MATH. SCAND. 32 (1973), 145—164

ON THE DEGREES
OF UNIVERSAL REGRESSIVE ISOLS

ERIK ELLENTUCKY)

1. Introduction.

In this paper we introduce a variety of universal regressive isols and
classify them according to their Turing degrees. The usual way to produce
a universal isol is by a diagonal construction. Thus if g : @ — w is generic
in the sense of Cohen and #0)=1,t(n+ 1)=4j(t(n),g(n)) for all » € w, then
Req (pt) is a universal regressive isol. By a refinement of this construction
we can insure that if ¢ has degree d then d is hyperimmune free and
satisfies 0’'=d"’. For the moment let us refer to isols produced by this
kind of construction as generic. What is important here is that there are
generic ¢ with a slow growth rate. Now there is another way to produce
universal isols. Let g : w — w dominate all partial recursive functions and
define ¢ in terms of g as above. Req(p?) is a universal regressive isol and
its degree d satisfies 0’ <d. By using the right g we can insure that 0’ =d.
For the moment let us refer to isols produced by this kind of construction
as meager. By definition meager ¢t have a very fast growth rate. All is well
until we come to the cosimple case. There we find that the notions of
generic and meager coalesce. This is bad because it is known from [5]
that meagerness does not generalize to the n-dimensional case when
n>1, and thus it is not immediately clear how to obtain a universal
n-tuple of isols. Such n-tuples were obtained in [4]. But that construction
was ad hoc and certainly not as elegant as what goes on in thel-dimensional
case. The way out of our difficulty is to find a notion of meagerness that
does generalize to higher dimensions. This we do.

Meagers isols have another application somewhat different from uni-
versality. Suppose, because of their fast growth rate, we can show that
a function f is recursive in every meager isol. By our remark on degrees,
all we can conclude for the degree d of f is that d < 0'. What we’d like is
a broader notion of meagerness which combines fast growth rate with
having enough degrees so that f is forced to be recursive. This we also do.
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In all we introduce eight classes of isols in the generic-meager spectrum
and study their interconnections, their relations to universality, and the
degrees of their members. The use of degrees for incomparability results
among regressive isols was pioneered by Dekker in [2]. We consider our
work to complement those ideas. Qur interest in the cosimple case is
essentially due to McLaughlin’s invention of the cosimple 7'-retraceable
isols (cf. [9] for a brief discussion of this notion). His extensive paper
[10] giving a history of the subject as well as a general method for dealing
with retraceability problems will shortly appear in print. We take this
opportunity to thank him for sending us manuscripts prior to their
publication.

2. The classical case.

Let w denote the non-negative integers. We refer to elements of w as
numbers. If acw and n € w let X"« be the n-fold direct power of «,
and if f is any function let f and ¢f denote its domain and range. j(z,y)
will be the usual pairing function with & and ! as its first and second
inverse. A function ¢ is called regressive if it is a one-one mapping of w
into o for which there exists a partial recursive function p such that

(1) ot < 0p A pt(0) = H0) A (VR w)pt(n+1) = Hn).

If ¢ is a regressive function then we can find a partial recursive p which in
addition to (1) also satisfies

(2) op S Op A (Vz €dp)(An € w) p™ti(x) = pMx),

where p™ denotes the n-th iterate of p. Such a p satisfying (1) and (2) is
called a regressing function of ¢. If p is a regressing function (of some ?)
we define two functions p* and p by

(3) dp* = dp A p*(x) = (un) p"*(z) = p™(),
(4) 0P = 6p A P(x) = {p™(x)|n € w}—{z},

where u is the minimum operator. The function p* is also partial recursive
and satisfies
(5) ot S 0p* A (VR ew) p*t(n) = n.

A function ¢ is called retraceable if it is regressive and strictly increasing.
If ¢ is a retraceable function then we can find a partial recursive function
p which in addition to (1) and (2) also satisfies

(6) (Vz € 6p) p(x) < x .
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Such a p satisfying (1), (2), and (6) is called a retractng function of ¢.
A set is called regressive if it is finite or the range of a regressive function
and is called retraceable if it is finite or the range of a retraceable function.
An isol is called regresstve if it contains a regressive set. By [1] we know
every regressive isol contains a retraceable set so it is not necessary to
define retraceable isol. In [2] a Turing degree is associated with every
regressive isol x. It is the Turing degree of some retraceable set & e
(equivalently of every retraceable set & € x). Let A denote the isols, Ay
the regressive isols, A5 the cosimple isols, and Az, the cosimple regresive
isols. Denote the recursive equivalence type of any set £cw by Req(&).
A property of numbers is said to hold eventually, or for almost all x if
there is an n € w such that = has the property for all « >n. Throughout
this paper we will define certain classes of functions by a property P.
Such functions will be called P-functions, their ranges will be called
P-sets, and if these sets are immune then their Req’s will be P-isols. So
much for ancient history.

A function ¢ is called 1-meager if it is retraceable and for every partial
recursive function p
(1-m) tn) & 0p v pi(n) < t(n+1)

for almost all n. A 1-meager set is necessarily immune. 1-meager sets
seem to have first appeared in a construction due to McLaughlin (cf.[9]).
The concept was probably delineated and deemed worthy of independent
study by Barback. The first substantial works on the 1-meager isols was
done by Gersting in [5] and [6]. We were informed by McLaughlin that
the degree d of any 1-meager isol satisfies 0’ <d (here 0 is the degree of
recursive sets and prime is the jump). To obtain the result in both direc-
tions we use an unpublished result of Tennenbaum. If p is a unary partial
function and g is a unary total function then g dominates pif n & dp v p(n)
<g(n) for almost all ».

Lemma 1 (Tennenbaum). If d is @ Turing degree, then there exists a
Junction of degree d which dominates every partial recursive function f and
only if 0'<d.

TBEOREM 1. If d is @ Turing degree, then there exists a 1-meager isol of
degree d if and only if 0' <d.

Proor. (a) Assume 0’ <d. Let g be a total function of degree d which
dominates every partial recursive function. Let jj(z,v,2)=5(j(z,¥),2)
and have s¢-th inverse function £, for ¢ < 3. Define a function ¢ by

t(0) =1 and #n+1) = js(t(n), g(n), gt(n)) for new.
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Since #(0) +0 we see that ¢ is a strictly increasing function that is almost
retraced by k,. If p is a partial recursive function then

t(n) ¢ p v pt(n) < gi(n) £ tn+1)

for almost all n. Hence ¢ is 1-meager. ¢ is recursive in g by the primitive
recursive definition of ¢ and g(n)=/k,¢(n+1) so g is recursive in Ant(n+1)
which has the same degree as ¢ (4 is Church’s functional symbol).

(b) Assume that ¢ is a 1-meager function and let p be a retracing func-
tion of ¢. Let ¢ be any partial recursive function and define r(z) = gp*().
Then r is a partial recursive function and

n&dg v g(n) = gp*i(n) = ri(n) < H(n+1)

for almost all n. Thus Ané(n+ 1) dominates all partial recursive functions
and has the same degree as {. By Lemma 1 the degree d of ¢ satisfies
0'<d.

Our proof follows if we recall that the degree of a regressive isol  is the
same as that of any retraceable v € x which is the same as that of any
retraceable function whose range is 7.

A function ¢ is called 1-generic if it is retraceable and for every partial
recursive function p

(1-g) {n) §6p v pi(n) + t(n+1)

for almost all #n. A 1-generic set is necessarily immune.

THEOREM 2. There exisis a 1-generic tsol whose Turing degree d satisfies
0'=d'.

Proor. (a) Let g,(x) be a partial recursive function of two variables
which with index » enumerates the partial recursive functions of one
variable z. Define a function ¢ by #0)=1, and given the value #(n) let

y(n) = (uy)(¥Ym < n) g,t(n) * j((n)), y)

and #(n + 1) =4j(¢(n),y(n)). Since £0) & 0 we see that ¢ is a strictly increasing
function that is almost retraced by k. The definition of y(n) immediately
implies that ¢ is a 1-generic function.

(b) Notice from its definition that y(n) = n for every n and then define
a recursive function f by f(0)=1 and f(n+1)=j5(f(n),n). By an easy
induction #(n) < f(n) for all n, that is, ¢ is bounded by a recursive function.
We can also cast the definition of ¢ as the conjunction &(t) of
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#0) = 1,
(Vn) kt(n+1) = t(n),

(Yo)(Ym < n)(Vy) (qni(n) = y > tn+1) + y),
(Vn) {(n) < f(n).

Any function ¢ which satisfies @ is l-generic and bounded by f. By
quantifier manipulation we can show that @ is expressible in JT,° form.
By a result of Jockusch and Soare (cf. [7]), every non-empty recursively
bounded [T,° class of functions contains a member whose degree d satisfies
0’=d’. Since @ is non-empty by (a), our result follows.

A degree d is hypertmmune free if every function of degree d is domin-
ated by a recursive function.

COROLLARY 1. There exists a 1-generic isol whose degree d is hyperimmune
free and satisfies 0" =d".

Proor. It is also shown in [7] that every non-empty recursively
bounded TT,° class of functions contains a member whose degree is
hyperimmune free and satisfies 0"’ =d’’. Now apply this to @ of Theorem 2.

CorOLLARY 2. Kvery l-meager isol is 1-generic; however there are 1-
generic isols that are not 1-meager.

Proor. By (1-m) and (1-g) we see that every 1-meager isol is 1-generic;
however the 1-generic isol constructed in Theorem 2 cannot be 1-meager
since it has the wrong degree.

Thus we see that from the degree point of view there is quite a differ-
ence between 1-meager and 1-generic isols. Since 1-generic isols will turn
out to be universal, Corollary 2 implies that a large growth rate is not a
necessary criteria for universality.

A function ¢ is called 2-meager if it is retraceable and for every partial
recursive function p

(2-m) ot &£ op v pi(n) < tin+1)

for almost all n. Clearly any l-meager object is also 2-meager, and a
2-meager set is necessarily immune. If f and g are total unary functions,
then g domenates f if f(n) <g(n) for almost all n. In order to characterize
the degrees of 2-meager isols we need



150 ERIK ELLENTUCK

Lemma 2 (Martin [8]). If d is a Turing degree, then there exists a function
of degree d which dominates every (total) recursive function if and only if
0" <d.

THEOREM 3. If d 18 a T'uring degree, then there exists a 2-meager isol of
degree d if and only if 0" <d'.

Proor. (a) Assume that ¢ is a 2-meager function and that f is any
recursive function. g(x)=3,,_,f(n) is also recursive and moreover is
monotone increasing. So

f(n) = g(n) = gi(n) < Hn+1)

for almost all » since gt < dg. Thus Ant(n+ 1) dominates all recursive
functions and has the same degree as {. By Lemma 2 the degree d of ¢
satisfies 0" <d’.

(b) Assume that 0" <d’. We shall modify a construction due to Martin
(cf. [8]) and produce a 2-meager function ¢ of degree d. Let ¢, (x) be the
enumeration used in the proof of Theorem 2. We know that the degree of

B = {n| dq, is infinite}
is 0" and hence <d’ (cf. [13]). Hence by [13] we can find a total binary

function f%(n) of degree <d such that » e B iff lim_f%n)=1 and n ¢ B
iff lim, f3(n)=0. We may also assume that

(V8,n)f%(n) € {0, 1}.
Now consider the predicate P(m,n,z,s) which is defined by
m=ExAg,(x)=8)Vv (n=sAfém)=0).
P is recursicely enumerable in f. P also satisfies
(7) (Vm, n)(3z, )P(m, n, z, 8) ,

for either m € B and dg,, is infinite (so x € dg,, for some n<x) or me B
and lim f%(m) =0 (so f¥(m)=0 for some n < s). Next we define two binary
functions

z(m, n) = (ux)(3s)P(m, n, z, s) ,

s(m, n) = (us)P(m, n, x(m, n), s) .

By (7) z(m, n) and s(m, n) are both recursive in f.
We are now ready to construct . Let g be a unary function of degree d.
Define #(0)=1 and given #(n) let

h(n) = 1+max{s(m, t(n)) | m < t(n)}



ON THE DEGREES OF UNIVERSAL REGRESSIVE ISOLS 151

and #(n + 1) =j5(t(n),g(n),h(n)), where max@=0. Since #(0) + 0 we see that
tis a strictly increasing function that is almost retraced by k, . ¢ is recursive
in f, g by the primitive recursive definition of ¢, and f is recursive in g
80 ¢ is recursive in g. But g is recursive in ¢ since g(n) = k,¢(n). Thus ¢ has
degree d. To see that ¢ is 2-meager let p be a partial recursive function
such that gt < dp. Then p=gq,, for some m € B. Choose n, so large that

m < t(ny) and (Vs 2 #(ny))fé(m) = 1.

Then for any » 2 n, we have x(m,t(n))=t(n), and s(m,¥(n))=g,Hn) <h(n).
Thus pt(n) <h(n) <t(n+1).

A function ¢ is called 2-generic if it is retraceable and for every partial
recursive function p
(2-g) et & dp v pi(n) + t(n+1)

for almost all n. Clearly any l-generic object is also 2-generic, and a
2-generic set is necessarily immune.

THEOREM 4. There exists a 2-generic 1sol whose Turing degree d satisfies
0'=d'.

CorOLLARY 3. Ewery 2-meager tsol is 2-generic; however there are 2-
generic 4sols that are not 2-meager.

Proor. The isol constructed in the proof of Theorem 2 is 2-generic,
but not 2-meager since it has the wrong degree.

Several variations of the meager-generic concept readily come to mind.
These will be important in the next section where we deal with cosimple
isols. A function ¢ is called weakly 1-meager if it is retraceable and for every
partial recursive function p

(wl-m) tn)&dp v pl(n) ot v pt(n) < t(n+1)

for almost all n. It is weakly 1-generic if it is retraceable and for every
partial recursive function p

(wl-g) i(n) ¢ op v pi(n) ¢ ot v pi(n) + Hn+1)

for almost all n. It is weakly 2-meager if it is retraceable and for every
partial recursive function p

(w2-m) ot & p v plet) § ot v pi(n) < tn+1)



152 ERIK ELLENTUCK

for almost all n. Finally is is weakly 2-genric if it retraceable and for
every partial recursive function p

(w2-g) ot £ op v plot) & of v pt(n) + t(n+1)

for almost all n. Notice that the weakening we have in mind consists of
only enforcing a condition if pi(n) € gt or p(ot)<Set. Some immediate
properties of these notions are the following for ¢ € {1,2}. If an object is
s-meager (generic) then it is weakly ¢-meager (generic). If it is weakly
1-meager (generic) then it is weakly 2-meager (generic). A weakly -
meager (generic) set is necessarily immune. The following diagram
indicates some of the relationships that we have established.

(1-m) —— (wl—m)
i e
(1-g) —J—» (w—1g) [

(8) l l
(2-m) —|—> (W2 —m)
e

'
(2-g)——(Ww2—-g)

Thus at first sight we have eight classes of isols., The following easy
theorem reduces them to six.

THEOREM 5. For i € {1,2}. An isol is weakly i-meager if and only if 4 is
weakly t-generic.

Proor. Let ¢ be a retraceable function and let p be a retracing func-
tion of ¢. First we establish that there exists a binary partial recursive
function ¢(z,y) with domain X2p such that for every y € ot we have
(t(n),y) € dq,

q(t(n), y) = tn) if y < #n),
and
g(t(n),y) = t(n+1) if ¢(n+1) = y.

We define the function g by (cf. (4) for P)

q(x, y) = p™(y) wherem = (un)x = p"*y), if ze€p(y),
=2z otherwise.

Our claim is immediate. We see from (8) that the theorem follows if we
show that a weakly ¢-generic function is weakly ¢-meager. Assume that
t,p, and q are as above. If the partial recursive function r is witness to
the fact that ¢ is not weakly ¢-meager then g(z,r(x)) is witness to the fact
that ¢ is not weakly ¢-generic.
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THEOREM 6. For ¢ € {1,2}. There exists a weakly i-meager tsol whose
Turing degree d satisfies 0'=d’'.

3. The effective case.

In this section we restrict our attention to the cosimple isols. Our goal
is to show that in this case the diagram (8) reduces to exactly three
classes. Recall from [3] that every retraceable function whose range
has a r.e. (recursively enumerable) complement has a (total) recursive
retracing function.

Lemwma 3. If t is a retraceable function whose range has a r.e. complement
then there cxists a binary recursive function q(x,y) such that for all n,y we

have q(i(n),y) =t(n) if y<t(n) and q(tn),y)=Hn+1) if tn+1)Sy.

Proor. Let v=pt and p be a recursive retracing function of . We
compute q(z,y) as follows. If y <z, let q(x,y)==. If z<y, let

Ogy = {2| x<22y Az = p(2)}.

Since p is recursive, we can effectively find «,,. If «,, is empty, let
q(x,y)=z and if «,, contains exactly one element, let g(x,y) be that
element. Suppose that «,, contains m>1 elements. Start an effective
enumeration of w—7. Then at some stage in this process, we will have
shown that either (i) # € w — 7, or (ii) m — 1 elements of «,,, belong to w — 7.
If (i) occurs before (ii), let g(x,y) = « and if (ii) occurs before (i), let
g(x,y) be the remaining element of «,, that has not already been listed in
o — 7. Notice that if #(n + 1) <y then ay,,, is non-empty. If it has exactly
one element, then that element is ¢#(n+ 1), and if it has m > 1 elements,
then #(n+1) € xyy,y, but all the remaining elements of oy, belong to
w—7. Thus ¢(t(n),y)=#n+1).

THEOREM 7. For i € {1,2}:
(a) A cosimple isol is i-meager if and only if it 18 i-generic.
(b) A cosimple isol 1s 1-meager if and only if it is weakly 1-meager.

Proor. First we show that if a cosimple isol z is ¢-generic (or weakly
i-generic) then it contains an ¢-generic (or weakly ¢-generic) set with r.e.
complement. By [2] we know that x contains a retraceable set = with
r.e. complement. Let o be any other retraceable set contained in «. There
are retraceable functions s and ¢ which enumerate o and 7 respectively.
Let p be any partial recursive function. We think of p as acting on 7,
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and then construct a partial recursive function r(z) which acts on o.
Since o, T €, we know by [2] that there is a one-one partial recursive
function % such that ¢ <déh and hs(n)=t(n) for all n € w. Let

or = {x | x€dhAh(x)edp}.

Then (V € 6r)[ph(z) € 6h~1 v ph(z) € w—7]

so that by enumerating dh-! and w— v we can define r(x)=h"1ph(z) if
we discover ph(x) in 6h~! before we discover it in w— 7, and r(x)=28(0)
otherwise. Notice that r is partial recursive, if of<dp then gs<ér, if

ot < dp A plet) < ot

then s S Or A r(gs) < g8,

and if pt(n)=t(n+ 1) then rs(n)=s(n+1). This shows that if ¢ is ¢-generic
(or weakly ¢-generic) then so is 7.
By (8),
(1-m) - (1-g) > (wl-g) and (2-m)— (2-g).

So in order to establish the theorem we will show
(wl-g) > (1-m) and (2-g) - (2-m).

Let ¢ be a retraceable function whose range = has an r.e. complement,
and let ¢(z,y) be the function whose existence for ¢ was proved in Lemma
3. For any partial recursive function p let r(x)=g(z, p(x)). If

Hn)edp A t(n+1) = pi(n)
then
n)€dr A ri(n) gt A rt(n) = t(n+1).

Thus (wl-g) -> (1-m) in the cosimple case. If
ot < 0p A t(n+1) £ pi(n)

then
ot S Or A ri(n) = tn+1).

Thus (2-g) - (2-m) in the cosimple case.

By (8), Theorem 5, and Theorem 7, the diagram (8) reduces in the
cosimple case to
9) (1-m) - (2-m) - (W2-m).

Our next goal is to show that these classes are distinct and to learn some-
thing of their properties. Since the weakly 2-meager isols turn out to be
universal, and since they have applications that the other two classes do
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not have, we amend our definition and say that a function is 3-meager if
it was previously called weakly 2-meager. Notice that in the cosimple
case all distinctions between genericity and meagerness have disappeared.
Growth rate alone has become a decisive factor.

TreorREM 8 (McLaughlin [9]). If d 48 @ Turing degree, then there exisis
a costmple 1-meager iso0l of degree d if and only if 0’ =d.

Proor. Since the degree d of any cosimple set satisfies d < 0’, it follows
from Theorem 1 that the degree of any cosimple 1-meager isol is exactly 0.
Thus to prove our theorem, it suffices to show that there exists a cosimple
1-meager isol. Let ¢,(x) be a partial recursive function of two variables
which with index n enumerates the partial recursive functions of one
variable z. Let ¢,,%(x) =y if ¢, (x) =y by a computation with Gtdel number
<s; otherwise we say that g,%(x) is undefined. Our proof will be a stage
by stage construction of finite approximating functions t%(n) where n <s.
We start with

Stage 0: Let t°(0)=1 and then go on to stage 1.

Stage s+ 1: As inductive hypothesis assume that at the end of stage s
we have defined t%(n) for n<s, that ¢30)=1 and ki3(n+ 1)=t3(n) for
n < 8. Search for the least » <s and for it the least m <n such that

(10) gn2t(n) is defined and t¥(n+1) £ g, %t%(n) .

If there is no such pair, go to case (a) below; otherwise, go to case (b).
Case (a): Let t2+l(x) = t8(x) for x=<s, t3t}(s+1) = j(t%(s), 0).
Case (b): Find the least y such that

(11) max {g,,°t%(n), t3(s)} < j(t¥(n), y)

and let +Y(z) =t3(x) for xz<n,t**Y(n+1) = j(t3(n),y), and te+ti{(z+1) =
j(ts+Y(x),0) for n<x =<s.

This completes stage s+1 of the construction. Now go on to stage
8+2.

It is easy to see that our inductive hypothesis is maintained as we
pass through stages. t(n) =1im,#3(n) exists for every n because #(0)=1 and
once t%(n) has reached its final value (10) implies that ¢*(n+1) can
change its value at most n times. {(0)=1 and kt(n + 1) =¢#(n) for all n by
our inductive hypothesis. ¢ is one-one since #(0)+0 and is clearly a
retraceable function almost retraced by k. ¢ has a r.e. complement be-
cause it follows from (11) and the construction in case (b) that x € w —g?
if and only if (s> x) = € gt%, the latter being a r.e. condition. Finally ¢
is meager because (10) and the construction in case (b) imply that
t(n) ¢ dg,, or q,t(n) <t(n+1) for all n>m.
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In [14] it is asked whether there exist retraceable sets which can be
written in TT,° but not in 3,,° quantifier form. The answer to this question
should be folklore by now, but I have never heard it explicitly mentioned.
An easy modification of the proof of Theorem 8 shows that indeed such
sets exist. Replace the ¢,(x) by an enumeration of functions partial
recursive in 0% (the k™ jump of 0), then proceed as in the proof of Theo-
rem 8. The construction becomes recursive in 0% and hence by Post’s
theorem w—pt is 3§,;. (1-m) holds for functions p partial recursive in
0% and hence gt is not recursive in 0®. Again by Post’s theorem this
means that of is not 39 ;.

LemmaA 4. If d is the Turing degree of a r.e. set and g is a function of
degree d, then there exists a retraceable function t of degree d whose range
has a r.e. complement such that gi(n) <t(n+ 1) for all n € w.

Proor. Let « be a r.e. set of degree d. Since ¢ is recursive in «, by [13]
we can find a binary recursive function g%(x) and a unary function r(x)
recursive in « such that g(x)=1im,g%(x) and

(Vs 2 r(2)) g°(x) = g(x) .

Our proof will be of the same type as that of Theorem 8.

Stage 0: Let ¢°(0)=1 and then go on to stage 1.

Stage s+ 1: As inductive hypothesis assume that at the end of stage s
we have defined t5(n) for m<s, that 50)=1, and kgs(n+1)=1%n),
k,t¥(n+1)=g%n) for n<s. Search for the least n <s such that either

(12) kyt(n+1) + g**+i(n),
(13) t5(n+1) £ gstits(n).

If there is no such n, go to case (a) below; otherwise, go to case (b).
Case (a): Let t5ti(x) =15(x) for x<s,t5+(s+ 1) =4,(t%(s),9%+1(s),0).
Case (b): Find the least y such that

(14) max {g°+1t5(n), t%(s)} < js(t*(n), g**X(n), y)
and let ¢#+1(z) =¢3(x) for x <m,

ts+1(n+ 1) = j3(t8(n)’ gs+1(n)’ 3/) B
and

totl(@+ 1) = ja(t*+(z), g**+(x), 0)

for n<xz=<s.
This completes stage s+ 1 of the construction. Now go on to stage s+ 2.
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It is easy to see that our inductive hypothesis is maintained as we pass
through stages. Now ¢(n) =lim,¢%(n) exists for every n because {(0)=1 and
once t¥(n) has reached its final value #(n),g%(n) has reached its final value
g(n), and g%(n) has reached its final value g¢(n), (12) and (13) imply that
t5(n+ 1) can change its value at most one more time. Then just as in the
proof of Theorem 8, we can show that #0)=1,k (n+1)=t(n) for all
7 € w, t is a one-one function almost retraced by k,,of has a r.e. comple-
ment, gi(n) <t(n+1) for all n € w, and k,#(n+ 1)=g(n) for all n € w. The
last of these claims implies that the degree of g is < to that of ¢. To show
the converse let s(x) be the least s such that

(14) (Vn £ t3(x))(r(n) £ s A g%t3(n) < t5(n+1)).

Since the construction is recursive and r is recursive in «, we can effectively
decide from a knowledge of x whether s will satisfy (14). Thus s(z) is
recursive in o and #(x) =#5@(z), making ¢ recursive in «. Then ¢ has degreed.

THEOREM 9. If d is a Turing degree, then there exists a cosimple 2-meager
tsol of degree d if and only if d is a r.e. degree and 0" =d’'.

Proor. Since the degree d of any cosimple set satisfies d’ < 0", it follows
from Theorem 3 that the degree of any cosimple 2-meager isol satisfies
0"’ =d’. Conversely let d be a r.e. degree satisfying 0"’ =d’. By Lemma
2 there is a function g of degree d which dominates every recursive
function and by Lemma 4 there exists a retraceable function ¢ of degree
d whose range has a r.e. complement and such that for every recursive
function p
(15) pt(n) < gt(n) < t(n+1)

for almost all n. Suppose that p is only partial recursive but ot < dp.
Now (Vz)(x€dp v x € w—pt) and w—pt is r.e., so by enumerating dp
and w — ot we can define a recursive function r by r(x) = p(x) if we discover
z in dp before we discover it in w — gt and r(z) =z otherwise. Since r agrees
with p on g, (15) holds for p. This shows that ¢ is a 2-meager function of
degree d.

CoroLLARY 4. If f is a function whose degree is < to that of every
costmple 2-megaer isol, then f is recursive.

Proor. By Theorem 9 the set of degrees of the cosimple 2-meager isols
is just
A ={d| disar.e degree and 0" = d'}.
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It will therefore suffice to show that the greatest lower bound of 4 is 0.
In [8] Martin attributes this result to Sacks as it follows easily from
section 6, Theorem 3 of [12]. By putting b=¢g=0, ¢=0"" in that theorem
it follows that for any degree a with 0 <a <0’ there is a r.e. degree d
such that a «d A 0" =d'.

We should note here that McLaughlin’s result (our Theorem 8) could
also be obtained by the method used in the proof of Theorem 9. For by
Lemma 1 there exists a function g of degree 0’ (a r.e. degree) which
dominates every partial recursive function. Then Lemma 4 gives a ¢ such
that (15) holds for every partial recursive function p, that is, ¢ is I-meager.

THEOREM 10. There exists a cossmple 3-meager isol whose Turing degree
d satisfies 0'=d’.

Proor. Let r,(f,z) be a partial recursive function of three variables
which with index n enumerates the partial recursive functions of a func-
tion variable f and a number variable x. The jump of f denoted by f’ will
be the set

{x | r,(f ,x)is defined} .

Let f|n be the restriction of f to arguments =<n. Let r,%fls,x)=y if
r.(f,)=y by a computation with Godel number =s which asks for
f(y) only when y <s; otherwise we say that r, %(f|s,x) is undefined. The
enumerations g, and ¢,° are the ones used in the proof of Theorem 8.
Just as in that proof we construct the finite approximating functions
t%(n) where n < s. An extra ingredient is an infinite list of movable markers
u(n) for n € w. We start the construction with

Stage 0: Let £9(0)=1. At the end of this stage no markers are attached
to numbers. Then go on to stage 1.

Stage s+ 1: As inductive hypothesis assume that at the end of stage s
we have defined ¢5(n) for n <s, that £3(0) =1 and kté(n+ 1) =t%(n) for n <s.
We also assume that certain markers u(n) for n<s are attached and
only attached to numbers of the form ¢$(m) where m < s and that whenever
u(n) is attached to t%(m) then (16) below is satisfied.

(16) ¢,5t%(m) is defined and #3(m) < g, %t%(m) <t*(m +1).

Let e¥(n)=(uy < 8)[r,¥(t%)y,n) is defined] if there is such a y; otherwise
e%(n)=0. Search for the least n<s and for it the least m < such that
M(n) is not attached to numbers and which satisfy (17)-(19) below.

(17) q,°t8(m) is defined and t*(m +1) £ ¢q,%t%(m),
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(18) forno n'<n and m’ = m is u(n’) attached to t¥(m’),
(19) ef(n’) < m for each n' < n.

If there is no such pair go to case (a) below; otherwise, go to case (b).
Case (a): Let t8+i(x)=t%(x) for x=<s, t*ti(s+1)=4(t%(s),0), and leave
the position of all markers unchanged.
Case (b): For each »n’>n detach u(n’) from numbers (if it is attached
to any) and attach u(n) to t5(m). Find the least y such that

(20) max {g,,°t(m), t*(s)} < j(t*(m), y)

and let #+Y(z) =¢8(x) for x Sm, t*+(m+ 1) =j(t3(m),y), and t+i(x+1)=
j(e*+ (=), 0) for m<x <s.

This completes stage s+ 1 of the construction. Now go on to stage
s+ 2.

It is easy to see that our inductive hypothesis is maintained as we
pass through stages. Each marker moves finitely often because once the
u(n') with »' <n reach their final positions (which may or may not be
attached to numbers) and u(n) is attached to a number then (18) implies
that it will never move again. ¢(n)=Ilim,#3(n) exists for every n because
either there is a stage after which no markers are attached to numbers
and case (a) applies, or infinitely many markers reach final positions
attached to distinct numbers and (20) implies that all motion of t¥(m)
below those numbers is frozen. Finally e(n)=1lime3(n) exists for every n
because once the u(n') with »’ <= have reached their final positions (19)
implies that e3(n) can change its value at most one more time. Then just
as in the proof of Theorem 8 we can show that #0)=1, ki(n+1)=1t(n)
for all » € w, ¢ is a one-one function almost retraced by k, and ot has ar.e.
complement. To show that ¢ is 3-meager let p be a partial recursive func-
tion such that

ot < op A plot) < et .

Now p=gq,, for some n € w. Say that a marker (or a function) has reached
its final position (or value) by stage s if at no later stage does it change
its position (or value). Let s, be a stage such that by stage s, the u(n’)
with »’ <n have reached their final positions and the e3(n’) with n'<n
have reached their final values. Let b, be an upper bound to these positions
(if attached to numbers) and let b, be an upper bound to these values.
If t(m+1)<pt(m) for some m with by<#(m) A b, <m then there would
be an s>s, such that ’

ts(m) = t(m) A t3(m+1) = t(m+1) A ¢,%t%(m) is defined.



160 ERIK ELLENTUCK

Then by this stage u(n) has already reached a final position attached to
number or by (17)—(19) it will reach its final position attached to numbers
at stage s+ 1. It follows from (16) that p(et) & et. Thus pi(m)<t(m+1)
for almost all m and ¢ is 3-meager. Let ¢ have jump #' and degree d.
Since we always have 0’ <d’ we complete our proof by showing that #'
is recursive in some set of degree 0’. We claim that » € ¢’ iff e(n) > 0. Let’s
first show that this does the job.

e(n) > 0 iff (Vz)(3s > z)(ef(n) > 0) iff (Jx)(Vs>z)(es(n)>0).

Since e*(n) >0 is recursive this puts e(n) >0 in two quantifier form and
hence by Post’s theorem of degree <0’. Now for the claim. If n € ¢’ then
r,(¢,n) is defined and there is a y such that r,(¢,»)=r,¥(¢ly,n). Choose s
so large that t3(m)=1(m) for m <y. Then

ra(tly, m) = rY(Ely,n) and  e(n) > 0.

Since e%(n) has reached its final value by this stage, we have e(n)>0.
If e(n) >0, choose s so large that e*(n) has reached its final value by stage
s and t5(m)=¢(m) for all m <e(n). Then there is a y (=e(n)) such that
r?(t%|y,n) is defined and

"n”(t3|?/, n) = Tn"(t[?/, n) = n(t: n)
putting net'.

4. Application.

We say that an isol u is strongly universal if for every functionr: w -
and relation
R = {(m9 7&) | r(m) = n} s

(3y € 4) (u,y) € R, implies that r is eventually recursive increasing. Our
interest in meager isols stems from

TaEOREM 11. Every 3-meager isol is strongly universal.

Proor. Let @ be the set of finite subsets of w. If F < X2Q is a frame
and (xg, ®y) € F* let

OFV(“ov, ®) = o and CFV(‘XO’ * ) = B

where Cp(xg, %)= (By,f1) (cf. [11] for frame notation). Consider any 3-
meager function ¢ and let ot =7rcuedy. Suppose r: w > w,

R = {m,n)| rm) =n}, and @yed)u,y)eR,.
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Then there is an isolated < and a recursive R-frame F such that
(7,n) is attainable from F. Let p be a retracing function of ¢ and let 7
be the function associated with p by (4). We define a partial function ¢
as follows.
8 = {z| zedpa (Bla), @) € F¥)
and
g(@) = maxCy”(B(2)”, @) .

Clearly ¢ is partial recursive and gtcdq A g(of) St because (z,7) is
attainable from F. We easily note that {(n) < gt(n) for all n € w (by defini-
tion) and since ¢ is 3-meager this implies gi(n) =#(n) for almost all # € w.
Let

A={x]| (x,P)eF*r Cp (7, D) = «}.

Now gt(n)=#(n) implies Cp” (Pt(n)”, @)=7ptn) so Pt(n) € A for almost
all n. For x € 4 let
p(x) = Cp (&, @7).

A is a r.e. family of finite sets, ¢ is a partial recursive function taking
finite sets to finite sets, and («,@(«x)) € F for every a € 4. If «,f € 4 and
oS B then (x, @) < (8, ¢(B)) and hence ¢(x) < ¢(B). Let |«| be the number of
elements in «. Then

S ={m,n)| Axed)m = |x| A n = |p(«)|}

is a r.e. subset of R, and the graph of a partial function whose domain is
almost all of w. This function is eventually increasing by the monotonicity
of ¢. Thus r is an eventually recursive increasing function.

We say that an isol w is universal if for every Rcw, u € R, implies
that » € R for almost all n.

TEEOREM 12. EHvery strongly unsversal isol 18 universal.

ProoF. Assume that u is strongly universal, Ecw, and v € R,. Let
8 ={n,1)| neR}u{n,0)| necw—R}.

Since (Vzx € w) « € R iff (x, 1) € S, the same will be true in A by the univer-
sal metatheorem of Nerode (cf.[11]). Thus (u,1) € S,. Since S is the
graph of the characteristic function r of R, u is strongly universal, and
1 € A we conclude that r is eventually increasing. But 7 is bounded and
hence is eventually constant. It will suffice to show that r eventually has
the value 1. Assume not. Then for some n € w we have (Vz € w) r(x+n)=0,

Math. Scand. 82 — 11
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and hence (Vz € w) (x+n,1) ¢ S. Again by the metatheorem this will also
be true in A and since u is clearly infinite this implies (u,1) ¢ S,. But
then u¢ R ,, a contradiction. So u is universal.

In [5] it was asked whether every universal regressive isol is 1-meager.
From the results of the last section this is answered negatively with a
cosimple counterexample. Our answer is even stronger than the question
because in [56] ‘“universal” is defined only with respect to recursive
relations, whereas the notion here is with respect to all relations (a study
of this kind of distinction between universal isols, as well as others will
appear elsewhere).

Suppose we wish to generalize the notion of universal isol to the
n-dimensional case where n > 1. For the sake of illustration we shall con-
fine ourselves to the case n=2. Let f: X2w — w and define

A:cf(x’ y) =f(x+1= y)_f(x’ y) s
4,f(=,y) =fl@,y+1)=f(x,y),

and A=4, 0 4,. f is said to be recursive increasing if f is recursive and
Af (z,y) = 0 for all (x,y) € X?w, where f(x+1,y+ 1)=f(z,y) and f (x,y)=0
otherwise. A property of pairs of numbers is said to hold eventually, or for
almost all (z,y) if there is a (m,n) € X2w such that (z,y) has the property
for all x >m and y > n. Eventually recursive increasing and almost recursive
increasing are then canonically defined in the same way as is done for
combinatorial functions. The importance of these notions follows from [4]
where it is shown that if r : X2w — w is an almost recursive increasing
function and
R = {(w’y’z) l r(x,y) = Z}
then
(Ve,ye Ag)3z e 4) (x,y,2) e R, .

For the converse of this theorem we say that a pair of isols (u,v) is
strongly universal if for every function r : X%w — w and relation

R = {x,y,2) ]| r@,9) = 2},

(J3ze A) (u, v, 2) € R, implies that r is eventually recursive increasing.
We also say that the pair is universal if for every Rg<X2w, (u,v) € R,
implies that almost every (z,y) € X?» belongs to R. Just as in Theorem
12 we can show that every strongly universal pair of isols is universal.
So the remaining problem is to find such pairs. Let us examine the
situation along the lines of the meager-generic classification of section 2
keeping in mind the proof of Theorem 11 in order to see what we need.
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A pair of functions (s,¢) is called 1-meager if s,t are both retraceable and
for every pair of binary partial recursive functions (p,q)
(21) (Sm: tn) ¢ 6]) v ('gm’ tn) ¢ 6q v (p(sm’ tn) < Sm+1 A Q('sm’ tn) < tn+1)

for almost all (m,n). To define 2-meager we add to (21) as a disjunct

osxpot & op v osxpt & dq,

to define weakly 1-meager we add to (21) as a disjunct

PS> tn) § 08 V q(S, 1) € 0t
and finally to define weakly 2-meager we add to (21) as a disjunct

esxot & Op v esx ot & 0g v plesxot) & os v glos xet) & of -
To define the generic pairs simply, take the corresponding meager defini-
tion and replace both < symbols in it by + symbols. The diagram (8)
holds for pairs and the reader can easily convince himself that Theorems
5 and 7 also hold for pairs. Define 3-meager pairs as the weakly 2-meager
ones and note that (1-m) - (2-m) — (3-m), and in the cosimple case this
is all that remains of (8). The crux of our analysis follows from.

THEOREM 14 (Gersting [5]). There are no 2-meager pairs of functions.

Proor. Suppose s and ¢ are retraceable functions. Define the recursive
functions p(z,y)=q(x,y)=x+y. Then gs x ot < dp=4dg,

(Vm)(an > m) 8m+1 <p(8m’ tn)! a'nd (Vn)(i]m > 'n’) tn+1 < Q(sm’ tn) °

Thus (p,q) is a counterexample to (s,?) satisfying (21).

With little modification in the proof of Theorem 11, we can show that
every 3-meager pair of isols is a strongly universal pair. This together
with Theorem 14 and the proof of Theorem 11 gives us a pretty good idea
of the road leading to the existence of strongly universal pairs of cosimple
regressive isols. Fortunately thisroad (without all the analysis) has already
been traveled for we have

TareoreEM 15 (Ellentuck [4]). For every n> 0 there exists a 3-meager n-
tuple of cosimple isols.

Thus the problem of finding strongly universal pairs of cosimple
regressive isols gives some justification for the concept of 3-meagerness.
The other meager notions simply do not generalize.
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Posrscrrer.
We can now show that there exists a cosimple 3-meager isol in every
r.e. degree d> 0.
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