PERIODICITY OF RECURRING SEQUENCES
IN RINGS

TORLEIV KLOVE

1.

In this paper all rings are commutative (not necessarily containing a unit). A recurring sequence in a ring \(R \) is a sequence \(x_0, x_1, \ldots \) of elements from \(R \) satisfying.

\[
x_n = P(x_{n-1}, \ldots, x_{n-\varrho}) + r_0 \quad \text{for all } n \geq \varrho ,
\]

where \(P \) is a polynomial without constant term and with coefficients \(r_1, r_2, \ldots, r_m \) in \(R \). We call \(r_0 \in R \) "the constant term of the recurring sequence". When \(P \) is a polynomial of first degree the sequence is called a linear recurring sequence.

A sequence \(x_0, x_1, \ldots \) in \(R \) is called periodic if there exist integers \(\mu > 0 \) and \(N \geq 0 \) such that

\[
x_{n+\mu} = x_n \quad \text{for all } n \geq N ;
\]

\(\mu \) is then a period for the sequence.

We shall prove the following theorem.

Theorem 1. If the linear recurring sequence defined by \(x_0 = 0, x_n = x_{n-1} + r_0 \) (that is \(x_n = nr_0 \)) is periodic and the linear recurring sequences defined by \(x_0 = r, x_n = r x_{n-1} \) (that is \(x_n = r^{n+1} \)) are periodic for each \(r \in R \) then every recurring sequence in \(R \) with constant term \(r_0 \) is periodic.

2.

For each \(r \in R \) let \(S(r) \) be the least positive integer such that \(S(r)r = 0 \). If no such integer exists we put \(S(r) = \infty \). We shall need the following lemmas.

Lemma 1. The following two conditions are equivalent:

(i) For each \(r \in R \) the linear recurring sequence defined by \(x_0 = r, x_n = r x_{n-1} \) is periodic.
(ii) For each \(r \in R \) there exist two positive integers \(k(r), l(r) \) such that
\[r^{k(r)+l(r)} = r \alpha(r). \]

Lemma 2. Let \(r_0 \in R \). The following two conditions are equivalent:
(i) The linear recurring sequence defined by \(x_0 = 0, x_n = x_{n-1} + r_0 \) is periodic.
(ii) \(S(r_0) \) is finite.

Lemma 3. Let \(R \) be a ring satisfying condition (ii) of lemma 1.
(i) For each \(r \in R \) there exists a positive integer \(\lambda(r) \) such that \(S(r^{\lambda(r)}) \) is finite.
(ii) If \(S(a) \) is finite for some \(a \in R \), then \(S(ar) \) is finite and divides \(S(a) \) for all \(r \in R \).

Lemmas 1 and 2 are immediate consequences of the definition of periodicity. To prove lemma 3 we first note that if \(r^{k+l} = r^l \), then \(r^{ak+l} = r^l \) for all integers \(k \geq 0 \) and \(\lambda \geq l \). Let \(\lambda = \lambda(r) = \max(l(r), l(2r)), k = k(r) \) and \(x = k(2r) \). Then
\[
2^kr^\lambda = (2r)^{k+l} = (2r)^{k+\lambda} = 2^{k+\lambda}r^{k+\lambda} = 2^{k+\lambda}r^\lambda.
\]
Hence
\[
(2^{k+\lambda} - 2^\lambda)r^\lambda = 0,
\]
which proves (i). To prove (ii) we note that
\[
S(a)ar = (S(a)a)r = 0.
\]
Hence \(S(ar) \leq S(a) \). Put \(S(a) = pS(ar) + q \) where \(0 \leq q < S(ar) \). Then
\[
qar = S(a)ar - pS(ar)ar = 0
\]
and hence \(q = 0 \) by the minimality of \(S(ar) \).

We note that if \(R \) of lemma 3 is a ring with unit \(e \), then \(S(r) \) is finite for all \(r \in R \). This is a consequence of lemma 3 since \(e^{k(e)} = e \), hence \(S(e) \) is finite and so \(S(r) = S(er) \) is finite. In particular, the two equivalent conditions of lemma 2 are satisfied for such rings.

3.

We now turn to the proof of theorem 1. Suppose conditions (i) (and hence conditions (ii)) of lemma 1 and 2 are satisfied and let \(x_0, x_1, \ldots \) be any recurring sequence satisfying (1.1). Applying (1.1) repeatedly we get
\[
x_n = Q_n(x_0, \ldots, x_{q-1}) + r_0Q_n^*(x_0, \ldots, x_{q-1}),
\]
(3.1)
where \(Q_n \) is a polynomial whose coefficients are polynomials \(q_{nj} \), \(j = 1, 2, \ldots, J(n) \), in \(r_1, r_2, \ldots, r_m \) with integral coefficients, \(r_1, r_2, \ldots, r_m \) being the coefficients of \(P \), and \(Q_n^* \) is a polynomial whose coefficients are polynomials \(q_{nj}^*, j = 1, 2, \ldots, J^*(n) \), in \(r_0, r_1, \ldots, r_m \).

The polynomials \(Q_n \) are given recursively by

\[
Q_n(x_0, \ldots, x_{q-1}) = x_n \quad \text{if} \quad 0 \leq n \leq q - 1, \\
Q_n(x_0, \ldots, x_{q-1}) = P(Q_{n-1}(\ldots), \ldots, Q_{n-q}(\ldots)) \quad \text{if} \quad n \geq q.
\]

Let \(d(n) \) be the degree of the term in the polynomials \(q_{nj} \) of least degree. By (3.2) and (3.3)

\[
d(n) = 0 \quad \text{if} \quad 0 \leq n \leq q - 1, \\
d(n) \geq \min_{0 \leq i \leq q} \{d(n-i) + 1\} \quad \text{if} \quad n \geq q.
\]

By induction on \(n \) we get

\[
d(n) = \lceil n/q \rceil
\]

where \(\lceil x \rceil \) denotes the greatest integer \(\leq x \). Put \(S = \) least common multiple of \(S(r_1^{k_1}, \ldots, r_m^{k_m}) \), \(i = 1, 2, \ldots, m \). Then

\[
S r_1^{a_1} \ldots r_m^{a_m} = 0
\]

if \(\alpha_i \geq \lambda(r_i) \) for at least one \(i \) by lemma 3. Hence, if

\[
n \geq \min_{1 \leq i \leq m} \{\lambda(r_1) + \ldots + \lambda(r_m) - m + 1\}
\]

then, by (3.4), \(q_{nj} \) is a polynomial with coefficients \(< S \). Since \(q_{nj} \) is of degree \(< k(r_i) + \lambda(r_i) \) in \(r_i \), there are only a finite number of such polynomials. Further \(Q_n \) is a polynomial of degree \(< k(x_i) + l(x_i) \) in \(x_i \), hence there are only a finite number of different \(Q_n \)'s.

As to the polynomials \(r_0 Q_n^* \) we note that the coefficients of \(r_0 q_{nj}^* \) are \(< S(r_0) \), hence there are only a finite number of different \(r_0 Q_n^* \). Finally, by (3.1), there are only a finite number of different \(x_n \)'s and so there are only a finite number of different arrays \(x_n, x_{n+1}, \ldots, x_{n+q-1} \). Hence there exist integers \(N \geq 0 \) and \(\mu > 0 \) such that

\[
x_{n+\mu} = x_n \quad \text{for} \quad n = N, N + 1, \ldots, N + q - 1.
\]

By (1.1), \(x_{n+\mu} = x_n \) for all \(n \geq N \).

4.

Ward [1] defined periodicity modulo an ideal \(A \) in \(R \) as follows:

The sequence \(x_0, x_1, \ldots \) is periodic modulo \(A \) if \(x_{n+\mu} - x_n \in A \) for all \(n \geq N \).
This, however, is the same as periodicity of the sequence \(x_0 + A, x_1 + A, \ldots \) in the ring \(R/A \). Thus the first part of Ward's theorem 6.1 is a corollary of our theorem 1.

5.

We may define recurrence somewhat more generally and prove an analogous theorem in the general case.

Let \(C \) be a set containing \(R \), in which there is defined a multiplication
(i) which extends the multiplication in \(R \),
(ii) which is commutative, associative, and distributive over addition in \(R \),
(iii) such that \(cr \in R \) for all \(c \in C, r \in R \).

A recurring sequence in \(R \) with coefficients in \(C \) is a sequence \(x_0, x_1, \ldots \) of elements from \(R \) satisfying (1.1) where now \(P \) is a polynomial with coefficients in \(C \); the \(r_0 \) in (1.1) is still an element of \(R \).

A possible choice of \(C \) is \(C = R \cup \mathbb{Z}, \mathbb{Z} \) being the set of integers. The multiplication in \(C \) is defined in the natural way. This choice of \(C \) covers all recurrences with integral coefficients, these would not be otherwise covered if \(R \) is a ring without unit.

Another choice is \(C \) being a ring having \(R \) as an ideal.

We get the following theorem (which reduces to theorem 1 if \(C = R \)).

Theorem 2. If the linear recurring sequence defined by \(x_0 = 0, x_n = x_{n-1} + r_0 \) (that is \(x_n = nr_0 \)) is periodic and the linear recurring sequences defined by \(x_0 = r, x_n = cx_{n-1} \) (that is \(x_n = cr \)) are periodic for each \(r \in R \) and \(c \in C \) then every recurring sequence in \(R \) with coefficients in \(C \) and constant term \(r_0 \) (in \(R \)) is periodic.

With minor alterations the proof of theorem 1 also applies to theorem 2.

REFERENCE