty$. We shall need the following lemmas.

Lemma 1. The following two conditions are equivalent:

(i) For each $r \in R$ the linear recurring sequence defined by $x_0 = r, x_n = rx_{n-1}$ is periodic.

(ii) For each $r \in R$ there exist two positive integers k(r), l(r) such that $r^{k(r)+l(r)} = r^{l(r)}$.

Lemma 2. Let $r_0 \in R$. The following two conditions are equivalent:

- (i) The linear recurring sequence defined by $x_0 = 0, x_n = x_{n-1} + r_0$ is periodic.
 - (ii) $S(r_0)$ is finite.

LEMMA 3. Let R be a ring satisfying condition (ii) of lemma 1.

- (i) For each $r \in R$ there exists a positive integer $\lambda(r)$ such that $S(r^{\lambda(r)})$ is finite.
- (ii) If S(a) is finite for some $a \in R$, then S(ar) is finite and divides S(a) for all $r \in R$.

Lemmas 1 and 2 are immediate consequences of the definition of periodicity. To prove lemma 3 we first note that if $r^{k+l} = r^l$, then $r^{\alpha k + \lambda} = r^{\lambda}$ for all integers $\alpha \ge 0$ and $\lambda \ge l$. Let $\lambda = \lambda(r) = \max(l(r), l(2r))$, k = k(r) and $\kappa = k(2r)$. Then

$$2^{\lambda}r^{\lambda} = (2r)^{\lambda} = (2r)^{kx+\lambda} = 2^{kx+\lambda}r^{xk+\lambda} = 2^{kx+\lambda}r^{\lambda}.$$

Hence

$$(2^{k\varkappa+\lambda}-2^{\lambda})r^{\lambda}=0,$$

which proves (i). To prove (ii) we note that

$$S(a)ar = (S(a)a)r = 0.$$

Hence $S(ar) \leq S(a)$. Put S(a) = pS(ar) + q where $0 \leq q < S(ar)$. Then

$$qar = S(a)ar - pS(ar)ar = 0$$

and hence q = 0 by the minimality of S(ar).

We note that if R of lemma 3 is a ring with unit e, then S(r) is finite for all $r \in R$. This is a consequence of lemma 3 since $e^{\lambda(e)} = e$, hence S(e) is finite and so S(r) = S(er) is finite. In particular, the two equivalent conditions of lemma 2 are satisfied for such rings.

3.

We now turn to the proof of theorem 1. Suppose conditions (i) (and hence conditions (ii)) of lemma 1 and 2 are satisfied and let x_0, x_1, \ldots be any recurring sequence satisfying (1.1). Applying (1.1) repeatedly we get

$$(3.1) x_n = Q_n(x_0, \ldots, x_{\varrho-1}) + r_0 Q_n *(x_0, \ldots, x_{\varrho-1}),$$

where Q_n is a polynomial whose coefficients are polynomials q_{nj} , $j=1,2,\ldots,J(n)$, in r_1,r_2,\ldots,r_m with integral coefficients, r_1,r_2,\ldots,r_m being the coefficients of P, and Q_n^* is a polynomial whose coefficients are polynomials $q_{nj}^*,j=1,2,\ldots,J^*(n)$, in r_0,r_1,\ldots,r_m .

The polynomials Q_n are given recursively by

$$(3.2) Q_n(x_0, \ldots, x_{\varrho-1}) = x_n \text{if } 0 \le n \le \varrho - 1,$$

$$(3.3) Q_n(x_0,\ldots,x_{\varrho-1}) = P(Q_{n-1}(\ldots),\ldots,Q_{n-\varrho}(\ldots)) \text{if } n \ge \varrho.$$

Let d(n) be the degree of the term in the polynomials q_{nj} of least degree. By (3.2) and (3.3)

$$\begin{array}{ll} d(n) \,=\, 0 & \text{if } 0 \,\leqq\, n \,\leqq\, \varrho - 1 \;, \\ d(n) \,\geqq\, \min_{1 \leq i \leq \varrho} \big\{ d(n-i) + 1 \big\} & \text{if } n \,\geqq\, \varrho \;. \end{array}$$

By induction on n we get

$$(3.4) d(n) \ge \lceil n/\rho \rceil$$

where [x] denotes the greatest integer $\leq x$. Put S = least common multiple of $S(r_i^{\lambda(r_i)})$, i = 1, 2, ..., m. Then

$$Sr_1^{\alpha_1} \dots r_m^{\alpha_m} = 0$$

if $\alpha_i \ge \lambda(r_i)$ for at least one i by lemma 3. Hence, if

$$n \ge \varrho\{\lambda(r_1) + \ldots + \lambda(r_m) - m + 1\}$$

then, by (3.4), q_{nj} is a polynomial with coefficients < S. Since q_{nj} is of degree $< k(r_i) + \lambda(r_i)$ in r_i , there are only a finite number of such polynomials. Further Q_n is a polynomial of degree $< k(x_i) + l(x_i)$ in x_i , hence there are only a finite number of different Q_n 's.

As to the polynomials $r_0Q_n^*$ we note that the coefficients of $r_0q_{nj}^*$ are $< S(r_0)$, hence there are only a finite number of different $r_0Q_n^*$. Finally, by (3.1), there are only a finite number of different x_n 's and so there are only a finite number of different arrays $x_n, x_{n+1}, \ldots, x_{n+\varrho-1}$. Hence there exist integers $N \ge 0$ and $\mu > 0$ such that

$$x_{n+\mu} = x_n$$
 for $n = N, N+1, ..., N+\varrho-1$.

By (1.1), $x_{n+\mu} = x_n$ for all $n \ge N$.

4.

Ward [1] defined periodicity modulo an ideal A in R as follows:

The sequence x_0, x_1, \ldots is periodic modulo A if $x_{n+\mu} - x_n \in A$ for all $n \ge N$.

This, however, is the same as periodicity of the sequence $x_0 + A$, $x_1 + A$,... in the ring R/A. Thus the first part of Ward's theorem 6.1 is a corollary of our theorem 1.

5.

We may define recurrence somewhat more generally and prove an analogous theorem in the general case.

Let C be a set containing R, in which there is defined a multiplication

- (i) which extends the multiplication in R,
- (ii) which is commutative, assosiative, and distributive over addition in R,
 - (iii) such that $cr \in R$ for all $c \in C$, $r \in R$.

A recurring sequence in R with coefficients in C is a sequence x_0, x_1, \ldots of elements from R satisfying (1.1) where now P is a polynominal with coefficients in C; the r_0 in (1.1) is still an element of R.

A possible choice of C is $C = R \cup Z$, Z being the set of integers. The multiplication in C is defined in the natural way. This choice of C covers all recurrences with integral coefficients, these would not be otherwise covered if R is a ring without unit.

Another choice is C being a ring having R as an ideal.

We get the following theorem (which reduces to theorem 1 if C=R).

THEOREM 2. If the linear recurring sequence defined by $x_0 = 0$, $x_n = x_{n-1} + r_0$ (that is $x_n = nr_0$) is periodic and the linear recurring sequences defined by $x_0 = r$, $x_n = cx_{n-1}$ (that is $x_n = c^n r$) are periodic for each $r \in R$ and $c \in C$ then every recurring sequence in R with coefficients in C and constant term r_0 (in R) is periodic.

With minor alterations the proof of theorem 1 also applies to theorem 2.

REFERENCE

 M. Ward, Arithmetical properties of sequences in ring, Ann. of Math. (2), 39 (1938), 210-219.

UNIVERSITY OF BERGEN, BERGEN, NORWAY